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Outline

• Introduction of the particle-in-cell method for multi-particle 

simulation

• Deposition/interpolation

• Self-consistent field calculations

• FFT based Green function method for open boundary 

condition

• Multigrid method for irregular shape boundary condition

• Particle advance



Introduction

• Particle-in-cell method: 
“the method amounts to following the trajectories of charged

particles in self-consistent electromagnetic (or electrostatic) fields 

computed on a fixed mesh”

• Particle-in-cell codes are widely used in accelerator physics community:

• PARMELA, ASTRA, GPT, IMPACT-T, IMPACT-Z, GENESIS, GINGER….

• An example of 2D particle-in-cell simulation an mismatched beam transport 

through a FODO

Courtesy of R. D. Ryne



Governing Equations in Space-Charge Simulation

 /2 

 pdtprf 3),,(

0
),,(),,(),,(
















p

tprf
p

r

tprf
r

t

tprf


  ))(( iii pprrw



particle deposition

field interpolation
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One Step Particle-In-Cell Method 



Particle Deposition/Field Interpolation
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Particle deposition:

Field interpolation:
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• Grid reduces the computational cost compared 

with direct N-body point-to-point interaction

• Grid also provides smoothness to the shot noise 

and close collision



• Spatial localization of errors

- At particle separations large compared with the mesh spacing, the field 

error should be small 

• Smoothness

- The charge assigned to the mesh from a particle and the force 

interpolated to a particle a particle from the mesh should smoothly

vary as the particle moves across the mesh

• Momentum conservation

- No self force

Weight Function for Deposition/Interpolation
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• Spatial localization of errors

• Smoothness:

• Continuity of weight function value

• Continuity of derivative  

-h 0 h
• Momentum conservation
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Weight Function for Deposition/Interpolation



Weight Functions for Deposition/Interpolation
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R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles



Self-Consistent Field Calculations
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Transverse irregular pipe

FFT based Green function method:

• Standard Green function: low aspect ratio beam

• Shifted Green function: separated particle and field domain

• Integrated Green function: large aspect ratio beam

• Non-uniform grid Green function: 2D radial non-uniform beam 

Spectral-finite difference method:

Multigrid spectral-finite difference method:

Fully open boundary conditions 

Transverse regular pipe with

longitudinal open/periodic  

Transverse irregular pipe

Different Boundary/Beam Conditions Need 

Different Efficient Numerical Algorithms O(Nlog(N)) or O(N)



Field Calculation with Open Boundary Conditions
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Direct summation of the convolution scales as N2 !!!!

N – total number of grid points

Green Function Solution of Poisson’s Equation



L

G(r)G(-r)

(r)

Hockney’s Algorithm or Zero Padding

G(-r)G(r)

Gc(r)

• This is different from a real periodic system

• The real calculation is done in discrete coordinate instead of continuous coordinate

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles



Hockney’s Algorithm or Zero Padding
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A Schematic Plot of an e- Beam and Its Image Charge

o e-e+

cathode

z
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F(r)  Gs(r,r')(r')dr'
Gs(r,r') G(r  rs,r')

Shifted Green function Algorithm:

J. Qiang, M. Furman, and R. Ryne, Phys. Rev. ST Accel. Beams, vol 5, 104402 (October 2002).



Test of Image Space-Charge Calculation 

Numerical Solution vs. Analytical Solution

Shifted-green function

Analytical solution 



Integrated Green Function for Large Aspect Ratio Beam

• Lack of resolution along longer side if same number of grids are used for both sides 

• Brute force: use more grid points along longer side

• Better way: break the original convolution integral into a sum of small cell integral and 

use integrated Green’s function within each cell

G(r)
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Integrated Green Function

J. Qiang, S. Lidia, R. D. Ryne, and C. Limborg-Deprey, Phys. Rev. ST Accel. Beams, vol 9, 044204 (2006).



A Comparison Example: Aspect Ratio = 30



Poisson Solver with Finite Boundary Conditions

jj-1 j+1

Where j = 1, …,N



Finite Difference Poisson Solver: Iterative Methods

• Direct Gaussian elimination: O(N3)

• Iterative method: O(mN)

Where S is an approximation of A-1, i = 1,…,m

A: is a sparse matrix



• Classical iterative methods: 
– Jacobi

– Damped Jacobi

– Gauss-Seidel

– Successive Over Relaxation

Finite Difference Poisson Solver: Iterative Methods

• Problems of classical iterative methods: 
– slow convergence 



Weighted Jacobi Chosen to Damp High Frequency Error

Initial error

“Rough”

Lots of high frequency components

Norm = 1.65

Error after 1 Jacobi step

“Smoother”

Less high frequency component

Norm = 1.055

Error after 2 Jacobi steps

“Smooth”

Little high frequency component

Norm = .9176, 

won’t decrease much more

Ref: J. Demmel’s class note



• Classical sparse-matrix-vector-multiply-based algorithms: 

o low frequency error decreases slowly after a few iterations

o move information one grid at a time

o take N1/d steps to get information across grid

o matrix-vector multiplications are done on the full fine grid 

• Multigrid algorithm: 

o smooths out the numerical errors of different frequencies on different 

scales using multiple grids

o moves the information across grid by W(log n) steps 

o most multipications are done on coarse grids

Multigrid Motivation



Comparison of Convergent Time for an Example: 

SOR vs. Multi-Grid



Multi-Grid Iteration Method

• Basic Algorithm:
– Replace correction problem on fine grid by an approximation on a 

coarser grid

– Solve the coarse grid problem approximately, and use the solution 

as a correction to the fine grid problem and build a new starting 

guess for the fine-grid problem, which is then iteratively updated

– Solve the coarse grid problem recursively, i.e. by using a still 

coarser grid approximation, etc.

• Success depends on coarse grid solution being a good approximation 

to the fine grid



• Consider a 2m+1 grid in 1D for simplicity

• Let P(i) be the problem of solving the discrete Poisson equation on a 
2i+1 grid in 1D  

• Write linear system as A(i) * x(i) = b(i)

• P(m) , P(m-1) , … , P(1) is a sequence of problems from finest to coarsest

Multigrid Sketch on a Regular 1D Mesh



• Consider a 2m+1 by 2m+1 grid

• Let P(i) be the problem of solving the discrete Poisson equation on a 
2i+1 by 2i+1 grid in 2D

o Write linear system as A(i) * x(i) = b(i)

• P(m) , P(m-1) , … , P(1) is a sequence of problems from finest to coarsest

Multigrid Sketch on a Regular 2D Mesh



• For problem P(i) :
o b(i) is the RHS and 

o x(i) is the current estimated solution 

o (A(i) is implicit in the operators below.)

• All the following operators just average values on neighboring grid points
o Neighboring grid points on coarse problems are far away in fine problems, so information 

moves quickly on coarse problems

• The restriction operator R(i) maps P(i) to P(i-1)

o Restricts problem on fine grid P(i) to coarse grid P(i-1) by sampling or averaging

o b(i-1)= R(i) (b(i))

o Graphic representation: 

• The prolongation operator P(i-1) maps an approximate solution x(i-1) to an 
x(i)

o Interpolates solution on coarse grid P(i-1) to fine grid P(i)

o x(i) = P(i-1)(x(i-1))

o Graphic representation: 

• The smooth operator S(i) takes P(i) and computes an improved solution x(i) 
on same grid
o Uses “weighted” Jacobi or Gauss-Seidel

o x improved (i) = S(i) (b(i), x(i))

o Graph representation: 

both live on grids of size 2i-1

Basic Operators of Multigrid Iteration



• The restriction operator, R(i), takes 

o a problem P(i) with RHS b(i) and

o maps it to a coarser problem P(i-1) with RHS b(i-1)

• Simplest way: sampling

• Averaging values of neighbors is better; in 1D this is

o xcoarse(i) = 1/4 * xfine(i-1)   +   1/2 * xfine(i)   +   1/4 * xfine(i+1)

• In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

Restriction Operator R(i) - Details



• The prolongation/interpolation operator P(i-1), takes a function on a 

coarse grid P(i-1) , and produces a function on a fine grid P(i)

• In 1D, linearly interpolate nearest coarse neighbors

o xfine(i) = xcoarse(i) if the fine grid point  i is also a coarse one, else

o xfine(i) = 1/2 * xcoarse(left of i) + 1/2 * xcoarse(right of i)

• In 2D, interpolation requires averaging with 2 or 4 nearest neighbors 

(NW,SW,NE,SE)

Prolongation/Interpolation Operator



• Pre-smoothing: compute approximated solution by applying n1 steps of a 

relaxation method on fine grid:

• Construct residual vectors:

• Restrict the residual to coarser grid:

• Solve exactly on the coarse grid for the error vector:

• Prolongate/Interpolate the error vector to fine grid:

• Compute the improved approximation x on fine grid:

• Post-smoothing: compute approximated solution by applying n2 steps of a 

relaxation method on fine grid:

1

1 ,,1));2(()2()2( n iXABSXX iii

)2()2(
11

n
XABr

))2(()1( rRr 

))1(()1( 1 rRAE 

))1(()2( EPE 

)2()2()2(
11 1 EXX 
n



2

1 ,,1));2(()2()2( n


 iXABSXX iii

Two-Grid Iteration



g is the number of two-grid iterations at each intermediate stage

V-Cycle W-Cycle

Structure of Multigrid Cycles



Function MGV ( b(i), x(i) )

… Solve A(i)*x(i) = b(i) given b(i) and an initial  guess for x(i)

… return an improved x(i)

if (i = 1) 

compute exact solution x(1) of P(1) only 1 unknown

return x(1)

else 

x(i) = S(i) (b(i), x(i))                                  improve solution by 

damping high frequency error

r(i)  = A(i)*x(i) - b(i)                                  compute residual

r(i-1) = R(i)(r(i))                                        restrict from fine to coarser grid

MGV( r(i-1), e(i-1) )                                   solve A(i)*e(i) = r(i) recursively 

e(i) = P(i-1)(e(i-1))                                    prolongate from coarser grid to fine grid

x(i) = x(i) - e(i)                                           correct fine grid solution

x(i) = S(i) ( b(i), x(i) )                                 improve solution again

return x(i)

Multigrid V-Cycle Algorithm



• At level i, the number of unknown is (2i-1)x (2i-1)

• On a serial machine

o Work at each point in a V-cycle is O(the number of unknowns)

o Cost of Level i is O((2i-1)2 )= O(4 i)

o If finest grid level is m, total time is:

o SO(4 i) = O( 4 m) = O(# unknowns)

• On a parallel machine (PRAM)

o with one processor per grid point and free communication, each 

step in the V-cycle takes constant time

o Total V-cycle time is O(m) = O(log #unknowns)

m

i=1

Complexity of a V-Cycle on a 2D Grid



• Overview:

o Solve the problem with 1 unknown on coarsest grid

o Given a solution to the coarser problem, P(i-1) , map it to starting guess 

for P(i)

o Solve the finer problem using the Multigrid V-cycle 

• Advantages: 

o no need for initial guess of solution

o avoid expensive fine-grid (high frequency) cycles

o obtain solutions at multiple grid level (can be used for error estimate or 

extrapolation)

Full/Nested Multigrid (FMG)



•Error decreases by a factor >5 on each iteration

Convergence Picture of Multigrid in 1D



Particle Advance: Numerical Integration

• Consistency

• Accuracy

• Stability

• Efficiency

• Examples of numerical integrators: 

– Runge-Kutta

– Leap frog

– Boris

– Integrators beyond Boris

– Symplectic integrators



Numerical Integration: Consistency
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1D Example

Euler algorithm:

Consistency: 

under the limit of dt->0, the discrete  model -> continuous model



Numerical Integration: Accuracy

Accuracy: local truncation errors in the numerical discrete algebraic equations

compared with the original differential equations
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The above Euler method is the 1st order accuracy.

Higher order accuracy can be obtained using more sub steps.



• The order of accuracy can also be expressed as the local 

truncation error of variables in the numerical integration method. 

• The “mth order method” denotes a numerical integration 

method that is locally correct through order hm and makes local errors

of order hm+1.
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Numerical Integration: Accuracy

)((
~ mhOn h)e

for n step is

...
~~

(

~
(

~~

~
(

~~

0

0











t

t

h

FtF

F

F

xx(0))-(x(0),0)(  t)(t),

t)dt(t),(0)(t)

t)dt(t),(0)(h)

FF xx

xxx

xxx



Numerical Integration: Stability

Stability: propagation of errors (e.g. roundoff error) in the discrete 

algebraic equations . A stable numerical integration algorithm is the one 

that a small error at any stage does not keep on increasing as number of 

steps increases
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For an integration scheme to be numerically stable,

the eigenvalues of the error transfer matrix must 

lie in or on the unit circle.

Numerical Integration: Stability
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The explicit Euler method will be unstable



Numerical Integrator: Runge-Kutta
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• “one of the most popular schemes for integrating ODEs”

• applicable to arbitrary ODEs

• 4th order accuracy

• variable time step size

• auxiliary storage

• 4 field calculations per step



Numerical Integrator: Leap-Frog
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• easy to implement, low memory storage

• 2nd order accuracy

• time reversible

• stable for 

• single field calculation per step
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Numerical Integrator: Boris Algorithm
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• widely used in plasma/accelerator community

• 2nd order accuracy

• time reversible
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• 50 MeV electron beam transports in free space

Boris

New
new algorithm can use 100 times

larger time step size

New Numerical Integrator Needed to Include Space-Charge 

Fields in Relativistic Electron Beam
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J. Qiang, Nucl. Intrum. Meth. Phys. Res. A, 2017.

Widely Used Boris Integrator

New Fast Relativistic Integrator

Lorentz Force Equations:

J. Boris, in Proceedings of the Fourth Conference

on the Numerical Simulation of Plasmas (Naval Re-

search Laboratory, Washington, DC, 1970), pp. 367.

Fast Numerical Integrator for Relativistic Charged Particle Tracking
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Another Relativistic Integrator (Vay)

J. V. Vay, Phys. Plasmas 15, 056701 (2008).
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space-charge electric and magnetic fields from positron beam:

Numerical Test of an Electron Co-Moving with a Positron 

Coasting Beam with Uniform Transverse Density
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• All three algorithms show 2nd order accuracy

• Boris algorithm shows much larger error than the other two algorithms

50 MeV 100 MeV

2nd order convergence test

~t2
New + Vay

integrators

2nd order convergence test

~t2

new + Vay

integrators

Boris
Boris

Numerical Examples Show 2nd Order Accuracy of 

the New Fast Algorithms in Space-Charge Fields



Numerical Integrator: Symplectic Integrator

Hamiltonian equations of motion:
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Symplectic Integrator preserve: 
• the symplectic nature of Hamlitonian equations

• the phase space structure

This corresponds to more constraints
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Summary

• Deposition/interpolation in particle-in-cell method

• Self-consistent space-charge field calculations through solving 

the Poisson equation at each time step using the updated 

charge density distribution

- FFT based Green function methods for open boundary condition

- Spectral (and finite) methods for regular shape boundary condition

• Numerical integrators for particle advance

- Euler method

- Runge Kutta method

- Leap-frog method

- Boris method

- Relativistic particle integrator

- Symplectic integrator


