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1.Control Theory
Objective:
The course on control theory  is concerned with the analysis and design of closed loop 
control systems.

Analysis:
Closed loop system is given           determine characteristics or behavior.

Design:
Desired system characteristics or behavior are specified        configure or synthesize closed 
loop system.

Plant
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Input 

Variable
Measurement of 

Variable

Variable

Control-system components
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1.Introduction
Definition:
A closed-loop system is a system in which certain forces (we call these inputs) are 
determined, at least in part, by certain responses of the system (we call these outputs).

System
inputs 

System
outputs 

Closed loop system 

O O
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Definitions:
The system for measurement of a variable (or signal) is called a sensor.
A plant of a control system is the part of the system to be controlled.
The compensator (or controller or simply filter) provides satisfactory  
characteristics for the total system.

Two types of control systems:

A regulator maintains a physical variable at some constant value in the
presence of perturbances.
A servomechanism describes a control system in which a  physical variable is    

required to follow, or track some desired time function (originally applied in order 
to control a mechanical position or motion).

System 
input Error Plant

Sensor

Manipulated 
variable

Closed loop control system

System 
output

Compensator+

1.Introduction
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1.Introduction
Example 1:  RF control system

Goal:
Maintain stable gradient and phase.

Solution:
Feedback for gradient amplitude and phase.

continued…
Phase detector
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+-
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1.Control Systems
Model:
Mathematical description of input-output relation of components combined with block 
diagram.

Amplitude loop (general form):

Klystron
cavity

amplifier

controllerReference
input outputRF power

amplifier

Monitoring 
transducer

_

Gradient detector

plant+
error
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1.Introduction
RF control model using “transfer functions”

A transfer function of a linear system is defined as the ratio of the Laplace 
transform of the output and the Laplace transform of the input with I. C .’s =zero.

Input-Output Relations

Transfer FunctionOutputInput

U(s) Y(s) P(s)K(s)G(s) =

E(s) Y(s)

Y(s)

(s)G(s)HL(s) c=

R(s) L(s)L(s)M(s))1(T(s) 1−+=

Gradient detector

Klystron

cavity

controller

Reference  Input
Error

Output

_

Control input

P(s)K(s)R(s) ( )sHc

M(s)

Y(s)E(s)
U(s)

+
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2. Model of Dynamic System
We will study the following dynamic system:

y(t)
u(t)

γ k

1m =

Parameters:
: spring constant
: damping constant
: force

Quantity of interest:
: displacement from equilibrium 

k
γ
u(t)

y(t)

Differential equation: Newton’s third law

( ) ( ) ( ) ( )tutyγ tk yFty ext +−−== ∑ &&&

( ) ( ) ( ) ( )
 

tutk ytyγty =++ &&&

( ) ( ) 00 y0y , y0y && ==

( )1m =

-Equation is linear  (i.e. no        like terms).

-Ordinary (as opposed to partial e.g.                            )

-All coefficients constant: 

( ) 0x,tf
tx

  =
∂
∂

∂
∂

=

( ) ( ) γ tκ ,γt k ==

2y&

for all t
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2. Model of Dynamic System
Stop calculating, let’s paint!!!

Picture to visualize differential equation

1.Express highest order term (put it to one side)

( ) ( ) ( ) ( )tutyγ tk yty +−−= &&&

2.Putt adder in front

3.Synthesize all other terms using integrators!

( )tu ( )ty&&

( )tk y−
( )tyγ &−

+

Block diagram
+

-
-

( )tu ( )ty& ( )ty

γ

k

( )ty&&
∫ ∫
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2.1Linear Ordinary Differential Equation (LODE)
Most important for control system/feedback design:

In general: given any linear time invariant system described by LODE can be 
realized/simulated/easily visualized in a block diagram

( ) ( )( ) ( ) ( )( ) ( ) ( )t ubtu b...t ub y(t)aty a...t yaty 01
m

m01
1n

1n
(n) +++=++++ −

− &&

( )2, m2n ==

Control-canonical form

+

--

( )tu

1a

0a

2x
0b ( )ty

2b

1b

1x
+

+ +

∫∫

Very useful to visualize interaction between variables!
What are     and       ????1x 2x

More explanation later, for now: please simply accept it!
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2.2 State Space Equation
Any system which can be presented by LODE can be represented in State space 
form (matrix differential equation).

Let’s go back to our first example (Newton’s law):

One LODE of order One LODE of order nn transformed into transformed into n n LODEs of order 1LODEs of order 1

What do we have to do ???

( ) ( ) ( ) ( )tutk ytyγ ty =++ &&&

1. STEP:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )tutγ xtk x                

tutyγ tk ytytx

txtytx

21

 

2

2

  

1

+−−=
+−−==

==

&&&&

&&

Deduce set off first  order differential equation in variables

(so-called states of system)

Position :

Velocity :         :

( )tx j

( ) ≅tx1

( ) ≅tx2

( )ty

( ) ty&
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2.2 State Space Equation
2. STEP:
Put everything together in a matrix differential equation:

( ) ( ) ( )  tD utC xty +=

Measurement equation

( )
( )

( )
( ) ( )t u

1
0

tx
tx

 
-k   - γ

1       0
tx
tx

2

1

2

1
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
&

&

State equation

( ) ( ) ( )   tB utA xtx +=&

( ) [ ] ( )
( )  
tx
tx

 0  1ty
2

1
⎥
⎦

⎤
⎢
⎣

⎡
=

Definition:

The system state      of a system at any time     is the “amount of information” that, 
together with all inputs for         , uniquely determines the behaviour of the system 
for all         .

0t

0tt ≥
0tt ≥

x
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2.2 State Space Equation
The linear time-invariant (LTI) analog system is described via

Standard form of the State Space Equation

Variable Dimension Name

state vector

system matrix

input matrix

input vector                  

output vector

output matrix

matrix representing direct coupling 
between input and output

( )tX

A
B
( )tu

( )ty
C

D

Declaration of variables

( ) ( ) ( )tB utA xtx +=& State equation

( ) ( ) ( ) tD utC xty +=                                                            Measurement equation

( )
( )

( )
 .

tx
  

tx
tx

n

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅⋅=Where        is the time derivative of the vector ( )tx&

System completely described by state space matrixes             ( in the most cases          ). A, B, C, D 0D =

1n×
nn×
rn×
1r×
1p×
np×

rp×

And starting conditions ( )0tx
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2.2 State Space Equation
Why all this work with state space equation? Why bother with?

( ) ( ) ( )
( ) ( ) ( )  tD utC xty

  tB utA xtx
+=
+=&

with e.g. Control-Canonical Form (case                      ):

[ ] 3210

210

b , D b bb , C
1
0
0

 , B
a  a  a

 1       0       0   
0       1       0   

A ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

or Observer-Canonical Form:

[ ] 3

2

1

0

2

1

0

b ,D1  0  0 ,C
b
b
b

 ,B
a  1  0
a  0  1
a  0  0

A ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

Notation is very compact, But: not unique!!!
Computers love state space equation! (Trust us!)
Modern control (1960-now) uses state space equation.
General (vector) block diagram for easy visualization.

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )t ubtu b...t ubt yaty a...t yaty 01
m

m01
1n

1n
n +++=++++ −

− &&

BECAUSE: Given any system of the LODE form

Can be represented as 

3 ,m3n ==
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2.2 State Space Equation
Block diagrams:

Control-canonical Form:

+
--( )tu

1a 0a

2x
0b ( )ty

2b 1b
1x +

+

+

∫ ∫

Observer-Canonical Form:

+

-

( )tu

1a0a

2x

2b

y(t)

0b
1b

1x +++ +

-

+∫ ∫
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2.2 State Space Equation

Now: Solution of State Space Equation in the time domain. Out of the hat…et voila:

( ) ( ) ( ) ( ) ( ) dττt B uτΦ0 xtΦtx
 t

0 
−+= ∫

Natural Response  +  Particular Solution

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )tD u dττt B uτΦC0 xtC Φ      

tD utC xty
 t

0 
+−+=

+=

∫
With the state transition matrix

( ) tA3
3

2
2

e...t!3
At!2

AAtItΦ  =++++=

( ) ( )

( )
( ) ( ) ( )
( ) ( )tΦt.Φ4

tΦtΦtt.Φ3
I0.Φ2

tA Φ
dt

tdΦ.1

1
2121

−=

⋅=+
=

=

−

Exponential series in the matrix A (time evolution operator) properties of           (state transition matrix).( )tΦ

Example:
( ) tA2 e

1  0
   t1

AtIt, Φ
0  0
0  0

A
0  0
1  0

A  =⎥
⎦

⎤
⎢
⎣

⎡
=+=⎥

⎦

⎤
⎢
⎣

⎡
=⇒⎥

⎦

⎤
⎢
⎣

⎡
=

Matrix A is a nilpotent matrix.
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Equivalent circuit:

⎟
⎠
⎞

⎜
⎝
⎛ +⋅=⋅+⋅+

==

+′=⋅+⋅+⋅

bg2/1L
2
02/1

L

0

L
2/1

bg
L

II
m
2ωR2UωUω2U

Q2
ω

CR2
1:     ω

    IIU
L
1U

R
1UC

&&&&&

&&&&&

~

.

.

. .

.

~

circulator

Coupler 1:m

Generator 

Resonator  

Conductor

Last Beam-Current
gI

gI

oZ

oZ

oZ

bI

bI
C

oR
L

~
Generator

'
gI extR

Resonator

~ bI

'
gI

rI bI

C
oR

L

Conductor

2.3 Cavity model
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2.3 Cavity model

Only envelope of rf (real and imaginary part) is of interest:

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ti ωexpti ItI2ti ωexpti ItItI

ti ωexpti ItItI
t)(i ωexpti UtUtU

HFi0br0bHF ib rbb

HFgigrg

HFir

⋅+=⋅+=

⋅+=
⋅+=

ωω

Neglect small terms in derivatives for U and I

( ) ( ) ( )( )
( )( )

( ) ( )( ) ( ) ( )( ) dttiItIω  dt tIitI

(t))iU(t)(UωtUiUω2

tiUtUωtUiU

2

1

2

1

t

t
irHF

t

t
ir

ir
2
HFrr2/1

ir
2
HFir

∫∫ +<<+

+<<+

+<<+

&&

&&

&&&&

Envelope equations for real and imaginary component.

( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⋅⎟

⎠
⎞

⎜
⎝
⎛=⋅−⋅+

⎟
⎠
⎞

⎜
⎝
⎛ +⋅⎟

⎠
⎞

⎜
⎝
⎛=⋅+⋅+

i0bgiHFri2/1i

r0bgrHFir2/1r

IIm
1

Q
rωUΔωUωtU

IIm
1

Q
rωUΔωUωtU

&

&
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Matrix equations:

( )
( )

( )
( )

( ) ( )

( ) ( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟
⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

tItIm
1

tItIm
1

1  0
0  1

Q
rω

tU
tU

ω   Δω  
Δω   ω

tU

tU

i0bg i

r0bg r

HF
i

r

2/1

2/1

i

r

&

&

With system Matrices:

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
−
−−

=
1  0
0  1

Q
rω      B           

ω  
Δω  ω

A HF
2/1

2/1

    ωΔ

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=⎥

⎦

⎤
⎢
⎣

⎡
=

tItIm
1

tItIm
1

tu                      
tU
tU

tx

i0bg i

r0bg r

i

r rr

General Form:

( ) ( ) ( )tuBtxAtx rr&r ⋅+⋅=

2.3 Cavity model
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2.3 Cavity Model

s
1

Integrator
+

s
1

12w

dw

Gain 2

Gain 4

Scope 

Integrator 1

Step Gain

k
- -

dw

Gain 5

+

- +Step 1 

12w

Gain 3

Load Data
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2.5 Transfer Function G (s)
Continuous-time state space model

( ) ( ) ( )
( ) ( ) ( )tD utC xty

tB utA xtx
+=
+=& State equation

Measurement equation

Transfer function describes input-output relation of system.

( ) ( ) ( ) ( )sB UsA X0xss X +=−

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )s B Us xs         

sB UAsIxAsIsX
Φ+Φ=

−+−= −−

0
0 11

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )sD Us B UsC  xsC       

sD]UBAsI[c]xAsIC[      

sD UsC XsY

+Φ+Φ=
+−+−=

+=
−−

0
0 11

( ) ( ) ( ) D BsC DBAsICsG +Φ=+−= −1

System( )sU ( )sY

Transfer function             ( pxr ) (case: x(0)=0):( )sG
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2.5 Transfer Function of a Closed Loop System

( )sR ( )sE ( )sU ( )sY( )sHc
( )sG

( )sM

-

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )s Ys MsLs RsL        

s YsMsRs HsG        
s Es HsGs UsG sY

c

c

−=
−=

==
 

We can deduce for the output of the system.

( ) sLWith         the transfer function of the open loop system (controller plus plant).

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )s RsT                
s RsLs MsLIsY          

s RsLs Ys MsLI          
1

=
+=

=+
−

( ) sT is called : Reference Transfer Function
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2.5 Disturbance Rejection

Disturbances are system influences we do not control and want to minimize its 
impact on the system.

( )

D(s)(s)TR(s)T(s)

D(s)
H(s)(s)G(s)G1

(s)GR(s)
H(s)(s)G(s)G1

(s)G(s)G
sC

d

pc

d

pc

pc

⋅+⋅=

⋅⋅+
+

⋅⋅+

⋅
=

To Reject disturbances, make                     small!  ( ) ( )sDsdT ⋅⋅

)(sGc

)(sGd

Plant

R(s)

D(s)

)(sGp

H(s)

C(s)

• Reduce the Gain                   between dist. Input and output
• Increase the loop gain                         without increasing the gain              . Usually 

accomplished by the compensator choice  
• Reduce the disturbance magnitude            Should always be attempted if reasonable
• Use feedforward compensation, if disturbance can be measured.

( )jwGd
( )jwGcGp

( )jwGc
( )jwGd

( )td

- Using frequency response approach to    
investigate disturbance rejection
-In general                  cant be small for all -
Design                     small for significant 
portion of system bandwidth

( )jwTd
w( )jwTd
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2.7 Poles and Zeroes

( )B AsICadj −

Stability directly from state-space

Assuming D=0 (D could change zeros but not poles)

Assuming there are no common factors between the poly           and 
i.e. no pole-zero cancellations (usually true, system called “ minimal” ) then we can identify

( ) ( ) DBAsICscall : HRe 1 +−= −

( ) ( )
( )

( )
( )sa
sb

AsI
BAsICsH adj
=

−
−

=
det

( )AsIdet −

( ) ( )  BAsIC sb adj−=

( ) ( )AsI detsa −=

and

i.e. poles are root of ( )AsI det −

iλ thiLet        be the        eigenvalue of A

=>≤  i }{λi allfor 0Reif System stable

So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A.
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2.8 Poles and Zeroes

S-Plane

Medium oscillation 
Medium decay

X XX

X

X

No Oscillation 
Fast Decay

X

X

X

X
No oscillation
No growth

Fast oscillation 
No growth 

Medium oscillation
Medium growth

ω(s)Im =

σ(s)Re =

No oscillation
Fast growth

Pole locations tell us about impulse response i.e. also stability:
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2.8 Bode Diagram

Phase Margin
mφ

00

0180−

Gain Margin

dB

mG

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP 
Is larger than-180 degrees.

ω

ω
1ω

2ω

2ω 1ω
090−
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2.8 Root Locus Analysis
Definition: A root locus of a system is a plot of the roots of the system characteristic
Equation (the poles of the closed-loop transfer function) while some parameter of the
system (usually the feedback gain) is varied.

( ) ( ) ( ) ( )321 ps ps ps
KsK H

−−−
=

XXX
1p2p3p

( ) ( )
( ) ( ) .0sK H1roots at 
sK H1

sHKsGCL =+
+

=
 

How do we move the poles by varying the constant gain K?

( )sR ( )sY 

-

+
( )sH K
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3.Feedback
The idea:
Suppose we have a system or “plant”

We want to improve some aspect of plant’s performance by observing the output 
and applying a appropriate “correction” signal. This is feedback

plant

“open loop”

“closed loop”
plant

?

Ufeedback

r

Question: What should this be?
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3.Feedback
Open loop gain:

Closed-loop gain:

G(s)
u y

( ) ( )
1

O.L

y
usGsG

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

G(s) H(s)1
G(s)(s)GC.L

+
=

( )

( )G H1
G

u
y          G Hy      G u               

G uG Hy               G uG u               

uuGoof: yPr

yfb

fb

+
=⇒−=

=+⇒−=

−=

“closed loop”

u
G(s)

y

)(sH

fbU



44
CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock

3.1 Feedback-Example 1

Consider S.H.O with feedback proportional to x i.e.:

( ) ( )tα x t u

uuxωxγ x

fb

fb
2
n

−=

+=++ &&&

Then

Same as before, except that new “natural” frequency  αω2
n +

Where

+ s
1

s
1 y

2
nω

α

U
-

-
-

x&& x& x

γ

α xuxωxγ x 2 
 n −=++ &&&

( ) u xαωxγ x 2
n =+++==> &&&
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3.1 Feedback-Example 1

So the effect of the proportional feedback in this case is to increase the bandwidth 
of the system
(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front…) 

)log(ω2
n

1
ω

α+ω2
n

1
n ωlog αω log 2

n +

( ) iωGO.L.

( ) iωGC.L.

DC response: s=0

dB

( ) ( )αωγss
1sG 2

n
2

C.L.

+++
=Now the closed loop T.F. is:



46
CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock

3.1 Feedback-Example 2

( ) ( ) dτ τxαtu
t

0
fb ∫−=

( )∫−=++
t

0

2
n  dττxαu xωxγ xi.e   &&&

Differentiating once more yields: uα xx ωxγ x 2
n &&&&&&& =+++

No longer just simple S.H.O., add another state 

In S.H.O. suppose we use integral feedback:

+ s
1

s
α

-
-

-

y

2
nω

U x&& x& x

γ

s
1
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3.1 Feedback-Example 2

( )

( )

( ) αωγsss
s           

αωγss
1

s
α1

ωγss
1

sG

2
n

2

2
n

2

2
n

2
C.L.

+++
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

⎟
⎠
⎞

⎜
⎝
⎛+

++
=

Observe that
1.
2. For large s (and hence for large     )

( )00GC.L. =
ω

( ) ( ) ( )sG
ωγss

1sG O.L.
2
n

2
C.L. ≈

++
≈dB

2
nω

1

( )iωGO.L.

( )iωGC.L.

)log(ω

So integral feedback has killed DC gain
i.e system rejects constant disturbances
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3.1 Feedback-Example 3

Suppose S.H.O now apply differential feedback i.e.

( ) ( )txα tufb &−=

( ) uxωx αγx 2
n =+++ &&&

Now have

So effect off differential feedback is to increase damping

+

αS

-
-

-

xα &

s
1

2
nω

x&& x& x

γ

s
1

x
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3.1 Feedback-Example 3

dB

2
nω

1

( )iωGO.L.

)log(ω

( )iωGC.L.

Now ( ) ( ) 2
n

2
C.L.

ω sαγs
1sG

+++
=

So the effect of differential feedback here is to “flatten the resonance” i.e. damping is increased.

Note: Differentiators can never be built exactly, only approximately.
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3.1 PID Controller
(1) The latter 3 examples of feedback can all be combined to form a 

P.I.D. controller (prop.-integral-diff).

 ldpfb uuuu ++=

(2) In example above S.H.O. was a very simple system and it was clear what 
physical interpretation of P. or I. or D. did. But for large complex systems not 
obvious

==>         Require arbitrary “ tweaking”

That’s what we’re trying to avoid

S.H.O+

/sKsKK lDp ++

P.I.D controller

-

yx =u
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For example, if you are so smart let’s see you do this with your P.I.D. controller:

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare that’ll get you nowhere fast!

We’ll see how this problem can be solved easily.

G

ω

6th order system
3 resonant poles
3 complex pairs
6 poles

3.1 PID Controller
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3.2 Full State Control

Suppose we have system

( ) ( ) ( )
( ) ( )tC xty

tB utA xtx
=

+=&

Since the state vector x(t) contains all current information about the system the
most general feedback makes use of all the state info.

-k x  
xk.....xku nn11

=
−−−=

Where  (row matrix)  [ ] ......kk  k n1=

[ ]

[ ]DDD

ppp

  k0 xku

0 k xk u

−=−=

−=−=

&

Where  example: In S.H.O. examples

Proportional fbk : 

Differential fbk : 
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3.2 Full State Control

Example: Detailed block diagram of S.H.O with full-scale feedback

+
- -

-

+ 2k

1k

u
S
1

2
nω

x&& x& x

γ

x

y

x&

Of course this assumes we have access to the       state, which we actually
Don’t in practice. 

x&

However, let’s ignore that “ minor” practical detail for now.
( Kalman filter will show us how to get       from       ).x& x
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3.2 Full State Control

With full state feedback have (assume D=0)

B+ +
s
1 C

A

K

kxUfb −=

-

( )

Cxy    
Kxu

B u xBKA    x
BKxBu Ax      

]uB[uA x  x

fb

fb

=

−=
+−=

++=

++=

&

&

With full state feedback, get new closed loop matrix

( )BKAA O.L.C.L. −=

Now all stability info is now given by the eigen values of new A matrix

So

u x& x y




