4.Discrete Systems

Where do discrete systems arise?

Typical control engineering example:

“Digitized”

s
S
9

™

“Zero-order-hold”

0 k)

£ Ll

“continuous™  “Digitized”

Computer controller

Assume the DAC+ADC are clocked at sampling period T.
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4.Discrete Systems (Cnt’d)

Then u(t) is given by:
u(k)E uc(t); kT <t< (k + ])T
y(k)=y (kT ) k =0,1,2,...

Suppose: time continuous system is given by state-Space

i ()= Ax (0)+ Bu () x.(0)=x,
v (t)=Cx ()+ Du,(r)

Can we obtain direct relationship between u(k) and y(k)? i.e. want
Equivalent discrete system:

O
>
@
4

>
\ 4

>
O
O
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4.Discrete Systems

Yes! We can obtain equivalent discrete system.
t

Recall x (t)=e”x_(0)+ Ie‘“ -Bu (t —1)dr

0
T

From this x, (kT +T)=e""x, (kT )+ Ie“ -Bu (kT — 1) dt

(0

Observe that (kT +T-7)= u(kT ) for = € [0,T]
i.e. u(kT +T-r) isconstant u(kT) over 7 e [0,T]

I.e. can pull out of integral.

—> x (kT +T)=eAtxc(kT)+(J‘eAr -Bd‘[] u,(kT)
0

x(k+1) = A,x(k)+ B,u(k)
y(k) = Cdx(k)+ Dd“(k)

x(0)=x.(0)

e™-Bdt C=C,, D,=D

e
)
AN
U
Il
Q
N
o ~
o
QU
Il
OQ-;'ﬂ

So we have an exact (note: x(k + 1)= x(k)+x(k) T+ 0()) discrete time equivalent to the time
Continuous system at sample times t=kT- no numerical approximation!
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4.1 Linear Ordinary Difference Equation

A linear ordinary difference equation looks similar to a LODE
yik+n)+a, , yk+n—1)+..+a, yk+1)+a, y(k)=b ulk+m)+..+b, ulk+1)+b, u(k)
n>m; Assumes initial values y(n-1), ...., y(1)y(0)=0.

Z-Transform of the LODE yields (linearity of Z-Transform):

2" Y(z)+2z""a,_, Y(z)+..+ za, Y(z)+a, Y(z)=z"b, U(z)+...+zb, U(z)+b, U(z)

It follows the input-output relation:

(Z” +z"a_ +..+za, +a0) (E (zmbm +....+zb, +b0) Uz)

zZ"b +...+zb, +b
Y — m 1 0 U
(Z) z* +...+za, +a, (Z)

Y(Z) = G(z) U(Z)
Once again: if U(z)=1, (u(k)=05(k)) then Y(z)=G(z)

Transfer Function of system is the Z-Transform of its pulse response!
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4.1 Z-Transform of Discrete State Space Equation

x(k+1)= 4, x(k)+ B, u(k)
y(k)= c x(k)+D, u(k)

Applying Z-Transform on first equation:
z-X(z)-zx(0)= 4, X(z)+ B, U(z)
(z21-4,) X(z)=zx(0)+ B, U(z )
X(z) = (Z]—Ad )_lz x(0)+ (Z] —A, )_1Bd U(Z)

Homogeneous solution Particular solution

NOW:

Y(z)=C,X(z)+D, U(z)
= C, (214, ) 2 x(0)+(C, (21 - 4,)*B, + D, ) U(2)

If x(0)=0 then we get the input-output relation:

Y(z)=G(z) U (z ) with
G(z)=C,(zl-4 ,)'B, + D,
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4.2 Frequency Domain/Z-Transform

For analyzing discrete-time systems:
Z-Transform
(analogue to Laplace Transform for time-continuous system)

It converts linear ordinary difference equation into algebraic equations: easier to find
a solution of the system!
It gives the frequency response for free!

Z-Transform ==generalized discrete-time Fourier Transform

Given any sequence f (k) the discrete Fourier transform is

Flo)= 3 k)e™

k=—0
with o =2xnf, f = % The sampling frequency in Hz,

T difference / Time between two samples.

In the same spirit: F(z)= Z[f (k)] = i fk)z*.

With z a complex variable
Note:
if f(k)=0fork =-1,-2,....then F(w)=F(z =e"). 5
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4.3 stability (z-domain)

A discrete LTI system is BIBO stable if

| ulk) | < M; vk =|y(k)|<K; Vk

Condition for BIBO stability:

() | = Z::u(k—i)h(i) si ulk—1) | h(z’)\SMZ::\h(i)\SMZ::\h(i)\

0

2 Y |h(@) <o > BIBO stable.

0
For L.O.D.E State space system:
M._,(z-z, :
H(z)=a —= L = p. T, (z
( ) H?:I(Z_pi) ; ( )

With partial fraction of the rational function:
Once again pole locations tell a lot about shape of pulse response.

Zeros determine the size of S,
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A

4.3 Stability (z- domain)
Im{z}

unit circle

A

P o o

Constant
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4.3 Stability (Z- domain)

In General
Complex pair =>» oscillatory growth / damping
Real pole = exponential growth / decay but maybe oscillatory too (e.g: »"1(n) wherer <0)

The farther inside unit circle poles are
=>» The faster the damping =» the higher stability

i.e |p;| < 1> system stable
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4.3 Stability (z-domain)

Stability directly from State Space:

Exactly as for cts systems, assuming no pole-zero cancellations and D=0

H(Z)_a(z) Cdd(] 4,)"B,

C,(zI-4,) B,

adj

det(z/ — 4,)

b(z) = Cadj(zI — 4,)B,
a(z) =det(zl - A4,)

=>Poles are eigenvalues of A4,

So check stability, use eigenvalue solver to get e-values of the matrix 4, , then

If V,i‘ <1 foralli=>» system stable

Where A isthe ith e-value of 4, .
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4.4 Discrete Cavity Model

Converting the transfer function from the continuous cavity model to the discrete model:

H(s)= Diz {

o’ +(S+a)]2)2

st+w, Adw }

do s +w,,

The discretization of the model is represented by the z-transform:

(- ()2 ..

RN U =
Ao’ +), | do o, A0’ + @, z° —2ze”?" .cos(AwT), + e’ 12
w, -4 do
: (Z—ea’”TS-COS(Aa)TS))- - 12" . sin(Aw T, )- o
do o, —w,, 4
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4.5 Linear Quadratic Regulator

s x(k+1)=Ax(k)+ Bu (k)
z (k)= Cx(x)

(Assume D=0 for simplicity)

Suppose the system is unstable or almost unstable.We want to find ufb(k) which will
bring x(k) to Zero, quickly, from any Initial condition.

l.e.

/_D
o
w
X

n
>

12
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4.5 Trade Off

AN\

Zu Z N

\-/\/\i~~=1< /\ y K

A

_\//\\//\ K \/ \/ > K

(1) “Bad”“ damping (1) “Good* damping

= Large Output excursions = Small Output excursions

(2) But “Cheap” control i.e ufb Small (2) But “expensive control i.e be large.

13
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4.5 Quadratic Forms

A quadratic form is a quadratic function of the components of a vector:

X
xz{ ]:|€R2
X,

f(x)= f(xlsz)

=ax; +bx,x, +cx, +dx;

_a ébW ; X
[ H[ o]u
—b d 2 2
|2 |
0 P

flx)=x"Ox + P'x +. e,

Quadratic Part  Linear Part Constant
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4.5 Quadratic Cost for Regulator

What do we mean by “bad* damping and “cheap* control? We now define precisely
What we mean. Consider:

JEZ{xiTQxl.JruiTRui}
i=0

The first term penalizes large state excursions, the second penalizes large control.
O>20,R>0

Can tradeoff between state excursions and control by varying Q and R.

Large Q=> “good“ damping important

Large R=>» actuator effort “expensive*

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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4.5 LQR Problem Statement

(Linear quadratic regulator)

Given: x,,, = Ax, + Bu,; x, given:

Find control sequence {uO,ul,uz,...} such that

Answer:

Jzixf{Qxi+uiTRui}
i=0

= minimum

The optimal control sequence is a state feedback sequence {u, |

K, =(R+B"SB) " B"s4
S =A"SA+Q—- A" AB(R+B"SB) ™ BS54

Algebraic Riccati Equation (A.R.E) for discrete-time systems.

Note: Since 1 ; = state feedback, it works for any initial state x .

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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4.5 LOQR Problem Statement

Remarks:

(1) So optimal control, u; =—K_ x, is state feedback! This is why we are
interested in state feedbck.

(2) Equation A.R.E. is matrix quadratic equation. Looks pretty intimidating but
Computer can solve in a second.

(3) No tweaking ! Just specify {A,B,C,D} and Q and R, press return button, LQR
Routine Spits out K o Done

(Of course picking Q and R is tricky sometimes but that‘s another story).

(4) Design is guaranteed optimal in the sense that it minimizes.

J

lqr(x0’ {ul}f):i{fo X "‘”iTR ui}

i=0

(Of course that doesn‘t mean its “best* in the absolute sense .-)

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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4.5 LOR Problem Statement - Remarks

(5) As vary Q/R Ratio we get whole family of Kz S, I.e. can Trade-off between state
excursion (Damping) Vs actuator effort (Control)

State

excursions
J Achievable

9 T zl
JZ = Z xi Qxi
i=0

= Z x; C" pCx .

= ,UZ ZiTZi

J 1 Actuator effort

18
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4.6 Optimal Linear Estimation

Our optimal control has the form u,,, (k)=-K(k) X o1 3

This assumes that we have complete state Information X ot (k) -not actually true!.
e.g: in SHO, we might have only a Position sensor but Not a velocity sensor.

How can be obtain “good*“ estimates of the velocity state from just observing
the position state?

Furthermore the Sensors may be noisy and the plant itself
outside disturbances (process noise) i.e. we are looking fo

mayhe subject to

Process Cy (k)
- O, - {A,B,c:}\X .
noise S )
Mk) ‘ :KX(XVC_I) Y Noise
@
Amazing box which Sen 03
Calculates “good* estimate vik
KT Of x(k) from W
)”C(x| f— 1) y(0),......y(k-1)

19
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4.6 Problem Statement :

x(k+1)= Ax(k)+Bw(k)
z(k)=C x(x)

y(k)=Cx(k)+v(k)

Process W(K) =

k
noise =\-‘|-/ {A,B,c}X Z( ) >

0=KXx|k-1) sensor

Noise  V(k)
o)
X (x|k—1)
K % Estimator - y(k)

Assume also x(O) is Random & Gaussian and that ~ x(k ), w(k ), v(k )
are all mutually Independent for all k.

A 4

Sl f((k|k—l) Optimal estimate of x(k) given Y, Y4
Such that “mean squared error*
E [H x(k)-% (klk —=1) ] J: minimal
Fact from statistics: i(k\ k—l): E[x(k)\ 7 yk_l)]

20
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4.6 Kalman Filter

The Kalman filter is an efficient algorithm that computes the new fcim (the linear-least-mean

( square estimate) of the system state vector Xx,,,, given {J’o yl.} ,by updating the old estimate

.....

A

Xy andold X;,_, (error).

—_— X — Kalman L )Acl.+1|l.—>
Al o .
(old estkmate) Filter (new estimate)
(step i)

pi|i—] | Di ]

(old error variance) (new error variance)
- 2
Pijion = Hxi|i—1 Y
2 (new measurement)

1

The Kalman Filter produces X,,,, from X, , (rather than X, ), because it “tracks” the system

“dynamics”. By the time we compute X, from X,._, ,the system state has changed from

i

x tox, 6 = Ax +Bw,

21
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4.6 Kalman Filter

The Kalman Filter algorithm can be divided in a measurement update and a time update:

Kalman Filter
fcl.|l._,_—> - s, —> >X.. .
l‘l . l+]|z
Measure. Time
update update
Piia—T> —> Dy > > Divi)i
Vi
Measurement update (M.U.):
P 4 -1
xi\i B xi\i—] k pii—ICT(Cpii—ICT b V) ( - Cx, ili—1 )
= <o, c7+v)c
pi\i — pi‘i pz‘l P ili—1 pi\i—]
Time Update (T.U.): l+1\l Ax‘
pl”‘ = Ap,;, A" + BWB'
With initial conditions: Xy =0
po\—z =X, 22
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4.6 Kalman Filter

By pluggin M.U. equations into T.U. equations. One can do both steps at once:

|+1\ = AX

Il
= AX, i T Ap;;,C' (Cpii—lcT +V)_l (yi _C)A(ii—l)

= Ax|||_1 + L, (y, CxI|I 1)

|+1||

where L. = A(pi“lCT (Cpi|i—1CT +V)_l)

pi+1|i - Api|iAT +BwB'

- A [pi“_1 - pi“_lCT (Cpi“_lCT +v) ]AT +BwB'

||| -1

Py = AP, A" +BwB' — Ap, o CT(Cp " C' +V) (Cp )AT

|\| 1

Known as discrete time Riccati Equation
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4.6 Picture of Kalman Filter

: i+ 1 ~ X . ]
—_—l B :/_l_\ :ZII A C L
Z;
A I G’j Vi
Vi
e
Kalman Filter
X, Yili-1 Yiji-1 |

ANy
Q

|
|
|
|
|
|
|
I A
I +
|
|
|
|
|
|
|
|
|
|
|
|

e e e e e e e e e e e e ——— S - o o ——— J

Time varying gain
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4.6 Picture of Kalman Filter

Plant Equations:

X, = Ax, + Bu,

Vi :sz‘+vi

Kalman Filter:

)ei+1|i = A)Aci| i L (yi _)A/il i—I)
Yijic1 = Cx

i| i-1

If v=w=0=> Kalman filter can estimate the state precisely in a finite number of steps.

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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4.6 Kalman Filter

RENENCH
(1) Since y, = Cx, + v, and yi\i_l = Cx, can write estimator equation as
‘£i+1\i =4 Xiiog T L, (C X, TV — Cxi\ i—I)
=(4-LC) %, +LCx +v,

can combine this with equation for x,,;

X, A 0 X; B 0w
== " +
xi+]| i _LiC A - LZC xl| i—1 0 ] V.

Zi C O}Xi

>

A

_y i| i-1 ) 0 C

A

xi| i—1

(2) In practixe, Riccati equation reaches steady state in few steps. People
Often run with steady-state K.F.i.e

LSS — Apss CT(CpSS CT +v)_l
Where p. =Ap A" +BwB" —Ap_C'(CP, C" +v)"CP, A
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4.7 LQG Problem

Now we are finally ready to solve the full control problem.

: | p 2

{A,B,C}

®
=

N
2o

A

©

N

H(z)
{4.B.C.D, } Yk

Given: = Ax, + Bu +BWW

o+l k k k
zszxk
yszxk+vk

<w.,w.>=w5.., <v.,v.>=v5..

] y I Jj y

<w.,v.>=0
1 J

For Gaussian, K.L. gives the absolute best estimate

w,,V, both Gaussian

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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4.7 Problem Statement (in English)

Want a controller which takes as input noisy measurements, y, and produces as output a
Feedback signal ,u, which will minimize excursions of the regulated plant outputs (if no pole
-zero cancellation, then this is equivalent to minimizing state excursions.)

Also want to achieve “regulation” with as little actuator effort ,u, as possible.

Problem statement (Mathematically)
Find: Controller H(z): C (Z] 4 )" B +D
C C & C

U, N Vi

H(z)
/A ,B..C.D.}

a

Controller: x (k+1)=A x(k+1)+B, y(k)
ylk)=C, x,(k)

Which will minimize the cost

limit { T T }
J = Elx, Ox, +u, Ru
— _ LOG k="k k
z =Cx Rms “state” Rms “actuator”
k k ;
excursions  effort
Plant yk — ka +vk

28
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4.7 Problem Statement

Remarks:

» Q and R are weigthing matrices that allow trading off of rms u and rms x.

> If Q=CTp C; p >0 then trade offrms z vs rmsu

> In the stochastic LOR case, the only difference is that now we don’t have complete state
information y, = Cx; +v. we have only noisy observations

I .e can’t use full state feedback.

Idea: Could we use estimated state Feedback? (z'.e. -K x |- ])

AS
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4.7 LQG problem

Separation principle: ( we won’t prove)

The separation principle states that the LGQ optimal controller is obtained by:

(1) Using Kalman filter to obtain least squares optimal estimate of the plant state,

l.e.: Let xc(k) — )/ék‘k—]

(2) Feedback estimated LQR- optimal state feedback

M(k) = _KLQR Xc(k)

= X
LOR “klk—1

I.e. can treat problems of

-Optimal feedback and

-state estimate
seperately.

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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4.7 Picture of LQG Regulator

We—l| B
X1 .
X k
k
@_' B 4’({-} > Z_ll o>—> C ”—>
Z, 4V
k k
A G
Vi
i Ml el -==
K x
I k| k-1
I [ K <
: v 5& xk|k_] j>k|k—1'
@z H{C -»
I +Ak _ -
|
A P
l €
|
| L <
|
|
|
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4.7 LQG Regulator

X =Axk+(—Buk)+wak
Plant _
an z, ka
Vi =ka+vk

% = A% +Bu, +L|y, —Cx
LQG Controller | & + 1|k klk =1 k [yk kk—]j

up=-Kx .

]
Bl s4

_] _

k:—[R+BTSB} +S=ATSA+Q—ATSB[R+BTSB}
T 4

L=APC [V+CPC} + P

iy
=APAT+BWBT—APCT[V+CPCT} cec!

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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4.7 Problem Statement

» We can let Q/R ratio vary and we’ll obtain family of LQG controllers. Can
Plot rms z vs rms u for each one
—> Trade-Off curves

rmsZ 1
ACHIEVABLE
LQG, Q/R=0.01
Zrms(]) _____
, X other
|
| LQG, Q/R=100
I
ZI’mS(Z) _____ | _____
, |
I I
. | S
Urms(l ) U’" ms(2) fms U
So by specifying (1) system model, (2) noise variances, (3) optimally criterion

v oG- and plotting trade off curve completely specifies limit of performance of

System i. e which combinations of (Zrms, Urms) are achievable by any controller
-good “benchmark curve”.
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Principle Kalman Filter (steady state)

™| Kalman Ye
u y Yv | Filter >
H— Plant ’ : >
w Y
Process noise Sensor noise v Yy

s

Discrete Plant: Noisy output measurement: Y,[n]=Cx[n]+Vv[n]

X[n+1]=Ax[n]+B(u[n]+w[n])
y[n]=Cx[n]

Measurement update:
X[n|n]=x[n|n-1]+M(y,[n]-Cx[n|n-1])

Time update: X[n+1|n]=AX[n|n]+Bu[n]

The correction term is a function of the innovation, i.e. the discrepancy
y [N+1]-CX[n+1|n]=C(xX[n+1]-X[n+1|n])

The innovation gain matrix M is chosen to minimize steady-state covariance of the
estimation error given the noise covariances E(w[n]w[n]")=Q and E(v[n]v[n]")=R



Kalman Filter (Cnt'd)

where M is the solution of the Riccati Equation:

M=Q+AMA-AMCT(R+CMCT)1CMAT

Combining time and measurement update into state space model (the kalman filter):

x[n+1|n]] = A(I-MC) X[n|n—1] + [B ANM

y[n|n] = C(1-MC) [X[n|n—1] + CMy,[n]

This filter generates and optimal estimate 25.01
9[n|n] of y[n]. Note that filter state is x’[n|n-1] 25.0051
251

24.995F

Example: TTF Cavity Q, = 3*10°

wp=1310°Hz =

2.24.985¢

Beam noise : o(lp)/l, = 0.1 & 2a08h |
Sensor noise : o(Vy)/V4 = 0.01 24.975}
24 .97F
> o, /'y = 0.0009 20.965|
24.96

actual state -

Jwmm
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0.5 06 07 08 09



