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Introduction

 General solution

 Particular solution

 Singular solution

 Eigensolutions

 Exact solution

 Fundamental solution 

 You can’t solve differential equations, because if you did, they would name them 
after yourself; Euler, Laplace, Cauchy, Dirichlet, Bessel, Bernoulli, Poisson, 
Lagrange, Schroedinger, Hill, anybody?

 We look them up in a book or throw a (FD/FEM) mesh on them; separation of 
variables, variation of variables, integral transforms, FD, FEM (Galerkin), Runge-
Kutta, perturbation theory. 

 We then match what is found in books to the given boundary value problems on 
trivial domains and make sure that the required mathematical structures are 
compatible with the physical problem at hand.
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Episodes

 Affine Spaces and Vector Fields

 Fourier Series

 The Taut String (applications to stretched-wire field measurements)

 Foundations of Vector Analysis

 Maxwell’s Equations in Different Avatars

 Harmonic Fields

 Field Singularities – The Green’s Functions

 Finite-Element Shape Functions

 Numerical Methods for the curl-curl Equation 
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Episode 1

Vector Fields and their Associated Affine Spaces
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Flux Tubes of Mother Earth (or What IS a Magnetic Field)
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Different Renderings of the Same Vector Field (ROXIE)

In which way can we 

declare an algebra or an 

analysis on this
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Vector and Scalar Fields
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2-Dimensional Trace Space

Find flow maps:
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Mathematical Structure of Vector Fields

Affine Space (physical) Vector (Linear) Space (algebraic)

Isomorphism

Coordinate map

Inner product space (metric)
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Norm and Distance

Length (Norm induced by the scalar product)

Cauchy Schwarz inequality

If a basis is present:

Applications: Calibration of Helmholtz coils, 

Calibration of 3-axis displacement stages and 

robots

(Generalized Pythagoras)
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Inner and Outer Oriented Surfaces

Outer oriented 

by the current
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Inner and Outer Oriented Surfaces

Inner oriented 

because flux is a 

measure for the 

voltage that can be 

generated on the 

rim
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Discretization on Dual Grids

Ampère-Maxwell Fields are discretized on the dual grid

Faraday Fields are discretized on the primal grid
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Consistent Inner and Outer Orientation

Consistent inner and outer 

orientation of a manifold 

embedded in an encompassing 

oriented space (requires an 

origin and a coordinate frame)
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The Right-Hand Rule or “Magnetic Discussion”

Bruno Touschek (1921-1978)
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Framework of our Vectorfields E3  (Euclidean Affine Space)

 E3 has the structure of the affine point space

 It carries the vector (linear) space structure of its associated 
vector space

 It is equipped with a metric that gives rise to distance and angles

 If an origin and basis is selected, the 
projection of the position vector on 
the basis yields the coordinates (in     )

 The canonical basis can be made to a 
basis field by translation

 The components of the field at some 
point are then the projection on this 
basis field
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Episode 2

Fourier Series
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Field Quality

Field map Good field region
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Fourier Series (an Infinite Dimensional Vector Space)

And on the computer: Discrete setting (don’t bother with the FFT)
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E3 and L2

Hilbert spaces are those in which notation and concepts of ordinary

Euclidean geometry hold without any restrictions on the dimension.
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The Road Map to Convergence of Fourier Series

 The trigonometric functions are orthogonal

 The Fourier polynomial of grade n is the best approximation of f in Vn

 The projections onto the trigonometric functions (scalar product) induces a norm 
(the RMS error)

 Riemann Lebesque Lemma: Within this norm, the coefficients converge to zero.

 3 Convergence theorems

– For a C1 function Pn converges uniformly to f(x) in any x

– For “clean jumps” Pn converges pointwise to 0.5 (f+(x) + f-(x))

– The Fourier polynomial converges for every square integrable function in the 
RMS sense (allows jump discontinuities, e.g., at material boundaries)

2

1
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Trigonometric Functions as Orthogonal Function Set (from Wikipedia)
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The Fourier Polynomial is the best Approximation of f within Polynomial 
Approximations of order m   

2

3

Projection of the square wave 

onto the “shape” of the 

trigonometric functions

Minimum for 
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The Fourier Polynomial Pn is the best Approximation in Vn  

2

4

Projection of the square wave 

onto the “shape” of the 

trigonometric functions
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Solving Boundary Value Problems

Take any 2p periodic function and develop according to 

We can use fields, potentials, fluxes, or wire-oscillation amplitudes as 

“raw data”. The linear differential operators grad and rot transform into 

simple algebra in the L2 space of Fourier coefficients. 

Method of Superposition
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Bessel Inequality and the Riemann Lebesque Lemma  

Always plot your results in logarithmic scale

Simulations
Measurements

The Fourier coefficients tend to zero as n goes to infinity

Limits: 10-6 T, 10-8 Vs
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Episode 3

The Taut String
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Oscillating Wire Measurements
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Oscillating Wire Measurements

Measure the oscillation 

amplitudes on K rulings of a 

cylindrical domain. Develop 

into a Fourier series.  
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The Taut String

CuBe: 9.7 N, 0.125 mm, 0.85 10-4 kg/m, 340 m/s 
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The One-dimensional Homogenous Wave Equation (no Damping)

Method of Separation Eigensolutions
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Boundary Conditions 

Mode shape function

Nodal displacement (in time) function

Remark: Coefficients are still not know yet. It requires initial conditions – plucked string (Guitar) or struck string (piano)

Normal mode fequency

c = 340 m/s, 2-m-long, w1 = 534 Hz

0 L
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More General Form of the 1D Wave Equation

Sturm-Liouville equation with linear, self-adjoint diff. operator  F = < Lf, g > = < f, Lg > Functional 

analysis on infinite dimensional vector-spaces. Preserving the vector space properties under the 

actions of the operator. Existence of a converging, orthogonal projection operator (spectral theorem)

Method of Separation 
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Eigensolutions of the Sturm-Liouville Problem

”Sufficiently” small damping

Nothing is “solved” yet
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Initial Conditions (Again)

L

Because of orthogonality: 

Unknown Known
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The Inhomogenous Equation (Variations of Variables - Guesstimations)

Lorentz Force Term on the Wire

Notice n = normal

Modal force

Nodal displacement

Mode shape function
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Check 2: Numerical simulation (FDTD) and the Steady State Solution
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Why Have we not Started Numerically 

Remember: We wanted to proof that:

And we can only measure the amplitude 

at one position z0
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Solution of the Wave Equation (Assumptions and Check)
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Solution of the Wave Equation (Check 2)

Check: Behavior around the first natural resonance: Are the 

fit parameters physically meaningful?

~ Tension
~ Mass density

~ Damping
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Nonlinearities and Overtones

Nonlinear stress-strain 

relations in the cable (we 

tension close to the Hook 

limit); results in a coupling 

of the planes of motion
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Episode 4

Foundations of Vector Analysis
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Directional Derivative and the Total Differential

Best linear approximation of f over displacement distance dr



Stephan Russenschuck, CERN  TE-MSC-MM, 1211 Geneva 23

CAS Thessaloniki 2018

Precondition for the Differential under the Integral
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Ideal Pole Shape of Conventional Magnets

Remember the Cauchy Schwarz inequality

Thus for the directional derivative

The flux density B exits a highly permeable surface in normal direction. 

Therefore the pole shape of normal conducting magnets can be seen as 

an equipotential of the magnetic scalar potential.

This implies that the directional derivative takes its maximum when v 

points in the direction of the gradient. Therefore gradient points in the 

direction of the steepest ascent of Φ and is thus normal to the surface of 

equipotential.
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Grad, Curl and Div in Cartesian Coordinates
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The First Lemma of Poincare

Ugly and not even a universal proof (orthogonality assumed)
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Coordinate Free Definition of Grad, Curl, and Div
4

8
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The Boundary Operator

Reversal of arguments yields two important statements (next slides): 

Much nicer than writing it in coordinates
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The second Lemma of Poincare (Contractible Domains)
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Lemmata of Poincare (Non-Contractible Domains)
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Kelvin-Stokes Theorem

No jump discontinuities (for example, 

co-moving shielding devices)
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Gauss’ Theorem
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More Integral Theorems

Green’s First

Green’s Second

Vector Form of Green’s Second

Generalization of the Integration by Parts Rule

Stratton #1 and #2


