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<) Direct Vlasov solvers

N4

Part |

» Introduction: collective effects

» Motivation for Vlasov solvers

» Vlasov equation historically, and in the context of accelerators
» Transverse impedance and instabilities

» Building of a simple Vlasov solver for impedance instabilities
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&N Collective effects

N4

» Collective effects: phenomena in which the evolution of the particle
beam cannot be studied as if the beam was a collection of single
particles behaving independently, but rather as an ensemble of
interacting particles.

» Examples (with the potential effect on the beam):

v" Impedance & wake fields, i.e. interaction with the beam’s own self-
generated electromagnetic (EM) fields (instabilities, heat load),

v' Intra-beam scattering & Touschek effect (emittance growth,
intensity loss),

v' Interactions with trapped ions (coherent instabilities),

v" Build up of an electron cloud and interaction with it (heat load,
coherent instabilities),

v" Interaction with another counter-rotating beam - so-called beam-
beam effects (emittance growth, intensity loss, possibly coherent
instabilities).

N. MOUNET - VLASOV SOLVERS | - CAS 21/11/2018



@) Collective effects - modeling instabilities

» Coherent instability: self-enhanced, typically exponentially growing,
oscillation of the full beam (or a significant part of it, e.g. one bunch).

» Afirst approach is simply to perform multi-particle tracking (see
previous CAS lectures), including the collective effect under study (e.g.
collision between particles, EM fields from ensemble of particles, etc.).

» This approach s, in principle:

v simple and efficient, especially if a model is available for the self-
interaction fields (e.g. a wake function),

v’ easy to extend to complex situations,

v’ potentially very realistic.

So why should we do anything else than this?
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@ Motivation for another kind of modeling

» Multi-particle tracking still exhibit a number of drawbacks:

X It can be slow: one needs to track thousands to millions of
macroparticles, sometimes with a complex interaction mechanism
(PIC solver, bunch slicing for wake fields, etc.).

X Most importantly, it does not always help for an understanding of
what’s happening.

= It's not always easy to understand what parameters are the
important ones to e.g. stabilize an unstable beam.
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@ Motivation for another kind of modeling

» Multi-particle tracking can also be misleading: as a time domain
technigue, a beam that looks stable might actually be unstable if we
track more turns.

Example: average vertical position in the LHC vs octupole current |,

(i.e. with increasing damping from transverse non-linearities):
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@) Alternative for instability computation

» Multi-particles is one way to discretize the phase space - very close to
reality as the beams are indeed made of distinct particles, albeit much
more numerous than in typical simulations.

» A contrario, one can also consider the whole phase space distribution
as a continuum, and look for modes arising from collective
interactions, that could develop and lead to instabilities.

= Vlasov solvers — named after the equation to be solved.

= Switch from time to mode domain, the stability of each mode being
predictable irrespectively of its rapidity to develop.

» Historically, this was the first approach adopted to try to understand
instabilities in particle accelerators [L. J. Laslett, V. K. Neil, and A. M. Sessler
(1965), F. ). Sacherer (1972)].
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@) Distribution of particles in phase space

» Inaclassical (i.e. not quantum-mechanical) picture, each beam
particles has a certain position and momentum for each of the three
coordinates (x, y, z).

» For a 2D distribution, in e.g. vertical, such a distribution of particles can
be easily pictured in phase space (y,p, ):

%
2 Wt = the distribution function y
Uniform : Y Gaussian represents the density of
density e 0T fall-off particles in phase space

Total number of particles N = [ fposiu’on I o menta ¥ 6 Pxr Y5 Dy, 2,025 ) dx dpy dy dp,, dz dp,,
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<) |iouville theorem

N4

» Vlasov equation is based on Liouville theorem (or equivalently, on the
collisionless Boltzmann transport equation), which expresses that the

local phase space density does not change when one follows the flow
(i.e. the trajectory) of particles.

» In other words: local phase space area is conserved in time: a _ 0
dt

(a) (b)

—p O

Courtesy A. W. Chao, Physics of
Collective Beam Instabilities in High
Energy Accelerators, John Wiley &
Sons (1993), chap. 6.

Figure 6.3. (a) Phase space distribution of particles at time . A rectangular box ABCD with
area AgAp is drawn and magnified. (b) At a later time, t +df, the box moves and deforms into
a parellelogrom with the same area as ABCD. All particles inside the box move with the box.
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C

&N Viasov equation [A.A.Vlasov, J. Phys. USSR 9, 25 (1945)]

N4

» Vlasov equation was first written in the context of plasma physics,
where the standard collision-based Boltzmann approach, with
Coulomb collisions, was failing.

» As Coulomb interactions have a long-range character, the idea of
Vlasov was to integrate the collective, self-interaction EM fields into
the Hamiltonian, instead of writing them as a collision term.

» Assumptions:

= conservative & deterministic system (governed by Hamiltonian) —
no damping or diffusion from external sources (no synchrotron
radiation),

» particles are interacting only through the collective EM fields (no
short-range collision).
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(@ Vlasov solvers for synchrotrons

» Vlasov solvers can be used in principle for various kinds of collective
effects involving self-generated EM fields, e.g.:

= Transverse impedance effects (see later for references),

* Longitudinal impedance effects [e.g. M. Venturini et al, Phys. Rev. ST
Accel. Beams 10 (2007), 054403,

= Beam-beam effects [e.g. Y. Alexahin, Nucl. Instr. Meth. in Phys. Res. A
480 (2002) pp. 253-288),

= Electron-cloud, or more generally two stream effects [e.g. E. A.
Perevedentsev, Proc. workshop on e-cloud simul. for proton & positron
beams, Geneva, Switzerland, CERN-2002-001 (2002) pp. 171-194],

= Space-charge (& impedance) [e.g. M. Blaskiewicz, Phys. Rev. ST
Accel. Beams 1 (1998), 044201].

» In this lecture we will rather focus on transverse impedance effects
without space-charge, in circular machines.

Still, the approach adopted here can be applied to other collective effects.
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@) Impedance & wake function

» Impedance is a quantity that characterizes the electromagnetic (EM)
fields generated by a single particle (“source”) on another particle (“test”)
through interaction with the beam surroundings (vacuum pipe, cavities,

collimators, etc.):

Induced current .
ﬁ Vacuum PIPE
TTFFT I T T |nduced charges
EM field

Source at t

@ snsnsssssamn s EEnn R >
+4++ttttttttt o+

ﬁ

» The force felt by the test, averaged over the device length and
normalized by source and test charges, is the wake function (here in vertical,

length=27R for a vacuum pipe all round theégy Imaginary unit It's the inverse
(00]

2TTR . Z Fourier transform
— — Jw
Wy(Z) T o2 Fy(xtestr VtestrZ) = — o dwe’ ™2 of the impedance
—00
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@) Transverse instability modes

» Coherent instabilities are self-enhanced modes, characterized by a
beam position growing with time (typically exponentially) :

Measurements in the LHC
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@) Transverse instability modes

» Typically, instabilities happen at a certain frequency, close to the tune

Jaw distance to the orbit [mm]
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(X Vlasov solvers for transverse impedance

Vlasov equation was first used to compute stability conditions for a given excitation,
obtaining dispersion relations, by Laslett et al (1965) [1].

» The seminal Sacherer integral equation was derived (1972) [2], and a simple formula for
instability growth rates obtained from it (1974) [3].

» Besnier devised a method to solve Sacherer Integral eq. using orthogonal polynomials (1979)
[4], and Laclare developped an equivalent approach in frequency domain (1985) [5].

» Several codes were implemented over the years, e.g. MOSES (1985) [6], NHTVS (2014) [7],
DELPHI [8] (2014) and GALACTIC (2018) [9].

» Extension to include synchrotron radiation for lepton machines do exist, solving Vlasov-
Fokker-Planck equation, see e.g. Ref. [10].

» Reviews, courses and books can be found, in e.g. Refs. [3,5] and Chao’s book [11].

[1]1L.J. Laslett, V. K. Neil, and A. M. Sessler, Rev. 5ci. [6] Y.-H. Chin, CERN/SPS5/85-2 (1985) and CERN/LEP-TH/88-05 (1988).
Instrum. 36, 4 (1965) pp. 436-448. [71 A.V.Burov, Phys. Rev. ST Accel. Beams, 17 (2014) 021007.

[2] F. J. Sacherer, CERN/SI-BR/72-5 (1972). [8] N. Mounet, CERN Yellow Reports: Conference Proceedings, 1 (2018) p. 77.
[3]1 B. Zotter & F. J. Sacherer, Proc. 1st Int. School Part. [9] E. Métral et al, Proc. IPAC’18, Vancouver, Canada (2018) pp. 3076-3079.
Acc, Erice, Italy (1976) pp. 175- 218. [10] R. L. Warnock, Nucl. Instr. Meth. in Phys. Res. A 561 (2006) pp. 186-194.
[4] G. Besnier, D. Brandt, and B. Zotter, CERN LEP- [11]1 A. W. Chao, Physics of Collective Beams Instabilities in High Energy
TH/84-11, LHC Note 17 (1985). Accelerators. John Wiley and Sons (1993), chap. 6.

[5] J. L. Laclare, Proc. CERN Accelerator School, Oxford,
UK (1985) pp. 264-326.
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) How to build a Vlasov solver

N4

» It would be numerically very difficult to solve Vlasov equation with
“brute force”, as a partial differential equation of 7 variables:

d¢_6¢+a¢dx+ oY dpx+a¢dy+ oY dpy+61/)dz+ oY dpz_O
dt 0t dxdt Op,dt 9dydt OJp, dt 0zdt Odp, dt

Moreover, we would lose any asset with respect to tracking:

* no particular insight or understanding,
* solution in time domain = no identification of modes.

» To build a useful (i.e. fast and simple enough) Vlasov solver, one rather
needs to do some analytical work first, essentially aiming at reducing the
number of variables.

» Typical end results of this “pencil and paper” work is either a fully
analytical formula (e.g. Sacherer formula), an eigenvalue problem, or a
non-linear equation to solve against a single parameter.

» Now we will first focus on the initial analytical work, on an example.
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@) Building a simple Vlasov solver

» Let's consider a simple case, to understand how it works:

= Impedance Z, (w) is the only source of instability considered, and
gives the EM force arising from the interaction of the beam with
the resistive or geometric elements around it,

: , . d
= only vertical plane, with position and “momentum” (y,y’ =2
(using for convenience y' rather than p,))

. . L Longitudinal
= purely linear, uncoupled optics in transverse, within ~ -°ngitudina
coordinate along

smooth approximation, the accelerator

= no longitudinal motion, i.e. essentially rigid bunches in z

49

as =0,

= chromaticity Q,, =

* Phase space distribution function is then

,y’;t)
Y, Y
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@) Building a Vlasov solver: method outline

—
.

Write the stationary distribution

Introduce a perturbation to the distribution function

Get the time derivatives through the equations of motion
Simplify and linearize Vlasov equation

Transform the system of coordinates

Decompose appropriately the perturbation

Reduce the number of variables

Write the impedance force

v o N o Uk W N

Get the final equation
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(@) Stationary distribution

’ Stationary
. distribution

I Perturbation

I Equations of
motion

implification

Coordinate
transform

Perturbation
decomposition

I Reduction
variables

Impedance
force

Linal equatiOl'l

Let’s say there is no impedance, and only the optics plays a role
(perfect quadrupoles, focusing the beam around the orbit):

dy
—= =0

is satisfied by 1y = y/(invariants of motion)

This is a general rule: in the absence of time dependent perturbation,
stationary solutions of Vlasov equation are simply ANY phase space
distribution function which depends ONLY on the invariants of
motion.

The stationary distribution is the starting point of our Vlasov solver.
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(@) Stationary distribution

| el In vertical, for linear optics, the invariant is the action defined as (see
N 1 appendix for a derivation)

I Perturbation

Single particle tune

I Equations of . )
motion Machine physical

radius (=circum/2m)

implification

such that the unperturbed distribution function is
Coordinate

transform 1/J(y; y’; t) — l/JO (]y)

Perturbation
decomposition

From the expression of the invariant J, it is easy to show the existence
| ", | of the angle variable 6, such that

variables

mpedance 2/ R 2
I I:o:’ce y = ]y COS 9}1 and y’ — ])I/?Qy

Q
Linal equatiorl g
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@ Perturbation theory

S [ 1t's rather difficult to solve Vlasov equation without making any
assumption on the distribution function.

- instead one typically solves it using linear perturbation theory, i.e.
= | from the knowledge of a stationary distribution, that we slightly
Wi~ perturb to include the (collective) effect under study:

Y =vo(Jy) + AY(y,y'; t)

= =@, )+ @iy, 0y >
transform

Perturbation
decomposition

Reduction Stationary distribution Perturbation, assumed
L infinitesimally small, that we
Impedance can express indifferently in

force

(v,y")or(J,, 0, variables

l‘inal equatiol'l
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\3/ Perturbation theory

distribution Y =1y, (]y) + AY(y,y’'; t)
Gl Vlasov equation becomes:

I Equations of | dl/)

motion E —
oAy Ydy\ AP

| cooromre [ = T ada )t 3y 0 (chain rule)

Perturbation
decomposition

0

I Reduction
variables

Impedance First, how do we get these?

force

Linal equatiorl
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—Q

«)) Equations of motion

N4

Stationary
distribution

Beam velocity = fic

Perturbation

//

Equations of
motion

implification

Coordinate
transform

Perturbation
decomposition

I Reduction
variables

Next step is to express these as a function of (y, y’; t).

Impedance
force

Linal equatiOl'l
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—Q

“) Equations of motion

N4

diimaion dy"\P"¢  d (dy) Cdly (Qy)
Perturbation’ dt - dt \ds B dSZ VT R

’ Equations of
. _Mmotion

Using Hill's equation in the
smooth approximation

d%y  (Q,\°
szt (F) y=0

Coordinate |

Perturbation —

transform (dy,)impedance d (dy dt) d ('Uy) 1 dpy

decomposition E - dt dt * dS — E 7 —_ moyv dt
I eriablos Fimpedance

y

Particle rest mass —

Impedance
force

Linal equatiorl Relativistic mass factor y = J;_[fz
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implifying and linearizing Vlasov equation

Stationary

distribution
Perturbation aAl/) + al/) dy + al/) dy =0 l/} — l/)O + Al/J
adt dy dt dy’' dt
Equations of aA a a Fimp edance 2
, motion PN l/) + 1/) Uy’+ l/) v — vy (&) —0
%implificationL ot ay ay, myyv R

Linearization .
, dA d oA ) oAy [ E,"P 2
Coordinate = a_;;/) + ( lpo + lp) vy’ + ( l'bo + l/)) < 4 - Uy (&) - O

transform ay ay ay’ ay’ mgyyv R
Perturbation 0 ¥ Identically zero from
decomposition & — V|
v’ asov eq. on Y,

I Reduction
variables

Sk @

dAY Q,\° 0y, F E;
' V) ( y) e W =0
Impedance

R dy' myyu W moyxv
force

2nd order
Linal equatiorl
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«)) Transformation of coordinates

N4

Hasaal]  Since the unperturbed distribution is a function of the action J,, alone,
it's natural to switch to action-angle variables:

Perturbation
2] Yy R / ’ 2] Yy QJ’ -
Equations of y - Qy oS By ’ y N R Slney

motion
g 1 Q R Ry’
impli |.cat|.on| — _ 2 <Y 12 - 6. = at _
inearizatio ]y 2 [y R + y Qy ’ y atan (Qy y)

Coordinate

@2~ and for the partial derivatives:

Perturbation

decomposition a]y . y Qy a]y B y’R
dy R’ ' Q
Q —

I Reduction

dy y
variables
9 / 0 96 ’ R
y y . y
Impedance — sin 6 ) i cos 6
I:orce ay ijR Y ay ijQy Y

Linal equatiOl'l
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—Q

«)) Transformation of coordinates

N4

S | - Using the partial derivatives computed previously:

distribution
a ’

Perturbation al/}? p— dl/)o . ]y, — 1/)6(]3;) y R

ay d]y ay Qy
Equations of

motion oAy = oAy . a]y + oAy . 683’ — oAy . Y Qy + 0AY A _ Qy sin Hy X vy’

o eaton] dy 9, oy a6, oy aJ, R ' a6, 2], R
implification

inearizatio

' il J0A oAy 0 oAy 006 d0A 'R oA R 2
Coordinate l/,) = l/J . ]y, + l/) . 3,/ = l/) . Y + _l/) . CcOS 93/ X vy (&)
transform ay a]y ay 60y ay G]y Qy 60y ijQy R
Perturbation

Hecompositior SUCh that

I Redyction aAl/) aAllj Qy 2 0A1/)
variables - vy’ - vy (_) —_ Q
ady dpy R a0,
e
L rl Angular revolution
inal equatio frequency Wy = %
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@) An already simpler Vlasov equation

Stationary

distribution

\
Perturbation

0

~

ayp

P dt
0AY OAY
motion !
implification
i\rsrizati}n

Cooleate — Only one partial derivative of the coordinates is left.

transform
N

~

2], R
Qy

1 .
sinfy, F,"" =0
moyv\l

Reduction
variables

Impedance
force

Linal equatiol'l
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@ Writing the perturbation

S| Now it's time to take a closer look at Ay:

distribution

ZUE > We first make just one assumption: its time dependence is that of a
single mode of coherent angular frequency (), close to w(Q,, (with

B motion w, = - the angular revolution frequency) — well justified when one
R

impli |'cati.on| computes a growing instability mode, which supersedes

inearizatio exponentially any other mode:

Coordinate
transform

L 08 i A‘/’(]y'e ) = A‘Pl(]y' Hy)ejm

» Then we decompose this mode using a Fourier series of the angle Hy:

Reduction
variables

+00
| 8p(Jy, 0y t) = 1% N £,(J, )P

Linal equatiorl p=—00
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“) Reducing the number of variables

N4

S| Injecting the perturbation into Vlasov equation, we can simplify it

distribution

even more:
Perturbation imp
oAy DAY 2J,R F
——Q,wo +¥3(J,) |=—sin@ =0
Equations of ot agy Y Y Qy Y myyv
Rk imp
| . 2] R F
impli !cat!onl L= eJ'Qt Z fp(]y)e]pey(jﬂ —]pra)O) = —ll)é(]y) = Sin 93/ Y
inearizatio o Qy m()yv

+o00

ey Rel® - > F
= —voUy) |55 gy

, R;ﬂ;*;,;;g; Term by term identification leads to
N f,(Jy) = 0forany p # +1

Then, the assumption Q. = @, wy , gives

Linalequatiorl f—l(]y) ~ 0
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“) Reducing the number of variables

N4

Handidl|  We end-up with (taking away the e/%v on both sides):
JyR EP (1)
ZQy moyv

Perturbation ejﬂtfl (]y)(ﬂ — Qy(,()o) — 1/1(’)(]31)

Equations of
motion

This already gives us the J, dependency of the perturbative
impli -cation| distribution!

inearizatio
oordinate ! ] R
irangforr:l fl (]y) X l/)O (]y) -
20,
Perturb at.ic.m —
decompositio
_ JQt ,jOy. ! J Y R
Reduction = Alp (]y’ Hy' t) — e ylpo (]y)

variables 2
,bl 'V Qy

(i

I Impedance
force

Constant

Linal equatiOl'l
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(@) Force from impedance

Summing the wakes from the

Stationary

distribution bunch passage at all previous Wake function, assumed
(and subsequent) turns constant within a single-bunch
Perturbation
0 , [ ]
Equations of lp (y’ y ) t — \@ anR)

implification |

mplificati Integration over phase space Revolution time
Inearizatio

Coordinate

Uap=ioup s Vacuum pipe

S = =ams

Perturbation 2TTR
decompositio . Sourceatt — 2 —
EM field 21R
Sourceatt — —
Reduction —_— v
variables —_—
® Testatt R
’ Sourceatt — 3=—
Impedance e —m>» 1%
g tbbbtdbbtt 4

ﬁ

inal equatio
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(@) Force from impedance

Stationary
distribution

Perturbation

2 I 2TR
gmp — ° E ﬂ dy dy'y (y y'it— k—) yW, (2rkR)
motion y 27TR ) ) v y

D .I k=—o0
implification

inearizatio

| _ e ijfd dy' A ( "t kan) W, (2mkR)
" 2nR L yay Ap(yy; p )Yy
Fimp

v only depends on the perturbation Ay because the stationary
distribution is centered around the orbit (y = 0):

[ dy dy' o(y,y )y =0

Reduction
variables
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(@) Force from impedance

Stationary
distribution
After the usual change of variables (y,y") — (J,, 6,):
Perturbation y) + 00
; e
mp
Equations of Fy o 27-[R Wy (anR)
motion k=—OO
moitcten 2nRY |2J,R
. X d]y dHy AY (]y, Hy; t — kT) 0 COS Hy
oordinate y
transform 'V
|\ J
Perturbation Y
decompositio y

Reduction
variables

’ Impedance
, rforce ,

Linal equatiOl'l
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“)) Force from impedance

N4

il Using what we know from the perturbation
. . R
8(Jy, 8y;t) = Dee i (1,) |22

2Qy

Perturbation

Equations of

motion oy €2De < _j2nkaR ’ ,
impli |cation| y = an z € v Wy(ZTCkR) jf d]y dey]ylpo (]:V) Cos Hye] Y
y

inearizatio

—j2mkQR Canwe
v W, (2rkR)\ simplify this?

Coordinate
transform = —

Perturbation

decompositio Number of
particles
Reduction from
variables o o @
|, s() = B~ | i) =~

2TC
j6 _
and fo dHye Y COS Hy =1
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“)) Force from impedance

N4

Stationary Recall the definition of a wake function as a Fourier transform of the
impedance:

Perturbation

Y . Z
Wy, (z) = _Zj_nj_ dwe’vZ,(w)

Equations of
motion

impli |cation| We QEt

inearizatio

400
Coordinate _j 2nkilR _.]
i
transform Z e v Wy (ZﬂkR) -
27T |
k=—o0
Perturbation
decompositio o
_J
Reduction 2T J
variables
Dirac comb

N
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&N Final expression of Vlasov equation...

N,
| distribution : jat JyR o
Dropping D, e ,l/Jo(]y)» 5 on both sides:
y
Perturbation . 2 400
0 — Qo = JwolNe Z,, (2 + kw,)
Equations of 81T 2 moyv Qy
motion k=—o00

1 In principle, this is a non-linear equation of Q.

Linearization
Still Z,,(w) is typically is very smooth (at the level of the tune shifts we
st | are looking for) such that in the right-hand side one can make the

approximation:

LPertur : ationJ

ecompositio Q ~ Qywo

el and we get finally

variables +00

| n-Q JONe N g, (@ywo + wo)
Imped — Wy = w w
Moree Y=o 8m2moyvQy y \ey ™0 0

=—00

Linal equatiorl which is a fully analytical formula giving the frequency shift of the mode
- that’s our Vlasov solver!

N. MOUNET - VLASOV SOLVERS | - CAS 21/11/2018



@) Direct Vlasov solvers — Summary part |

» We introduced the topic of collective effects, and more specifically
transverse instabilities from impedance.

» We provided some motivation for an alternative to multi-particle
simulations.

» We sketched a brief overview of the underlying principles of Vlasov
equation, and its historical uses.

» We built our first “naive” Vlasov solver for longitudinally rigid bunches,
providing a general outline of the method.

= Some algebra is required, but not much advanced knowledge is
needed, in order to build a Vlasov solver.

= But with a few more tools, we can do it more efficiently and elegantly -
this is part Il.
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CE/RW
.

Appendix
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CE/RW Another alternative for instability computation

» ltis also possible to adopt an approach “in-between” multi-particle
simulations and Vlasov solvers, still computing instability modes:

= assume a single “macro-particle” in transverse

= discretize the longitudinal phase space using a 2D mesh, in polar
coordinates
—> transfer map in matrix form
—> diagonalization

2 1
- modes e -
_ 3
-l <7 |
M Courtesy V. V. Danilov &
- 2 E. A. Perevedentsev [1]

4

itudinal phase snace into mesh elements for the hollow beam model.
tuginal pix space NENS X0 Wi 0ndW odaim moGeL

Fig. 2. Division of the lon

)
-

= circulant matrix model [1], later extended by S. White and X. Buffat [2].

a
=0

[1]1V. V. Danilov & E. A. Perevedentsev, Nucl. Instr. Meth. in Phys. Res. A 391 (1997) pp. 77-92.
[2] S. White et al, Phys. Rev. ST Accel. Beams 17 (2014), 041002.
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@) Invariant of motion: linear optics

Starting from Hill’s equation (in the smooth approximation):

als2 7+ ((Izey) Y =0
(7 =@
~ %{% [(ds) ] t (%) (yz)} = 0
’ <Q%) s ; ny [(_) * (iy) y 2] = constant
[Qy moyv>2 " %3’ 2] = constant

_ dy dydt v, Dy
using = ===
ds dtds v myyv
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