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Unsupervised learning

Supervised learning: X, y

Unsupervised learning: X

What can we hope to accomplish?

1. Clustering (classification)

2. Decomposition (e.g. “cocktail party problem”, species 

identification)

3. Anomaly/breakout detection (e.g. fault detection/prediction)

What can be accomplished without labels?

Cat Dog

4.  Generation (e.g. creating new examples within a class)



Unsupervised learning

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Clustering: Divide x into k categories

K-means

K-means algorithm:

a. Pick ‘k’ random centroids

b. Loop until convergence {

1. Assign examples to nearest 

centroid

2. Update centroids to mean of 

clusters

}

What can be accomplished without labels?

See also: Hierarchical clustering, 

DBSCAN, etc…



Unsupervised learning

Time series data: Anomaly/Breakout/Changepoint Detection

Anomaly detection: 

identify points that are statistical 

outliers from a distribution

Breakout/Changepoint detection:

Find point in time at which 

distribution changed X Y

PyAstronomy: Generalized ESD (GESD)

(Available from pip install)

Student’s 

t-test



Unsupervised learning

Generating new data

Deep dreaming of dogs

If you train a network to 

recognize dogs…

…it will hallucinate dogs

Style transfer

Gatys, et al.

Unsupervised learning with neural networks: 

train a model to generate new examples based on training set



Unsupervised learning

Generating new data

Generative Adversarial Network (GAN)

Training Set

Generator

Discriminator

Real

Fake

Noise
Cross entropy (log loss)

-



r =     
p =     

Reinforcement learning

Machine Learning for Games

AlphaGo

Third category: partial supervision

e.g. when playing a game, will not 

have a known label for every position, 

but will know who wins at the end

States: s

Actions: a

Transition probability: p

Rewards: r

https://en.wikipedia.org/wiki/Reinforcement_learning

Goal is to solve for a“policy”: 

i.e. optimal action as, given state s



Applications to Accelerators

But is it useful??

Look at examples for Free Electron Lasers:

1. Computer vision to process screens

2. Neural networks to solve inverse problems

3. GANs to augment data sets

4. Breakout detection for fault recovery

5. Bayesian optimization and RL for online tuning

6. Regularization and convex optimization to analyze data



Supervised Learning:

Data Analysis – Pulse reconstruction

Computer vision

Aphex34 https://commons.wikimedia.org/w/index.php?curid=45679374
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XTCAV

Longitudinal phase space of an electron beam for an XFEL

Stanford CS231n



Supervised Learning:

Data Analysis – Pulse reconstruction

Computer vision

Stanford CS231n

D. Mendez

Aphex34 https://commons.wikimedia.org/w/index.php?curid=45679374
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Supervised Learning:

Data Analysis – Pulse reconstruction

Xinyu Ren

XTCAV Analysis
Before lasing

After lasing
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Supervised Learning:

Data Analysis – Pulse reconstruction

Full beam reconstruction

12

Measure amplitude of power/spectrum: can I recover phase?

Measure 

Power

Measure 

Spectral 

power

Guess 

Field

F(t),F(w)

Measure 

Power

Measure 

Spectral 

power

Hidden layers

Output

Input

Guess 

Field

F(t),F(w)

…
106-109 times

Pulse #1

Pulse #n

Only solve once!



groundtruth
prediction

groundtruth

prediction

Amplitude Phase

Time (fs)

Supervised Learning:

Data Analysis – Pulse reconstruction

Xiao Zhang

Full beam reconstruction
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Measure amplitude of power/spectrum: can I recover phase?

Measure 

Power

Measure 

Spectral 

power

Hidden layers

Output

Input

Guess 

Field

F(t),F(w)

Time (fs)

Only solve once!



Unsupervised learning

Surrogate Models – FEL simulations

Genesis: 

~1000 cpu-sec

GAN (neural net):

~0.001 gpu-sec

Generative adversarial network (GAN)

X. Ren

LCLS users need 100k to 1M pulses to prepare for beamtime

 1 billion cpu-hours!

Conditional GAN (CGAN): 

provide knob to control parameters

Electron 

energy
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Unsupervised Learning:

Anomaly/Breakout/Changepoint detection

1. Alarm handling (e.g. drifting temperatures)

2. Identification of anomalous conditions (e.g. shorted quadrupole magnet)

3. Machine configuration setup (e.g. global optimization)

LCLS Temperature monitor (timing system)

N. Norvell

Breakout Detection
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Unsupervised Learning:

Anomaly/Breakout/Changepoint detection
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Cathode quantum efficiency drop caused hours of downtime. 

D. Sanzone

Breakout Detection

Median statistics 

avoid anomalies



Supervised Learning:

Optimization – Online tuning

Online tuning:
• Twice daily, ~500 of hours/year 

• A single task, quadrupole tuning, required 1 hour/day

Ocelot



Joe Duris, Mitch McIntire

Supervised Learning:

Optimization – Bayesian optimization

Model-based optimization

Gradient optimizer

Advantage 1: Balance “exploitation vs. exploration”

 Find global maximum



Supervised Learning:

Optimization – Bayesian optimization

Model-based optimization

Advantage 1: Balance “exploitation vs. exploration”

Acquisition pointAcquisition pointAcquisition pointAcquisition pointAcquisition pointAcquisition pointAcquisition point Acquisition pointAcquisition point

Acquisition 

function

Ground truth

Posterior

Joe Duris, Mitch McIntire

 Find global maximum



Acquisition 

function

Ground truth

Posterior
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Measured

Modeled

FEL vs quads

Model-based optimization

Advantage 2: Model can incorporate physics, experience

 Learn from data, simulations

Supervised Learning:

Optimization – Bayesian optimization

X-focus Quad
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Supervised Learning:

Optimization – Bayesian optimization

Gaussian process: instance based learning method

Kernel (covariance):

observations

new point

prior mean

new point 

to predict

taken from M. Ebner, GP for Regression
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Supervised Learning:

Optimization – Bayesian optimization

Gaussian process: instance based learning method

observations

new point

prior mean

new point 

to predict

Prediction of new point:

Variance of new point:

taken from M. Ebner, GP for Regression

Kernel (covariance):
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Supervised Learning:

Optimization – Bayesian optimization

Gaussian process: instance based learning method

observations

new point

prior mean

new point 

to predict

Acquisition 

function:

Kernel (covariance):
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Supervised Learning:

Optimization – Bayesian optimization

Model knows history  makes educated guesses where to explore

Example: tuning quadrupoles from noise



X-ray energy

Experiment: Taper profile

Treat optimization like a game: FEL power is the score

Juhao Wu
25

AlphaGo

LCLS Experiment: 5.5 
KeV Self-seeding FEL, 

Zig-zag doubles power 
from continuous profile

Reinforcement Learning:

Optimization – Online tuning



Supervised Learning: 

Statistical methods for data analysis

Ghost Imaging / Single Pixel Camera

Riddle: How can I take a picture with a spectrometer?

Answer: Have a friend with a flashlight

26



Supervised Learning: 

Statistical methods for data analysis

Target 

reconstruction

target

B = [ 5037, 4783, 4891, 5940, … ]

Random patterns

Images, I

Ghost Imaging / Single Pixel Camera

=B A x

27



Supervised Learning: 

Statistical methods for data analysis

Compressive sensing + ghost imaging

 Compressive ghost imaging

28

Compressive sensing concept: 

Why record 660k points if only 39k needed?

Wikimedia



Supervised Learning: 

Statistical methods for data analysis

29S. Li200 images pretty good!

Target

Transmission at 

camera

Experimental Results



LCLS drive laser

Don’t need DMD: 

exploit natural variation, 

jitter of drive laser

Supervised Learning: 

Statistical methods for data analysis

Siqi Li

Example application: photocathode quantum efficiency

30

DMD

Cathode 

laser
Cathode

target

DMD modulation

Ground truth Reconstruction



Pump 

X-ray

Time

Probe

X-ray
e-

Sample, CO

As system (CO) evolves after absorbing X-ray, electron energies change

A. Picon
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Supervised Learning: 

Statistical methods for data analysis
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As system (CO) evolves after absorbing X-ray, electron energies change

Goal: can we recover R from M? 32

Supervised Learning: 

Statistical methods for data analysis

A. Picon
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Supervised Learning: 

Statistical methods for data analysis

33

Solving for the response, R(d,E):

Optimization formalism: 



L . Rokach

Conclusion

Some personal opinions on ML for accelerators 

1. No data  no learning: #1 task is building data

2. Noise, outliers, dropped data will dominate performance: #2 task is cleaning

3. Deep learning is the dream… but time spent thinking about physics is well-

rewarded.



Conclusion

Applications for XFELs (and other accelerators)

1. Online tuning: transverse matching, longitudinal phase space, X-ray 

spectrum, emittance minimization, etc.)

2. Surrogate modeling: efficient machine design, user support, predictive 

control

3. Data analysis: X-ray pulse reconstructions, electron parameters, user 

experiments

4. Prognostics: Fault prediction, fault recovery, identification of anomalous 

conditions

When is ML useful? 

• Tasks that humans can do, but hard to describe…

• When data is abundant and well labeled

• When simple algorithms fails

• When the goal is worth the effort

ML should be your last resort!



Conclusion

Thanks for your attention!

And thanks to the people who did the work 

shown here:

E. Cropp, J. Duris, A. Edelen, K. Kabra, D. 

Kennedy, T. J. Lane, S. Li, T. Maxwell, P. 

Musumeci, X. Ren, J. Wu, X. Zhang



Data Analysis: 

Statistical methods for data analysis

Siqi Li

Experimental Results

Ground truth
ADMM 

reconstructionTarget

Transmission at 

camera

target

DMD

Cathode 

laser

Cathode

37



J. Qiang

measurement simulation

Surrogate Models: Accelerator models

High fidelity physics simulations are remarkable: 

…but also slow.  (e.g. hours on NERSC)

How can we best support design of a new machine?

LCLS-II simulations, Y. Ding

LCLS microbunching 

instability

38



Surrogate Models: Accelerator models

39

Emma, Edelen, et 

al. in preparation

• Predict XTCAV image from other diagnostic output or upstream 

machine settings to create a non-destructive virtual diagnostic

• Simulation + neural network results match well for FACET-II (see left)

• Small study with LCLS machine data and XTCAV images (scan of 

L1S phase and BC2 peak current at 13.4 GeV)
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TDGI Example

Signal determined by probability of two photons separated by time d
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