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Introduction: What is the Monte Carlo Method?

- Monte Carlo method is a (computational) method that relies on 

the use of random sampling and probability statistics to obtain 

numerical results for solving deterministic or probabilistic problems

• What is the Monte Carlo method?

“…a method of solving various problems in computational mathematics by

constructing for each problem a random process with parameters equal to

the required quantities of that problem. The unknowns are determined 

approximately by carrying out observations on the random process and 

by computing its statistical characteristics which are approximately equal 

to the required parameters.”

J. H. Halton, “A retrospective and prospective survey of the Monte Carlo Method,” 

SIAM Review, Vol. 12, No. 1 (1970).



Introduction: What can the Monte Carlo Method Do?

• Give an approximate solution to a problem that is too big, too hard, too 

irregular for deterministic mathematical approach

a) The problems that are stochastic (probabilistic) by nature:

- particle transport,

- telephone and other communication systems,

- population studies based on the statistics of survival and 

reproduction.

b) The problems that are deterministic by nature:

- the evaluation of integrals,

- solving partial differential equations

• Two types of applications:

• It has been used in areas as diverse as physics, chemistry, 

material science, economics, flow of traffic and many others.



Brief History of the Monte Carlo Method

• 1772 Comte de Buffon - earliest documented use of random

sampling to solve a mathematical problem (the probability of needle 

crossing parallel lines).

• 1786 Laplace suggested that pi could be evaluated by random

sampling.

• Lord Kelvin used random sampling to aid in evaluating time

integrals associated with the kinetic theory of gases.

• Enrico Fermi was among the first to apply random sampling

methods to study neutron moderation in Rome.

• 1947 Fermi, John von Neuman, Stan Frankel, Nicholas Metropolis,

Stan Ulam and others developed computer-oriented Monte Carlo

methods at Los Alamos to trace neutrons through fissionable

materials during the Manhattan project.



An Example of Monte Carlo Method: Calculation of Pi

Pi = 
4



Flow Diagram of Monte Carlo Calculation of Pi
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Introduction: Basic Steps of a Monte Carlo Method

Monte-Carlo methods generally follow the following steps:

1. Define a domain of possible inputs and determine the statistical 

properties of these inputs

2. Generate many sets of possible inputs that follows

the above properties via random sampling from a probability 

distribution over the domain

3. Perform deterministic calculations with these input sets

4. Aggregate and analyze statistically the results

The error on the results typically decreases as 1=1/sqrt(N)



Introduction: Major Components of a Monte Carlo Algorithm

• Probability distribution functions (pdf’s) - the physical (or mathematical) 

system must be described by a set of pdf’s.

• Random number generator - a source of random numbers uniformly 

distributed on the unit interval must be available.

• Sampling rule - a prescription for sampling from the specified pdf, assuming 

the availability of random numbers on the unit interval.

• Scoring (or tallying) - the outcomes must be accumulated into overall tallies 

or scores for the quantities of interest.

• Error estimation - an estimate of the statistical error (variance) as a function 

of the number of trials and other quantities must be determined.

• Variance reduction techniques - methods for reducing the variance in the 

estimated solution to reduce the computational time for Monte Carlo 

simulation.

• Efficient implementation on computer architectures - parallelization and 

vectorization 



Statistics Background

• Random variable is a real number associated with a random

event whose occurring chance is determined by an underlying

probability distribution. 

• Discrete random variable – discrete probability distribution

• Continuous random variable – continuous probability distribution

- spatial position

- time of occurrance

- etc

- face of a dice

- type of reactions

- etc



Statistics Background: Discrete Random Variable



Statistics Background: Discrete Random Variable

• If X is a random variable, then g(X) is also a 

random variable. The expectation of g(X) is defined 

as

• From the definition of the expected value of a 

function, we have the property that

<constant> = constant

and that for any constants λ1, λ2 and two functions g1, 

g2,



Statistics Background: Discrete Random Variable

• An important application of expected values is to the powers of X. 

• The nth moment of X is defined as the expectation of the nth 

power of X,

• The central moments of X are given by

• The second central moment has particular significance,



Statistics Background: Discrete Random Variable

• The second moments is also called the variance of X or 

var{x}. 

• The square root of the variance is a measure of the 

dispersion of the random variable. 

• It is referred to as the standard deviation and sometimes 

the standard error. 

• The variance of a function of the random variable, g(X), 

can be determined as



Statistics Background: Discrete Random Variable

• Consider two real-valued functions, g1(X) and g2(X). 

• They are both random variables, but they are not in general 

independent. 

• Two random variables are said to be independent if they derive from 

independent events.

• Let X and Y be random variables; the expectation of the product is

• If X and Y are independent, pij = p1i.p2j and



Statistics Background: Discrete Random Variable

• When X and Y are not necessarily independent, we introduce a new 

quantity: the covariance, which is a measure of the degree of 

independence of the two random variables X and Y:

• The covariance equals 0 when X and Y are independent and

• Note that zero covariance does not by itself imply independence 

of the random variables

- Let X be a random variable that may be −1, 0, or 1 

with equal probabilities, and define Y = X2. Obviously,



Statistics Background: Discrete Random Variable

• The covariance can have either a positive or negative 

value.

• Another quantity derived from the covariance is the 

correlation coefficient,

so that



Statistics Background: Continuous Random Variable



Statistics Background: Continuous Random Variable

• The expected value of any function of the random variable is defined

as

and, in particular,

• The variance of any function of the random variable is defined as

1. For a random variable C, which is constant 

var{C} = 0.

2. For a constant C and random variable X,

var{CX} = C2var{X}.

3. For independent random variables X and Y,

var{X + Y} = var{X} + var{Y}.



Statistics Background: Continuous Random Variable

The expected value of G is

Given the function G as:

The variance of G is



Statistics Background: Some Common PDFs



Sampling of Distribution: Pseudo-Random Number

The following formula is known as a Linear Congruential Generator or LCG.

xk+1 = (a*xk + c) mod m

What's happening is we're drawing the line y = a * x + c "forever", but using the mod 

function (like wrap-around) to bring the line back into the square [0,m] x [0,m] 

(m is power of 2 -1). By doing so, we've induced a map on the integers 0 through m 

which, if we've chosen a, c and m carefully, will do an almost perfect shuffle.
Burkardt

Example: X(k+1) = mod(13*X(k)+0,31)



Sampling of Distribution: Pseudo-Random Number

• A more ambitious LCG has the form:

SEED =(16807  SEED + 0) mod 2147483647

• A uniformly distributed random number between 0 and 1:

R = SEED/2147483647

• This is the random number generator that was used in MATLAB until 

version 5 and ran0 in Numerical Recipe (NR). It shuffles the integers 

from 1 to 2,147,483,646, and then repeats itself.

• Serial correlations present in ran0.

• Ran1 in NR, uses the ran0 for its random value, but it shuffles the 

output to remove low-order serial correlations. A random deviate 

derived from the jth value in the sequence, Ij , is output not on the jth

call, but rather on a randomized later call, j +32 on average.

• Ran2 in NR combines two different sequences with different periods so 

as to obtain a new sequence whose period is the least common multiple 

of the two periods. The period of ran2 is ~1018.



Sampling of Distribution: Discrete Distribution



Sampling of Distribution: Discrete Distribution



Sampling of Distribution: Transformation of Random Variables

Given that X is a random variable with pdf fX(x) and Y = y(X), then

reflecting the fact that all the values of X in dx map into values of Y in dy



Sampling of Distribution: Transformation of Random Variables

Consider the linear transformation Y = a + bX

Suppose X is distributed normally with mean 0 and variance 1:

and Y is a linear transformation of X, Y = σX + μ. Then

The random variable Y is also normally distributed, but its 

distribution function is centered on μ and has variance σ2.



Sampling of Distribution: Continuous Distribution

Sampling from a given continuous distribution

• If f(y) and F(y) represent PDF and CDF of a random variable y, 

• if is a random number x distributed uniformly on [0,1] with PDF 

fx(x)=1, 

• if y is such that

F(y) = x

then for each x there is a corresponding y, and the variable y is 

distribute according to the probability density function f(y).



Sampling of Distribution: Example 1

The cumulative distribution function is

Solving this equation for Y yields

Sample the probability density function:



Sampling of Distribution: Example 2

The cumulative distribution function is

Solving this equation for Y yields

Sample the probability density function:



Sampling of Distribution: Example 3

• Sample the Gaussian probability density function:

• Form a 2D Gaussian probability density function:

• Change the coordinate:



Sampling of the Sum of Several Distributions

Sample the probability density function:

Form a new pdf so that the βi are effectively probabilities for the choice of an event i. 

Let us select event m with probability βm. Then sample X from hm(x) for that m.



Sampling of the Sum of Several Distributions: Example 

Sample the probability density function:

Rewrite the probability density function as:

The resulting β and h(x) are :



Sampling of Some Common PDFs



Sampling of Complex Distribution

This method corresponds to approximating a pdf by a piecewise-constant 

function with the area of each piece a fixed fraction.

For a uniformly sampled random number x from u(0,1), find n such that

The value for Y may be calculated by linear 

interpolation

For a pdf whose cdf is not analytically available, one can numerically 

calculate: 



Sampling of Multi-Dimensional Distribution

• If the random variable in each dimensional is independent of each 

other, the sampling of multi-dimensional pdf can be done in each 

dimension. 

• if the marginal and conditional functions can be determined, sampling 

the multivariate distribution will then involve sampling the sequence 

of univariate distributions.

Example:



Sampling of Distribution: Rejection Method

• Rejection method

• Generate a uniform random number x0 between xmin and xmax. 

• Generate another uniform random number x2 between 0 and 1.

0
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• Apply to complex distribution function



Sampling of Distribution: Geometric View of the Rejection Method

Stated in geometric way, points are chosen uniformly in the smallest

rectangle that encloses the curve fX (x). The ordinate of such a point is X0 = ξ1;

the abscissa is f (0)ξ2. Points lying above the curve are rejected. Points below 

are accepted; their ordinates X = X0 have distribution fX (x).

fX (x)

X0 = ξ1

f (0)ξ2



Sampling of Distribution: Rejection Method

• The goal is to sample an X from a pdf, f (x). 

• We can more easily sample a random variable Z from pdf g(z). 

• This Z is accepted, X = Z, with probability h(z); else sample 

another Z. 

• Then X has a pdf proportional to h(z)g(z).



Sampling of Distribution: Rejection Method

• The efficiency of rejection method depends on f(x)/g(x)



Sampling of Distribution: Rejection Method Example

1) Sample the following pdf: 

2) Sample a uniform distribution inside a unit circle: 



Sampling of Distribution: Markov Chain Monte Carlo (MCMC)

• The Markov Chain Monte Carlo (MCMC) is a very simple and powerful 

method.

• It can be used to sample essentially any distribution function regardless of 

analytic complexity in any number of dimensions.

• Complementary disadvantages are that sampling is correct only 

asymptotically and that successive variables produced are correlated, often 

very strongly. 

• Some initial samplings will be thrown away (also called burn-in phase).

• A set of random variables xi ; i = 1; : : : is a Markov chain if: 

P(xi+1 = x|x1; : : : ; xi ) = P(xi+1 = x|xi )

in other words, the distribution of X(i+1) depends only on the

previous draw, and is independent of X(0);X(1); : : : ;X(i-1)



Sampling of Distribution: MCMC

• Ergodicity: A Markov chain is ergodic if it satisfies the following 

conditions:

- Irreducibile: Any set A can be reached from any other set B with nonzero 

probability

- Positive recurrent: For any set A, the expected number of steps required for the 

chain to return to A is nite

- Aperiodic: For any set A, the number of steps required to return to A must not 

always be a multiple of some value k

It means that all possible states will be reached at some time.

• Reversibility/Detailed balance: A Markov chain is reversible if there 

exists a distribution f(x) such that: f(xi+1)P(xi+1|xi ) = f(xi)P(xi|xi+1); for all i.



Sampling of Distribution: MCMC

Provided that a Markov chain is ergodic it will converge to a unique

stationary distribution, also known as an equilibrium distribution.

This stationary distribution is determined entirely by the

transition probabilities of the chain; the initial value of the

chain is irrelevant in the long run.



Sampling of Distribution: Metropolis MCMC



Sampling of Distribution: Metropolis-Hastings MCMC

• A symmetric proposal distribution might not be optimal

• Boundary effects: less time is spent close to boundaries, 

which might not be well sampled

• A correction factor, the Hastings ratio, is applied to correct for 

the bias

• The Hastings ratio usually speeds up convergence

• The choice of the proposal distribution becomes however 

more important



Sampling of Distribution: Metropolis-Hastings MCMC



Sampling of Distribution: Some Practice Considerations in MCMC

• Check the acceptance ratio: Values between 30 and 70% are 

conventionally accepted

• Discard the burn-in phase: The autocorrelation function is a 

standard way to check if the initial value has become 

irrelevant or not

• The width of the proposal distribution (e.g. for a Gaussian 

update or for a uniform update) should be tuned during the 

burn-in phase to set the rejection fraction in the right range.

• Reflection can be used when an edge of f (x) is reached.

• Thinning the chain: In order to break the dependence 

between draws in the Markov chain, one might keep only 

every dth draw of the chain.



Sampling of Distribution: Convergence of Markov Chain

• Monitor behavior of <G> with length of the Metropolis random walk.

• When the variance of multiple chains is much less than the 

variance within the chains. 



Numerical Integration: Application of the Monte Carlo Method

We draw a set of variables X1, X2, . . . , XN from f (x) (i.e. we ‘‘sample’’ the

probability distribution function f (x) and form the arithmetic mean:

G= GN + error.

Given the following integral:

The integration result will be:

with

The error will decrease as 1/sqrt(N) independent of the dimensionality of the 

integral. This is the key advantage of the MC over numerical quadrature.

measure the spread of g(x)



Numerical Integration: Importance Sampling for Variance 

Reduction

Rewrite the integral as:

The new variance will be:

The optimal         :

In practice, a ‘‘similar’’ functions 

will reduce the variance.



Numerical Integration: Importance Sampling Example

A straightforward Monte Carlo algorithm would be to sample Xi 

uniformly on (0, 1) with f1(x) = 1, and to sum the quantity:

The variance of the new function is:

Given the following integral:

If we approximate the original function as:

Two orders of magnitude reduction of the variance!



Numerical Integration: Correlation Methods for Variance 

Reduction

• In particular, if |g(x) − h(x)| is approximately constant for different values 

of h(x), then correlated sampling will be more efficient than importance 

sampling. 

• Conversely, if |g(x) − h(x)| is approximately proportional to |h(x)|, then 

importance sampling would be the appropriate method to use.

Consider the following integral:

Rewrite the integral as:

has analytical solutionIf:



Numerical Integration: Correlation Methods for Variance 

Reduction Example

var{g} = 0.242

Consider the following integral:

G =

The variance of g is

Rewrite the integral as:

The new variance is

More than order of magnitude reduction of the variance!



Numerical Integration: Antithetic Variates

Give exactly G with zero variance for linear g. For nearly

linear functions, this method will substantially reduce the variance.

Var(G) = 0.242.

Var(GN) = 0.0039

Consider the following integral:

For example: 

The variance of the rewritten integral: 

Exploits the decrease in variance that occurs when random variables are 

negatively correlated and rewrite the integral as:

More than order of magnitude reduction of the variance!



Sampling of Distribution: Non-Random Sampling

• Quasi-Monte Carlo Sampling

• sampling a distribution can be generated from the transformation 

of sampling a uniform distribution

• A non-random sequence that has low discrepancy (a measure of 

deviation from uniformity) can be used to simulate the uniform 

distribution.

• Hammersley/Halton sequence in p+1 dimension is defined as follows:
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f(j) is the radical inversion function in the base of a prime number r. 

Example: using base 3, and j = 1, 2, 3, 4 one obtains the sequence: 

9/4)4(,9/1)3(,3/2)2(,3/1)1( 3333 

• Fluctuation of this type of sequence scales as 1/N whereas a random 

Monte Carlo sampling scales as 1/sqrt(N).



Sampling of Distribution: Non-Random Sampling

Random Monte Carlo Sampling Hammersley Sequence with base 2 and 3



Numerical Integration Using Quasi-Random Sampling

Convergence in some cases of numerical integration can reach 1/N



Summary

• Brief introduction to the Monte-Carlo method

• Brief review some statistic backgrounds

• Several methods of sampling of distribution

- direct inversion

- rejection method

- Markov chain Monte Carlo

• Numerical integration using the Monte-Carlo method 

and variance reduction

- Importance sampling

- Correlation method

- Antithetic variate method

- Non-random sampling method


