1.Control Theory

Objective:
The course on control theory is concerned with the analysis and design of closed loop
control systems.

Analysis:
Closed loop system is given —— determine characteristics or behavior.

Design:
Desired system characteristics or behavior are specified—— configure or synthesize closed
loop system.

Input Variable

—— Plant }—

Measurement of

Variable i
ST Variable

Control-system components
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1.Introduction

Definition:
A closed-loop system is a system in which certain forces (we call these inputs) are
determined, at least in part, by certain responses of the system (we call these outputs).

System System
iInputs outputs

Closed loop system
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1.Introduction
Definitions:

*»*The system for measurement of a variable (or signal) is called a sensor.
s A plant of a control system is the part of the system to be controlled.

*+The compensator (or controller or simply filter) provides satisfactory
characteristics for the total system.

System Manipulated System

input variable output
i (+) Error Compensator Plant >

\ 4

\ 4

Sensor

Closed loop control system

Two types of control systems:

A regulator maintains a physical variable at some constant value in the
presence of perturbances.

¢ A servomechanism describes a control system in which a physical variable is

required to follow, or track some desired time function (originally applied in order

to control a mechanical position or motion).

low level radio frequency
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1.Introduction

Example 1: RF control system

Goal:
Maintain stable gradient and phase.

Solution:
Feedback for gradient amplitude and phase.
Phase amplitude
controller controller Klystron cavity

O, Ai—{>

Controller !
S / Gradient

set point

<+ O

Phase detector _
continued.4
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1.Control Systems

Model:
Mathematical description of input-output relation of components combined with block

diagram.

Amplitude loop (general form):

Klystron

error y output

v

input ('\_I_ amplifier RF p(IJ-\]i\-/er olant .
amplifier

v

A

Monitoring
transducer

Gradient detector

low level radio frequency
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1.Introduction

RF control model using “transfer functions”

controller

\ Control input Uf(s)

Klystron

\ cavity

Reference Input 1 Output
Error E(s) Y(s
LSO | H(s) | K@) [ P v,
M(s)
Gradient detector
A transfer function of a linear system is defined as the ratio of the Laplace
transform of the output and the Laplace transform of the input with I. C .”s =zero.
Input-Output Relations
Input Output Transfer Function
U(s) Y(s) G(s) = P(s)K(s)
E(s) Y(s) L(s)=G(s)H,(s)
R(s) Y(s) T(s) = (1+ L(s)M(s)) "L(s)
6
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2. Model of Dynamic System

We will study the following dynamic system:

Parameters:
k : spring constant
Y [j k Y . damping constant
u(t) : force
P Quantity of interest:
1 ]Vﬂt) y(?) : displacement from equilibrium
u(t)

Differential equation: Newton’s third law (1 = /)

)= F,, =—ky(t)-yy(t)+ul)
y(t)+ y () + ky(e)=u()
»(0)=y,, 3(0)= 3,
-Equation is linear (i.e.no 7 like terms).
-Ordinary (as opposed to partial e.g. = — — f(x t)=0

-All coefficients constant: k(t) =K ,y( ): y forall ¢
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2. Model of Dynamic System

Stop calculating, let’s paint!!!
Picture to visualize differential equation

1.Express highest order term (put it to one side)

e) =~k y(e)—y 3(e)+ulr)

ult) x()
T\

3.Synthesize all other terms using integrators!
Block diagram

ult) +~ () i () j (t)

2.Putt adder in front

[
»

kL
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2.1Linear Ordinary Differential Equation (LODE)

Most important for control system/feedback design:
y"(t)+a,_, y(”_])(t)+ wta, y(t)va, y) =b, u(’")(t)+...+b] 1i(t)+b, ult)

In general: given any linear time invariant system described by LODE can be
realized/simulated/easily visualized in a block diagram (n =2, m= 2)

Control-canonical form

'bz

b]

INS 0

N
—~~
~
p
vy +
‘f>
A
—
><
(NS}
—
=
S
S
+
<
~

aO:

Very useful to visualize interaction between variables!
What are x; and Xx,?7??

More explanation later, for now: please simply accept it! 1
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2.2 State Space Equation

Any system which can be presented by LODE can be represented in State space
form (matrix differential equation).

What do we have to do 7?7?
Let’s go back to our first example (Newton’s law):

#(e)+y 7(e)+ ky(t) = ult)
1. STEP: Deduce set off first order differential equation in variables
X, (t) (so-called states of system)
Xj(f)g Position : y(t)

X, (t) = Velocity : )'/(t) ;

%,(t)= 3(e) = x,(¢)

i, (£) = () = =k Ae) =y 3t )+ ul2)
= —kx](t)—yx2(t)+u(t)
One LODE of order n transformed into n L ODES of order 1

" ' low level radio frequency
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2.2 State Space Equation

2. STEP:
Put everything together in a matrix differential equation:

x(t)=Ax(t)+Bult)

State equation

SRl

y(t) =Cx(t)+D ult)
Measurement equation
Definition:

The system state x of a system at any time ¢, is the “amount of information” that,
together with all inputs for ¢ > ¢, , uniquely determines the behaviour of the system

forallz>¢, .
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2.2 State Space Equation

The linear time-invariant (LTI) analog system is described via
Standard form of the State Space Equation

()= A x(t)+Bu(t)  State equation

y(t)=Cx(¢)+Du(t)  Measurement equation

X (t)

Where x(t) is the time derivative of the vector  x(¢)=| --- |.And starting conditions x(to)

x, (¢)
Declaration of variables
System completely described by state space matrixes 4, B, ¢, b (in the most cases D=0 ).

Variable Dimension Name
X(¢) nx 1 state vector
A nxn system matrix
B nxr Input matrix
u(t) rx ] input vector
y(t) pxl output vector
C pXxn output matrix
D pXT matrix represe_nting direct coupling
between input and output
)
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2.2 State Space Equation

Why all this work with state space equation? Why bother with?
BECAUSE: Given any system of the LODE form

y(”)(t)+ a, y(”_])(t)+...+ a, )'/(t)+ a, y(t)z D, u(’")(t)+...+b] Ll(t)+ b, u(t)

Can be represented as
x(t)=Ax(t)+Bul(r)

y(l‘)z Cx(t)+ D u(t)

with e.g. Control-Canonical Form (case n =3 ,m =3 ):

0 1 0 0
A= 0 0 I1|,B=|0|,C=[b,b,b,], D=,
—a, —a, —a,| 1

or Observer-Canonical Form:

(0 0 —a, b,
A=|10 —-a, |,B=|b, |,C=[0 0 I],D=b,
01 —a, b,

Notation is very compact, But: not unique!!!
Computers love state space equation! (Trust us!)
Modern control (1960-now) uses state space equation.
General (vector) block diagram for easy visualization.

" ' low level radio frequency
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Block diagrams:

2.2 State Space Equation

Control-canonical Form:

+A

b, b,
+f> X J as] BN

ut) Y ‘,

+

Observer-Canonical Form:

low level radio frequency

b]

=

T

l+

A\ 4

a,;

bz
X +‘/l¢ 4 (1)
(O)—
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2.2 State Space Equation

Now: Solution of State Space Equation in the time domain. Out of the hat...et voila:

x(¢)=o(t) x(0)+ j;@(r)B ult—1) de

Natural Response + Particular Solution
y(t) = Cx(t)+ D u(t)
= C o(t) x(0)+ C|[ d(t) B ult—7) dz+D ult)

With the state transition matrix

2 3

_ A 2 A 3 At
@(t)—]+At+7t +7t +..=¢€
Exponential series in the matrix A (time evolution operator) properties of &(¢) (state transition matrix).
].dL(t) =4 d(¢)
dt

Matrix A is a nilpotent matrix.
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2.3 Cavity model

Ib
G) Beam-Current

I, conductor circulator  conductor : I,
—_—
—C —O— ) n
7, Lz dir e
Last I _ !
~ 1, L g
I, C Generator Z, || C\
| |
| : D .
1 1 1 ' Resonator
- - Coupler 1:m
|
Equivalent circuit: I 7 I,
i; — —
C—t
Generator : .
" (~ —C
[g C) Rext : L : <~> ]b
e
Resonator

low level radio frequency

1 ,

W, , = =
YTO2R,C 20,

.. . 2. .
U+2w,, U+w, -U=2Rw,, -(—Ig ”bj
m

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock

20



2.3 Cavity model

Only envelope of rf (real and imaginary part) is of interest:

Ut)=(U,(e)+1 U (¢))-exp i 0t
]g(t): (Igr(t)+i]gi(t))'exl9(i a)HFt)
1(6)= (L, ()41 1,,,,(t)) expli wet) = 2(1,, () 41 1,5, (t)) expli g 1)

Neglect small terms in derivatives for U and |
U, +iU(t) <<}, (U, (£)+iU(¢))
20,,U, +1U,(0)) <oy U0+iU 1)

0,441, 0) i << el 0411, 0)

Envelope equations for real and imaginary component.

r

: /
Ur(t)+w]/2.Ur+Aa).l]i :wHF(éj(_I +Ib0rj

m &

m &

: 1
Ui(t)"'wz/z U, —4dw-U, :wHF(éj'(_[ +Ib0ij
21
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2.3 Cavity model

Matrix equations: ;
Ur(t) |, —do Ur(t) i (rj L0 %]g”(t)—i_lbor(t)
U@t)| | 4o -a,,]||Ul) Y\ 0 o 111 1 |

With system Matrices:

—w,, -/ 10
Ao -, 0)|0 1

X(t)=A-%(¢)+ B-iilz)

22
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S

2.3 Cavity Model

Integrator

Gain 2

wl2

Load Data

i)

Step 1

tO_.g ]

<

Gain 4

Gain 5

T+  Integrator 1

Gain 3

| low level radio frequency
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2.5 Transfer Function G (s)

Continuous-time state space model
x(t) = A x(t)+ B u(t) State equation
y(t) =Cx(t)+D u(t) Measurement equation

Transfer function describes input-output relation of system.

Uls) > System > Y(s)
s X(s)-x(0)= 4 X(s)+ B Uls)
(

X(s)= ( — A" x(0)+(sI ~ 4)*B U(s)
(s) x(0)+@(s) B U(s)

Y(s)=CX(s)+ D U(s)
=C[(sI—A)" Jx(0)+ [c(sI — A)* B+ DJU(s)
= C ®(s) x(0)+C ®(s) B U(s)+ D Uls)

Transfer function G(s) ( pxr) (case: x(0)=0):

G(s)=C(sI-A)'B+D=C ®(s)B+D

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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2.5 Transfer Function of a Closed Loop System

H.(s) U(s) J G(s) Y(s)

>

We can deduce for the output of the system.

¥(s) =Gls) Uls)=G(s) H.(s) E(s)
G(s) H.(s)[R(s)-M(s) ¥(s)]
L(s) R(s)— L(s) M(s) Y(s)

With L(s) the transfer function of the open loop system (controller plus plant).

(1+Lis) M(s)) ¥(s)= L(s) R(s)
Y(s)=(Z+L(s) M(s))" Lls) R(s)
= T(S) R(S)

T(s) is called : Reference Transfer Function

AS
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2.5 Disturbance Rejection

Disturbances are system influences we do not control and want to minimize its
Impact on the system.

C(S) _ GC(S) s Gp(S) R(s) + Gd(s)
I+G.(s) -G, (s) H(s) I+G.(s) -G, (s) H(s)

=1(s) - R(s) +T,(s) - D(s)

D(s)

D(S) I
To Reject disturbances, make 7-d(s)-D(s) small! .
1
R(s) — G.(s)|—— c(s)
= 1
- Using frequency response approach to e -
Investigate disturbance rejection H(s)
-In general 7d(jw) cant be small for all -w )
Design  7d(jw) small for significant
portion of system bandwidth
. Reduce the Gain Gd( jw) between dist. Input and output
. Increase the loop gain ~ GeGp(jw)  without increasing the gain Gd( jw). Usually
accomplished by the compensator choice Ge(jw)
. Reduce the disturbance magnitude d(t) Should always be attempted if reasonable
. Use feedforward compensation, if disturbance can be measured.
31
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2.7 Poles and Zeroes

Stability directly from state-space
Recall - H(s)=C(sI - 4)'B+D

Assuming D=0 (D could change zeros but not poles)
C(sI — A)iB  b(s)
OF -
det(s/—4)  als)

Assuming there are no common factors between the poly Cadj(sI — 4)B and det(sI - 4)
I.e. no pole-zero cancellations (usually true, system called “ minimal” ) then we can identify

and b (S)Z C (S[—A)aij

a (s)=det (sI-A)

i.e. poles are root of det (s-4)

Let 1. bethe i” eigenvalue of A
if Re{l }<0 foralli=> System stable

So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A.

36
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2.8 Poles and Zeroes

Pole locations tell us about impulse response i.e. also stability:

Medium oscillation Im(s) = wt Fast oscillation
Medium decay A No growth
I)g/
I
' l A
I =
ll\"l 1! (1
\ 1 X 1! \ X /
1 [ 1
1 | " 1 _ o
I S o Medium oscillation
' I 1 .
I I : || I Medium growth
. — I L ' X
° 0 B I "Re(s)=o
J Iy 1| \ I
| \ | | 1 | |
K ; \ . b '/
_ | \ (. I |
| g 1 1 1 '\ > (X 1 | >
No Oscillation S L No oscillation '\ _' No oscillation
Fast Decay \ % No growth Fast growth
\
\
VA |
\<(’
S-Plane
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2.8 Bode Diagram

0

Gain Margin

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP
Is larger than-180 degrees.

" ' low level radio frequency
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2.8 Root Locus Analysis

Definition: A root locus of a system is a plot of the roots of the system characteristic
Equation (the poles of the closed-loop transfer function) while some parameter of the
system (usually the feedback gain) is varied.

_—

T
|

\ 4

H(s) ’

0.

G, (S) == f]fg(l) roots atl+K H(s)

How do we move the poles by varying the constant gain K?

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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3.Feedback

The idea:
Suppose we have a system or “plant”
A/“open loop”
—_— plant }p———>

We want to improve some aspect of plant’s performance by observing the output
and applying a appropriate “correction” signal. This is feedback

r

+ lant
pran " “Closed loop”

Ufeedback

Question: What should this be?

" ' low level radio frequency
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3.Feedback

Open loop gain:

\ 4

G(s)

v

Closed-loop gain:

U Y
&—{ 0 }—1-
U, “closed loop”
H(s) |
GC.L(S): G(S)
1+G(s) H(s)
Proof'yzG(u—ufb)

=Gu—-Gu, = y+GH, =Gu
=Gu—-GHy :>Z=L
u (1+GH)

low level radio frequency
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3.1 Feedback-Example 1

Consider S.H.O with feedback proportional to x i.e.:

Where )'c'+y5c+a),fx=u+ufb

ufb(t)z—ocx (t)

\ 4

Then X+yX+o’x=u—ax

==> 5c'+y5c+(a),f+a)x=u

Same as before, except that new “natural” frequency o’ +a

" ' low level radio frequency

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock

44



3.1 Feedback-Example 1
I

Now the closed loop T.F. is: G" (S) = —

s’ 45+ (0] +a)

DC response: s=0

So the effect of the proportional feedback in this case is to increase the bandwidth
of the system
(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front...)

45
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3.1 Feedback-Example 2

In S.H.O. suppose we use integral feedback:.

t

U, (t)= —aj x(7) de

0
t

i.e X+yx+wjx=u—ajx(r)dr

S

A 4

No longer just simple S.H.O., add another state

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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S oo

3.1 Feedback-Example 2

1

GC.L.(S)_ s’ +ys+ o]

_ H(jj(sz + s +](w5 +0f)]

s
2 Z
S(S +ys+a)n)+0c

Observe that
, 1. G*(0=0)
2. For large s (and hence for large o)
dB4 ! \ G CL (S)z : 1 .~ G oL (S)
‘GO.L. (m))( \\ (S +ys + o, )
/4 \\
/ \
/ \
// | \ ~ |
y | > log(w)
/
//
/ ‘ GCL (la))‘
4
/

So integral feedback has killed DC gain
I.e system rejects constant disturbances

47
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3.1 Feedback-Example 3

Suppose S.H.O now apply differential feedback i.e.

Uy, (t) =—0 x(t)

=
.

=
)

\ 4

/'
\€ o)
)

ax

Now have g ; P
i+(y+a)i+o’x=u

So effect off differential feedback is to increase damping

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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3.1 Feedback-Example 3

1
s+(y+a)s+o’

Now Gt (S) =

»

dB-

> | S »log(®)

So the effect of differential feedback here is to “flatten the resonance” i.e. damping Is increased.

Note: Differentiators can never be built exactly, only approximately.

49
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3.1 PID Controller

(1) The latter 3 examples of feedback can all be combined to form a
P.1.D. controller (prop.-integral-diff).

u X =
‘m > S.H.O J

A 4

P.1.D controller
K, +K,s+K,/s

7

Up, =U, +U, +U,

(2) In example above S.H.O. was a very simple system and it was clear what
physical interpretation of P. or |. or D. did. But for large complex systems not
obvious

==> Require arbitrary “ tweaking”

That’s what we’re trying to avoid

low level radio frequency
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3.1 PID Controller

For example, if you are so smart let’s see you do this with your P.1.D. controller:

6™ order system
3 resonant poles
3 complex pairs
6 poles

Q

/

Sv

~

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare that’ll get you nowhere fast!

We’ll see how this problem can be solved easily.

low level radio frequency
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3.2 Full State Control

Suppose we have system

x(t)= Ax(¢t)+ Bu(t)
y(t)=Cx (1)

Since the state vector x(t) contains all current information about the system the

most general feedback makes use of all the state info.

Where example: In S.H.O. examples

Proportional fbk @ u, =—k x=- [kp 0]

Differential fbk :  t, =—k,x=—[0 k]

low level radio frequency

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock

52



3.2 Full State Control

Example: Detailed block diagram of S.H.O with full-scale feedback

Of course this assumes We have access to the x state, which we actually
Don’t Iin practice.

However, let’s ignore that “ minor” practical detail for now.
( Kalman filter will show us how to get x from x ).

low level radio frequency
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3.2 Full State Control

With full state feedback have (assume D=0)

X Y

; |
o o

U, =k AT
K |e
S0 X =Ax+Bfu+u,]
= Ax+ Bu+ BKx
i =(4-BK)x+Bu
Uy =—Kx
y =Cx

With full state feedback, get new closed loop matrix

4CL — (AO.L. —BK)
Now all stability info is now given by the eigen values of new A matrix

CAS-DSP, Sigtuna 2007-Control Theory-S.Simrock
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