
Multi-Particle Simulation Techniques I

CERN Accelerator School, Thessaloniki, Greece

Nov. 15, 2018

Ji Qiang

Accelerator Modeling Program

Accelerator Technology & Applied Physics Division

Lawrence Berkeley National Laboratory

Outline

• Introduction of the particle-in-cell method for multi-particle

simulation

• Deposition/interpolation

• Self-consistent field calculations

• FFT based Green function method for open boundary

condition

• Multigrid method for irregular shape boundary condition

• Particle advance

Introduction

• Particle-in-cell method:
“the method amounts to following the trajectories of charged

particles in self-consistent electromagnetic (or electrostatic) fields

computed on a fixed mesh”

• Particle-in-cell codes are widely used in accelerator physics community:

• PARMELA, ASTRA, GPT, IMPACT-T, IMPACT-Z, GENESIS, GINGER….

• An example of 2D particle-in-cell simulation an mismatched beam transport

through a FODO

Courtesy of R. D. Ryne

Governing Equations in Space-Charge Simulation

 /2 

 pdtprf 3),,(

0
),,(),,(),,(
















p

tprf
p

r

tprf
r

t

tprf


 ))((iii pprrw

particle deposition

field interpolation

p
a

rt
ic

le
 a

d
va

n
c
e

fie
ld

 c
a

lc
u

la
tio

n

One Step Particle-In-Cell Method

Particle Deposition/Field Interpolation

i

i

piip

i

piip

xxwq

xxwq

vJ)(

)(









)(

)(









p

pipi

p

pipi

xxw

xxw

BB

EE

Particle deposition:

Field interpolation:

p

qip

p

p

• Grid reduces the computational cost compared

with direct N-body point-to-point interaction

• Grid also provides smoothness to the shot noise

and close collision

• Spatial localization of errors

- At particle separations large compared with the mesh spacing, the field

error should be small

• Smoothness

- The charge assigned to the mesh from a particle and the force

interpolated to a particle a particle from the mesh should smoothly

vary as the particle moves across the mesh

• Momentum conservation

- No self force

Weight Function for Deposition/Interpolation

p

qip

p

p

qj





m

p

piijip

m

p

pjipj xxxxGxwxxGxwx
11

)()()()()(

 









m

p n
n

ij

nn

pi

ip

m

p

ijipj
dx

xxGd

n

xx
xwxxGxwx

1 11

)(

!

)(
)()()()(





m

p

ip xw
1

1)(



m

p

n

piip constxxxw
1

))((

0 1-1

• Spatial localization of errors

• Smoothness:

• Continuity of weight function value

• Continuity of derivative

-h 0 h
• Momentum conservation

x

);();(

)()();()(

''

1

int'

1'

'

pppp

m

p

pipidep

m

p

ppiself

xxdxxd

xxwxxwxxdxF




 

Weight Function for Deposition/Interpolation

Weight Functions for Deposition/Interpolation

)()(
h

xx
xw

p

p




||1)(
h

xx
xw

p

p






















2

2

|)|
2

3
(

2

1

)(
4

3

)(

h

xx

h

xx

xw
p

p

p

NGP:

CIC:

TSC:

x

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles

Self-Consistent Field Calculations

 /2 

 pdprf 3),(

Transverse irregular pipe

FFT based Green function method:

• Standard Green function: low aspect ratio beam

• Shifted Green function: separated particle and field domain

• Integrated Green function: large aspect ratio beam

• Non-uniform grid Green function: 2D radial non-uniform beam

Spectral-finite difference method:

Multigrid spectral-finite difference method:

Fully open boundary conditions

Transverse regular pipe with

longitudinal open/periodic

Transverse irregular pipe

Different Boundary/Beam Conditions Need

Different Efficient Numerical Algorithms O(Nlog(N)) or O(N)

Field Calculation with Open Boundary Conditions

; r = (x, y,z) ')'()',()(drrrrGr 



(ri)  h G(ri
i '1

N

  ri')(ri')

)(/1),,(222 zyxzyxG 

Direct summation of the convolution scales as N2 !!!!

N – total number of grid points

Green Function Solution of Poisson’s Equation

L

G(r)G(-r)

(r)

Hockney’s Algorithm or Zero Padding

G(-r)G(r)

Gc(r)

• This is different from a real periodic system

• The real calculation is done in discrete coordinate instead of continuous coordinate

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles

Hockney’s Algorithm or Zero Padding

y

A Schematic Plot of an e- Beam and Its Image Charge

o e-e+

cathode

z



F(r)  Gs(r,r')(r')dr'
Gs(r,r') G(r  rs,r')

Shifted Green function Algorithm:

J. Qiang, M. Furman, and R. Ryne, Phys. Rev. ST Accel. Beams, vol 5, 104402 (October 2002).

Test of Image Space-Charge Calculation

Numerical Solution vs. Analytical Solution

Shifted-green function

Analytical solution

Integrated Green Function for Large Aspect Ratio Beam

• Lack of resolution along longer side if same number of grids are used for both sides

• Brute force: use more grid points along longer side

• Better way: break the original convolution integral into a sum of small cell integral and

use integrated Green’s function within each cell

G(r)



c(ri)  Gi(ri
i '1

2N

  ri')c(ri')



Gi(r,r')  Gs(r,r')dr'

Integrated Green Function

J. Qiang, S. Lidia, R. D. Ryne, and C. Limborg-Deprey, Phys. Rev. ST Accel. Beams, vol 9, 044204 (2006).

A Comparison Example: Aspect Ratio = 30

Poisson Solver with Finite Boundary Conditions

jj-1 j+1

Where j = 1, …,N

Finite Difference Poisson Solver: Iterative Methods

• Direct Gaussian elimination: O(N3)

• Iterative method: O(mN)

Where S is an approximation of A-1, i = 1,…,m

A: is a sparse matrix

• Classical iterative methods:
– Jacobi

– Damped Jacobi

– Gauss-Seidel

– Successive Over Relaxation

Finite Difference Poisson Solver: Iterative Methods

• Problems of classical iterative methods:
– slow convergence

Weighted Jacobi Chosen to Damp High Frequency Error

Initial error

“Rough”

Lots of high frequency components

Norm = 1.65

Error after 1 Jacobi step

“Smoother”

Less high frequency component

Norm = 1.055

Error after 2 Jacobi steps

“Smooth”

Little high frequency component

Norm = .9176,

won’t decrease much more

Ref: J. Demmel’s class note

• Classical sparse-matrix-vector-multiply-based algorithms:

o low frequency error decreases slowly after a few iterations

o move information one grid at a time

o take N1/d steps to get information across grid

o matrix-vector multiplications are done on the full fine grid

• Multigrid algorithm:

o smooths out the numerical errors of different frequencies on different

scales using multiple grids

o moves the information across grid by W(log n) steps

o most multipications are done on coarse grids

Multigrid Motivation

Comparison of Convergent Time for an Example:

SOR vs. Multi-Grid

Multi-Grid Iteration Method

• Basic Algorithm:
– Replace correction problem on fine grid by an approximation on a

coarser grid

– Solve the coarse grid problem approximately, and use the solution

as a correction to the fine grid problem and build a new starting

guess for the fine-grid problem, which is then iteratively updated

– Solve the coarse grid problem recursively, i.e. by using a still

coarser grid approximation, etc.

• Success depends on coarse grid solution being a good approximation

to the fine grid

• Consider a 2m+1 grid in 1D for simplicity

• Let P(i) be the problem of solving the discrete Poisson equation on a
2i+1 grid in 1D

• Write linear system as A(i) * x(i) = b(i)

• P(m) , P(m-1) , … , P(1) is a sequence of problems from finest to coarsest

Multigrid Sketch on a Regular 1D Mesh

• Consider a 2m+1 by 2m+1 grid

• Let P(i) be the problem of solving the discrete Poisson equation on a
2i+1 by 2i+1 grid in 2D

o Write linear system as A(i) * x(i) = b(i)

• P(m) , P(m-1) , … , P(1) is a sequence of problems from finest to coarsest

Multigrid Sketch on a Regular 2D Mesh

• For problem P(i) :
o b(i) is the RHS and

o x(i) is the current estimated solution

o (A(i) is implicit in the operators below.)

• All the following operators just average values on neighboring grid points
o Neighboring grid points on coarse problems are far away in fine problems, so information

moves quickly on coarse problems

• The restriction operator R(i) maps P(i) to P(i-1)

o Restricts problem on fine grid P(i) to coarse grid P(i-1) by sampling or averaging

o b(i-1)= R(i) (b(i))

o Graphic representation:

• The prolongation operator P(i-1) maps an approximate solution x(i-1) to an
x(i)

o Interpolates solution on coarse grid P(i-1) to fine grid P(i)

o x(i) = P(i-1)(x(i-1))

o Graphic representation:

• The smooth operator S(i) takes P(i) and computes an improved solution x(i)
on same grid
o Uses “weighted” Jacobi or Gauss-Seidel

o x improved (i) = S(i) (b(i), x(i))

o Graph representation:

both live on grids of size 2i-1

Basic Operators of Multigrid Iteration

• The restriction operator, R(i), takes

o a problem P(i) with RHS b(i) and

o maps it to a coarser problem P(i-1) with RHS b(i-1)

• Simplest way: sampling

• Averaging values of neighbors is better; in 1D this is

o xcoarse(i) = 1/4 * xfine(i-1) + 1/2 * xfine(i) + 1/4 * xfine(i+1)

• In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

Restriction Operator R(i) - Details

• The prolongation/interpolation operator P(i-1), takes a function on a

coarse grid P(i-1) , and produces a function on a fine grid P(i)

• In 1D, linearly interpolate nearest coarse neighbors

o xfine(i) = xcoarse(i) if the fine grid point i is also a coarse one, else

o xfine(i) = 1/2 * xcoarse(left of i) + 1/2 * xcoarse(right of i)

• In 2D, interpolation requires averaging with 2 or 4 nearest neighbors

(NW,SW,NE,SE)

Prolongation/Interpolation Operator

• Pre-smoothing: compute approximated solution by applying n1 steps of a

relaxation method on fine grid:

• Construct residual vectors:

• Restrict the residual to coarser grid:

• Solve exactly on the coarse grid for the error vector:

• Prolongate/Interpolate the error vector to fine grid:

• Compute the improved approximation x on fine grid:

• Post-smoothing: compute approximated solution by applying n2 steps of a

relaxation method on fine grid:

1

1 ,,1));2(()2()2(n iXABSXX iii

)2()2(
11

n
XABr

))2(()1(rRr 

))1(()1(1 rRAE 

))1(()2(EPE 

)2()2()2(
11 1 EXX 
n



2

1 ,,1));2(()2()2(n


 iXABSXX iii

Two-Grid Iteration

g is the number of two-grid iterations at each intermediate stage

V-Cycle W-Cycle

Structure of Multigrid Cycles

Function MGV (b(i), x(i))

… Solve A(i)*x(i) = b(i) given b(i) and an initial guess for x(i)

… return an improved x(i)

if (i = 1)

compute exact solution x(1) of P(1) only 1 unknown

return x(1)

else

x(i) = S(i) (b(i), x(i))  improve solution by

damping high frequency error

r(i) = A(i)*x(i) - b(i)  compute residual

r(i-1) = R(i)(r(i))  restrict from fine to coarser grid

MGV(r(i-1), e(i-1))  solve A(i)*e(i) = r(i) recursively

e(i) = P(i-1)(e(i-1))  prolongate from coarser grid to fine grid

x(i) = x(i) - e(i)  correct fine grid solution

x(i) = S(i) (b(i), x(i))  improve solution again

return x(i)

Multigrid V-Cycle Algorithm

• At level i, the number of unknown is (2i-1)x (2i-1)

• On a serial machine

o Work at each point in a V-cycle is O(the number of unknowns)

o Cost of Level i is O((2i-1)2)= O(4 i)

o If finest grid level is m, total time is:

o SO(4 i) = O(4 m) = O(# unknowns)

• On a parallel machine (PRAM)

o with one processor per grid point and free communication, each

step in the V-cycle takes constant time

o Total V-cycle time is O(m) = O(log #unknowns)

m

i=1

Complexity of a V-Cycle on a 2D Grid

• Overview:

o Solve the problem with 1 unknown on coarsest grid

o Given a solution to the coarser problem, P(i-1) , map it to starting guess

for P(i)

o Solve the finer problem using the Multigrid V-cycle

• Advantages:

o no need for initial guess of solution

o avoid expensive fine-grid (high frequency) cycles

o obtain solutions at multiple grid level (can be used for error estimate or

extrapolation)

Full/Nested Multigrid (FMG)

•Error decreases by a factor >5 on each iteration

Convergence Picture of Multigrid in 1D

Particle Advance: Numerical Integration

• Consistency

• Accuracy

• Stability

• Efficiency

• Examples of numerical integrators:

– Runge-Kutta

– Leap frog

– Boris

– Integrators beyond Boris

– Symplectic integrators

Numerical Integration: Consistency

)(xF
dt

dv

v
dt

dx





dtxFvv

dtvxx

nnn

nnn

)(1

1









1D Example

Euler algorithm:

Consistency:

under the limit of dt->0, the discrete model -> continuous model

Numerical Integration: Accuracy

Accuracy: local truncation errors in the numerical discrete algebraic equations

compared with the original differential equations

)(
2

1

)(
2

1

2

2

21

2

2

21

dtOdt
dt

vd

dt

dv

dt

vv

dtOdt
dt

xd

dt

dx

dt

xx

nn

nn











)(
2

1
)(

)(
2

1

2

2

2

2

2

2

dtOdt
dt

vd
xF

dt

dv

dtOdt
dt

xd
v

dt

dx





The above Euler method is the 1st order accuracy.

Higher order accuracy can be obtained using more sub steps.

• The order of accuracy can also be expressed as the local

truncation error of variables in the numerical integration method.

• The “mth order method” denotes a numerical integration

method that is locally correct through order hm and makes local errors

of order hm+1.

)(((
~

(
~ 1 mhO0)xh)xh)e

The error for one step is

Numerical Integration: Accuracy

)((
~ mhOn h)e

for n step is

...
~~

(

~
(

~~

~
(

~~

0

0











t

t

h

FtF

F

F

xx(0))-(x(0),0)(t)(t),

t)dt(t),(0)(t)

t)dt(t),(0)(h)

FF xx

xxx

xxx

Numerical Integration: Stability

Stability: propagation of errors (e.g. roundoff error) in the discrete

algebraic equations . A stable numerical integration algorithm is the one

that a small error at any stage does not keep on increasing as number of

steps increases

dtexFee

dteee

n

xn

n

v

n

v

n

v

n

x

n

x

)('
1

1









dtXFVV

dtVXX

nnn

nnn

)(1

1









Euler algorithm on computer:

Linearized equations of errors:

y

x

eVv

eXx





n

v

x

n

n

v

x

e

e

dtxF

dt

e

e



























1)('

1
1

For an integration scheme to be numerically stable,

the eigenvalues of the error transfer matrix must

lie in or on the unit circle.

Numerical Integration: Stability

dtxF n)('1

The explicit Euler method will be unstable

Numerical Integrator: Runge-Kutta

),...,,(1 Ni
i xxtf

dt

dx


)(
6336

),(

)
2

,
2

(

)
2

,
2

(

),(

54321

34

2
3

1
2

1

hO

hth

h
th

h
th

th

n

n

n

n













kkkk
xx

kxfk

k
xfk

k
xfk

xfk

n1n

n

n

n

n

• “one of the most popular schemes for integrating ODEs”

• applicable to arbitrary ODEs

• 4th order accuracy

• variable time step size

• auxiliary storage

• 4 field calculations per step

Numerical Integrator: Leap-Frog

)(xf
v

v
x





dt

d

dt

d

)(2

1

2

1

2

1

1

n
nn

n
nn

h

h

xfvv

vxx










• easy to implement, low memory storage

• 2nd order accuracy

• time reversible

• stable for

• single field calculation per step

2/1

max||;
2









W

W


dx

df
h

Numerical Integrator: Boris Algorithm

)(BvE
v

v
x





q
dt

d
m

dt

d

 svvv

t
s

tvvv

B
t

2
tan(

Bvvvv

E
vv

E
vv
































'

1

2

'

2

2
)

)(
2

2

2

2

2

1

2

1

t

h

m

q

h
m

qB

m

qh

h

m

q

h

m

q

n

n



Lorentz equations of motion

v-

v+

v++v-

v+-v-

Boris Algorithm

v’-

• widely used in plasma/accelerator community

• 2nd order accuracy

• time reversible

47

• 50 MeV electron beam transports in free space

Boris

New
new algorithm can use 100 times

larger time step size

New Numerical Integrator Needed to Include Space-Charge

Fields in Relativistic Electron Beam

48

J. Qiang, Nucl. Intrum. Meth. Phys. Res. A, 2017.

Widely Used Boris Integrator

New Fast Relativistic Integrator

Lorentz Force Equations:

J. Boris, in Proceedings of the Fourth Conference

on the Numerical Simulation of Plasmas (Naval Re-

search Laboratory, Washington, DC, 1970), pp. 367.

Fast Numerical Integrator for Relativistic Charged Particle Tracking

49

Another Relativistic Integrator (Vay)

J. V. Vay, Phys. Plasmas 15, 056701 (2008).

50

space-charge electric and magnetic fields from positron beam:

Numerical Test of an Electron Co-Moving with a Positron

Coasting Beam with Uniform Transverse Density

51
• All three algorithms show 2nd order accuracy

• Boris algorithm shows much larger error than the other two algorithms

50 MeV 100 MeV

2nd order convergence test

~t2
New + Vay

integrators

2nd order convergence test

~t2

new + Vay

integrators

Boris
Boris

Numerical Examples Show 2nd Order Accuracy of

the New Fast Algorithms in Space-Charge Fields

Numerical Integrator: Symplectic Integrator

Hamiltonian equations of motion:

x

p

p

x











H

H

dt

d

dt

d

)(1 nn f ξξ 

Numerical integrator:

n

j

n

i
ijM










1

Define its Jacobian matrix M:

JJMM t 

Symplectic condition:



















1

1

00

00

00

J

J

J  











01

10
1J

Symplectic Integrator preserve:
• the symplectic nature of Hamlitonian equations

• the phase space structure

This corresponds to more constraints

53

Summary

• Deposition/interpolation in particle-in-cell method

• Self-consistent space-charge field calculations through solving

the Poisson equation at each time step using the updated

charge density distribution

- FFT based Green function methods for open boundary condition

- Spectral (and finite) methods for regular shape boundary condition

• Numerical integrators for particle advance

- Euler method

- Runge Kutta method

- Leap-frog method

- Boris method

- Relativistic particle integrator

- Symplectic integrator

