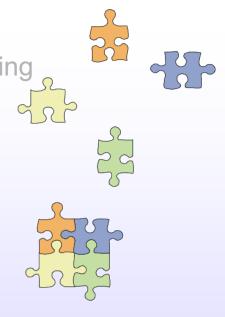
Digital Signal Processing in RF Applications

Part II

Thomas Schilcher

PAUL SCHERRER INSTITUT



Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - digital down conversion (DDC)
- 3. upconversion
- 4. algorithms in RF applications
 - feedback systems
 - cavity amplitude and phase
 - radial and phase loops
 - adaptive feedforward
 - system identification

RF cavity: amplitude and phase feedback

task: maintain phase and amplitude of the accelerating field within given tolerances to accelerate a charged particle beam

operating frequency:

few MHz / ~50 MHz (cyclotrons) - 30 GHz (CLIC)

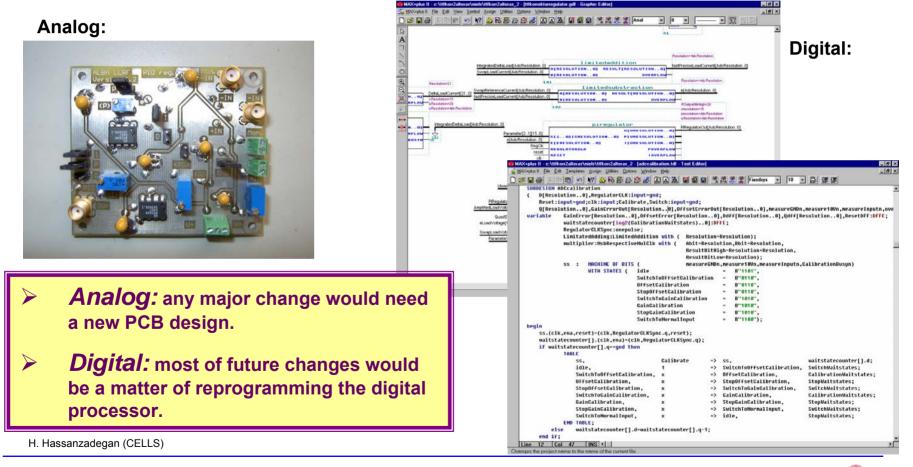
required stability:

10⁻² – 10⁻⁴ in amplitude (1% - 0.01%), 1° - 0.01° (10⁻² – 10⁻⁴ rad) in phase (0.01° @ 1.3 GHz corresponds to 21 fs)

often: additional tasks required like exception handling, built-in diagnostics, automated calibration, ...

design choices:

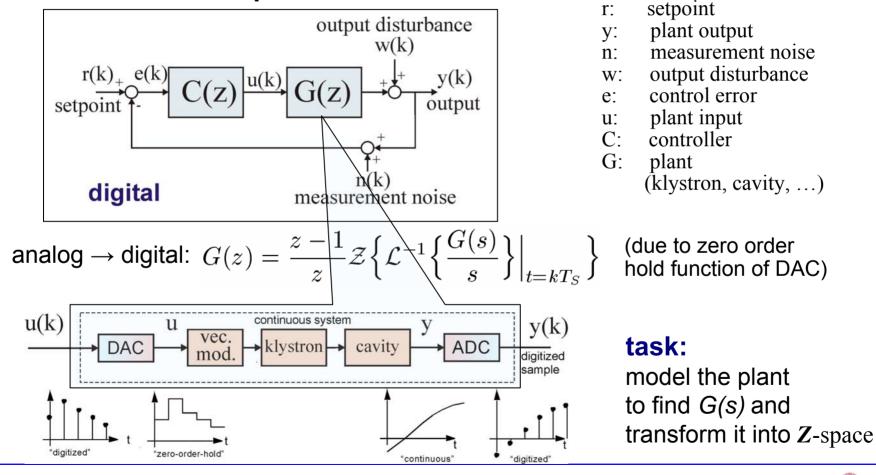
- analog / digital / combined
- amplitude/phase versus IQ control


control of

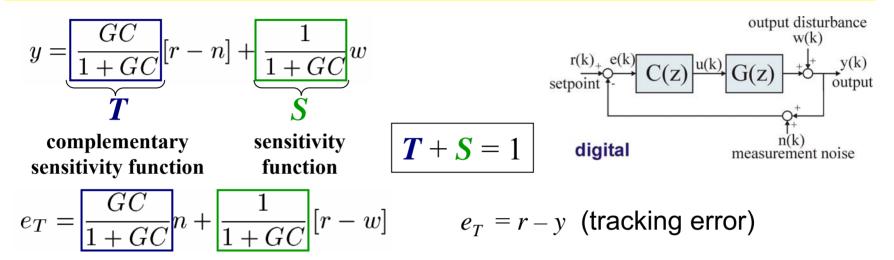
- single cell/multicell cavity with one RF amplifier (klystron, IOT,...)
- string of several cavities with single klystron (vector sum control)
- pulsed / CW operation
- normal / superconducting cavities

RF cavity: amplitude and phase feedback (2)

Analog/Digital LLRF comparison – Flexibility (ALBA)



RF cavity: amplitude and phase feedback (3)


basic feedback loop:

RF cavity: amplitude and phase feedback (4)

- → GC: open loop transfer function
- ✤ for output y :

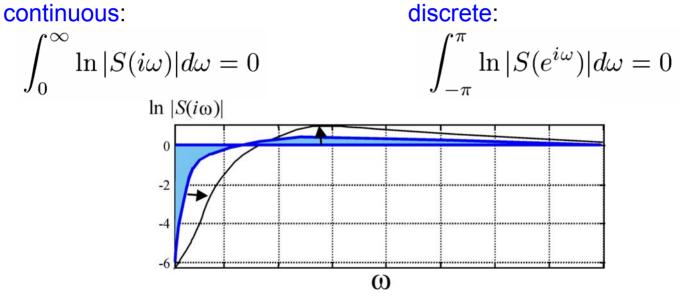
measurement error n behaves like a change in the setpoint r (e.g. I/Q sampling error...)

• output y should be insensitive for low frequencies output disturbances w

 $(\rightarrow$ high gain with the controller to get GC >>1)

- T should be small (robustness)
 - *S* should be small (performance)

trade-off between performance and robustness



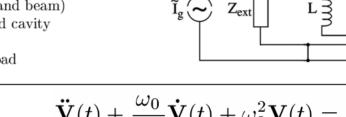
6

RF cavity: amplitude and phase feedback (5)

LTI feedback: Bode integral theorem - waterbed effect

• if *GC* has no unstable poles and there are two or more poles than zeros: (continuous: no poles in the right hand plane; discrete: no poles outside unity circle)

 Small sensitivity at low frequencies must be "paid" by a larger than 1 sensitivity at some higher frequencies "waterbed effect"



RF cavity: amplitude and phase feedback (6)

representation of RF cavity (transfer function / state space)

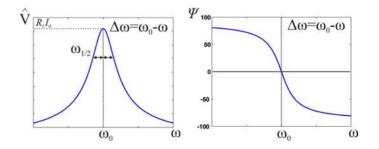
simplified model: LCR circuit

- $\mathbf{V}(t)$: cavity voltage
- $\mathbf{I}(t)$: driving current (from generator and beam)
- ω_0 : resonance frequency of undamped cavity
- Q_L : loaded quality factor of cavity
- R_L : cavity resistance incl. external load

$$(t) + \frac{\omega_0}{Q_L} \dot{\mathbf{V}}(t) + \omega_0^2 \mathbf{V}(t) = \frac{\omega_0 R_L}{Q_L} \dot{\mathbf{I}}(t)$$

stationary solution for a harmonic driven cavity:

$$V(t) = \hat{V} \cdot \sin(\omega t + \psi)$$


$$\hat{V} \approx \frac{R_L I_0}{\sqrt{1 + (2Q_L \frac{\Delta\omega}{\omega})^2}}$$

detuning $\tan\psi\approx 2Q_L\frac{\Delta\omega}{\omega}$ angle:

bandwidth: $\omega_{1/2} = \frac{\omega_0}{2Q_L}$

detuning:

$$\Delta\omega = \omega_0 - \omega$$

Lcav

C

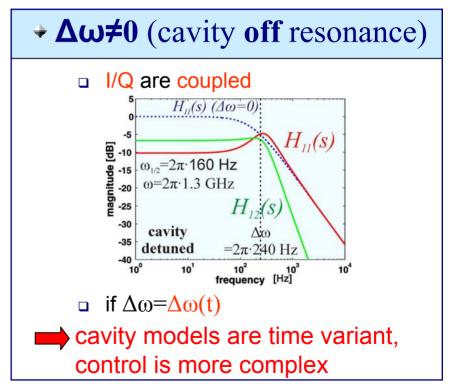
RF cavity: amplitude and phase feedback (7)

separate fast RF oscillations from the **slowly** changing amplitude/phases:

(slowly: compared to time period of RF oscillations)

$$\mathbf{V}(t) = \begin{pmatrix} V_r(t) \\ V_i(t) \end{pmatrix} \cdot e^{i\omega t} \qquad \mathbf{I}(t) = \begin{pmatrix} I_r(t) \\ I_i(t) \end{pmatrix} \cdot e^{i\omega t} \qquad \text{(notation:} \\ \text{real and imaginary parts} \\ \text{instead of I/Q values)} \\ \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} V_r \\ V_i \end{pmatrix} = \begin{pmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{pmatrix} \cdot \begin{pmatrix} V_r \\ V_i \end{pmatrix} + \begin{pmatrix} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{pmatrix} \cdot \begin{pmatrix} I_r \\ I_i \end{pmatrix}$$

state space: Laplace transformation: $\underbrace{\begin{pmatrix} V_r(s) \\ V_i(s) \end{pmatrix}}_{(V_i(s))} = \underbrace{\frac{\omega_{1/2}}{\Delta\omega^2 + (s + \omega_{1/2})^2} \begin{pmatrix} s + \omega_{1/2} & -\Delta\omega \\ \Delta\omega & s + \omega_{1/2} \end{pmatrix}}_{(\Delta\omega)} \cdot \underbrace{\begin{pmatrix} R_L \cdot I_r(s) \\ R_L \cdot I_i(s) \end{pmatrix}}_{(R_L \cdot I_i(s))}$ $\dot{\mathbf{x}}(t) = \mathbf{A} \cdot \mathbf{x}(t) + \mathbf{B} \cdot \mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C} \cdot \mathbf{x}(t)$ U(s) $V(s) \qquad H_{cav}(s)$ $\mathbf{x}(t) = \begin{pmatrix} V_r(t) \\ V_i(t) \end{pmatrix} \quad \mathbf{u}(t) = \begin{pmatrix} I_r(t) \\ I_i(t) \end{pmatrix}$ cavity transfer matrix (continuous) $\mathbf{A} = \begin{pmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{B} = \begin{pmatrix} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{pmatrix} \qquad \mathbf{y}(t) = \mathbf{x}(t)$ z transformation (continuous \rightarrow discrete with zero order hold): $H(z) = \frac{\omega_{12}}{\Delta \omega^2 + \omega_2^{-2}} \left| \begin{array}{c} \omega_{12} & -\Delta \omega \\ \Delta \omega & \omega_{22} \end{array} \right| - \left(\frac{\omega_{12}}{\Delta \omega^2 + \omega_2^{-2}} \cdot \frac{z - 1}{z^2 - 2ze^{\omega_{1}T_1} \cdot \cos(\Delta \omega T) + e^{2\omega_{1}T_2}} \right)$ let matlab do the job $\left\{ \left((z - e^{\omega_{12}T_s} .\cos(\Delta \omega T_s)) \cdot \begin{bmatrix} \omega_{12} & -\Delta \omega \\ \Delta \omega & \omega_{23} \end{bmatrix} \right\} - e^{\omega_{12}T_s} .\sin(\Delta \omega T_s) \cdot \begin{bmatrix} \Delta \omega & \omega_{12} \\ -\omega_{23} & \Delta \omega \end{bmatrix} \right\}$ for you!

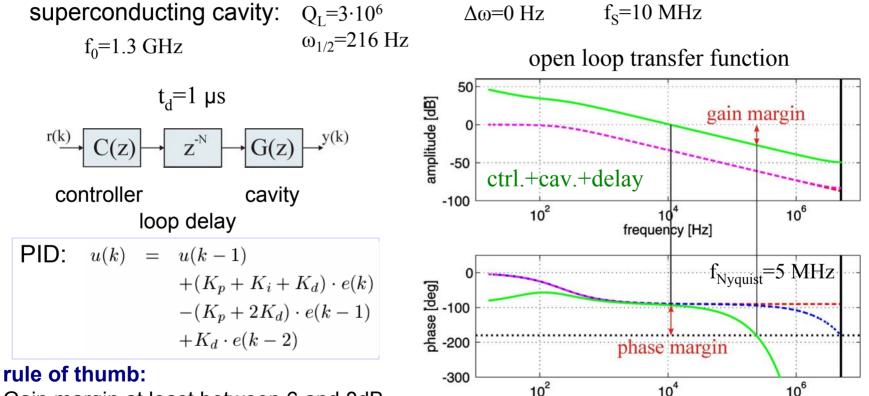

RF cavity: amplitude and phase feedback (8)

properties of cavity transfer functions:

$$H_{cav}(s) = \frac{\omega_{1/2}}{\Delta\omega^2 + (s+\omega_{1/2})^2} \begin{pmatrix} s+\omega_{1/2} & -\Delta\omega \\ \Delta\omega & s+\omega_{1/2} \end{pmatrix} = \begin{pmatrix} H_{11}(s) & H_{12}(s) \\ H_{21}(s) & H_{22}(s) \end{pmatrix}$$

- $\Delta \omega = 0$ (cavity on resonance)
 - cavity behaves like a first order low pass filter (20 dB roll off per decade)
 - □ I/Q (or amplitude and phase) are decoupled

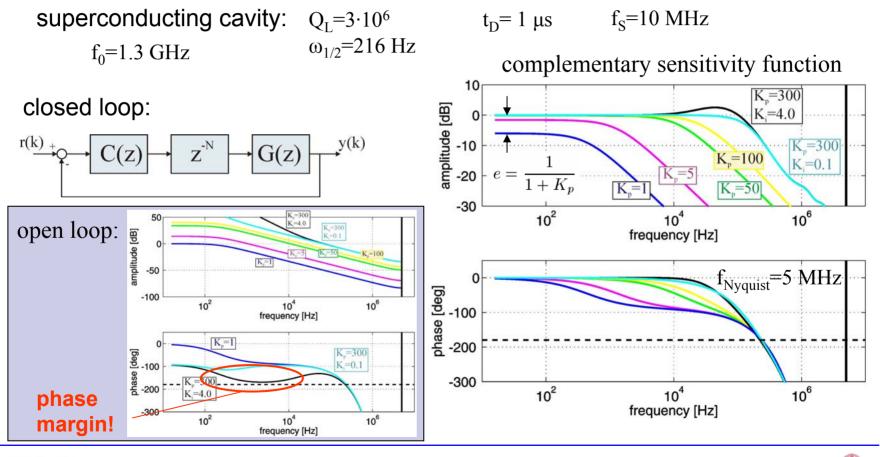
$$H_{11}(s) = H_{22}(s) = \frac{\omega_{1/2}}{s + \omega_{1/2}}$$
$$H_{12}(s) = H_{21}(s) = 0$$


CAS, Sigtuna, Sweden DSP - Digital Signal Processing T. Schilcher

UPPSAL.

RF cavity: amplitude and phase feedback (9)

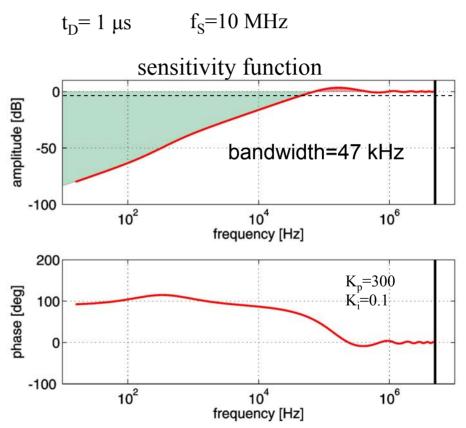
example: loop analysis in frequency domain (simplified model !)


Gain margin at least between 6 and 8dB Phase margin between 40° and 60°

frequency [Hz]

RF cavity: amplitude and phase feedback (10)

example: loop analysis in frequency domain



RF cavity: amplitude and phase feedback (11)

example: loop analysis in frequency domain

choose parameter such that

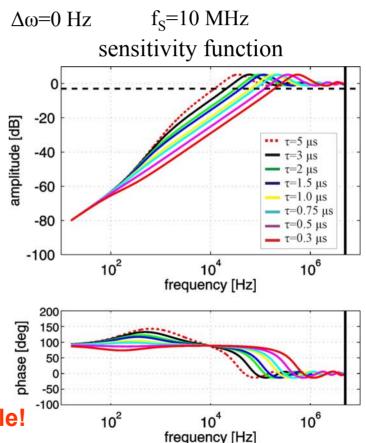
- dominant disturbance frequencies are suppressed
- no dangerous lines show up in the range where the feedback can excite
- system performance will not be spoiled by sensor noise due to increasing loop gain

RF cavity: amplitude and phase feedback (12)

example: loop analysis in frequency domain

superconducting cavity: $Q_L = 3.10^6$

 $\omega_{1/2} = 216 \text{ Hz}$

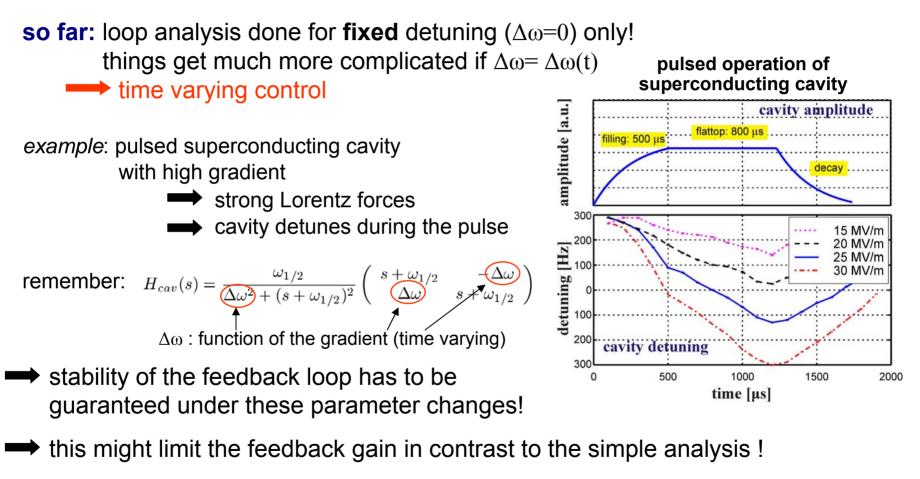

variation of the loop delay

(boundary condition:

keep gain margin constant at 8 dB; $K_i=0.1$)

t _D	К _р	loop bandwidth (-3 dB)
5 µs	87	11.9 kHz
3 µs	145	20.6 kHz
2 µs	223	32.2 kHz
1.5 µs	278	40.3 kHz
1.0 µs	436	63.6 kHz
0.75 µs	539	78.6 kHz
0.5 µs	832	121 kHz
0.3 µs	1303	190 kHz

total loop delay is an important parameter; keep it as small as possible!



CAS, Sigtuna, Sweden DSP – Digital Signal Processing T. Schilcher

UPPSALA

RF cavity: amplitude and phase feedback (13)

design of "optimal" controller under study at many labs...

RF cavity: amplitude and phase feedback (14)

cavities

superconducting	normal conducting	50 一 一 一
• Q _L : ~few 10 ⁵ - 10 ⁷ cavity time constants	• Q _L : ~10 – 10 ⁵ cavity time constants	difference of the second secon
τcav = QL/(πfRF): ~ ~few 100 μs bandwidth	τ _{cav} : ~ few μs bandwidth	-100
$f_{1/2} = f_{RF}^{\prime}/(2Q_L)$: ~few 100 Hz	$f_{1/2}$: ~100 kHz	o
 ✓ feedback loop delay small compared to τ_{cav} 	 ✓ feedback loop delay in the order of τ_{cav} 	

possible gain 10^{2} 10⁴ 10⁶ frequency [Hz] - τ=3 us r=0.75 us - τ=5 µs 180 - τ=17 us τ=2 µs 10² 104 10⁶ $Q_1 = 2 \cdot 10^4$ frequency [Hz] $f_{PF}=324 \text{ MHz}$

cavity + delay transfer function

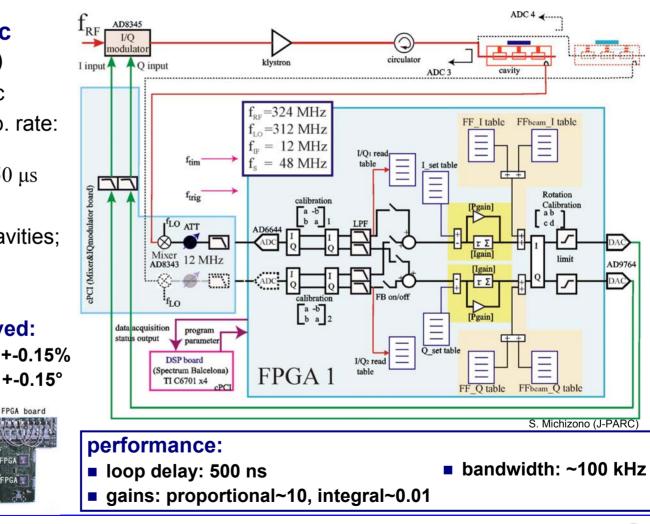
loop latency limits high feedback gain for high bandwidth cavities!

if the gains/bandwidths achieved by digital feedback systems are not sufficient

analog/digital hybrid system might be an alternative !?

amplitude and phase feedback: example

- I I RF: J-PARC linac (RFQ, DTL, SDTL)
- 400 MeV proton linac
- pulsed operation; rep. rate: 12.5/25 Hz; pulse length: ~500-650 µs
- vector sum control
- normal conducting cavities; $Q_1 \sim 8'000 - 300'000$ $\tau_{cav} \sim 100 \ \mu s$

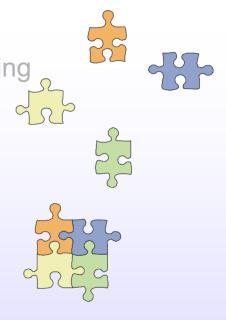

requirements / achieved:

→ amplitude: < +-1% / < +-0.15%</p>

Balcelona

phase: < +-1° / < +-0.15°

combined DSP/FPGA board


FPGA

FPGA

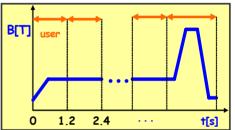
Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - digital down conversion (DDC)
- 3. upconversion
- 4. algorithms in RF applications
 - feedback systems
 - cavity amplitude and phase
 - radial and phase loops
 - adaptive feedforward
 - system identification

Feedbacks in hadron/ion synchrotrons

booster synchrotrons:

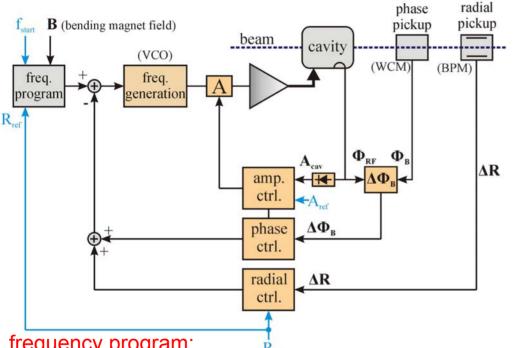
capture and adiabatically rebunch the beam and accelerate to the desired extraction energy.


Beam Control System

task: control of

- RF frequency during the ramp (large frequency swings of up to a factor of ten, usually from several 100 kHz to several 10 MHz)
- cavity amplitude and phase (ampl. can follow a pattern during acceleration)
- mean radial position of the beam
- phase between beam and cavity RF \longrightarrow deviations from Φ_s will lead to (synchronous phase Φ_s)
- synchronization to master RF phase (to synchronize the beam transport to other accelerator rings)

in reality: errors due to phase noise, B field errors, power supply ripples, ...


Typical LEIR commissioning cycle.

$$\frac{dB}{B} = \gamma^2 \frac{df}{f} + (\gamma^2 - \gamma_{tr}^2) \frac{dR}{R}$$

synchrotron oscillations

Beam Control System

frequency program:

- 1) calculate frequency based on the B field, desired radial position
- 2) optimize the freq. ramp to improve injection efficiency
- 3) generate dual harmonic RF signals for cavities (bunch shaping)

beam phase loop

damps coherent synchrotron oscillations from

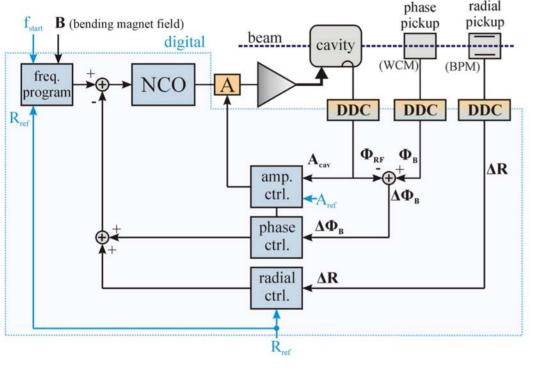
1) injection errors (energy, phase)

- 2) bending magnet noise
- 3) frequency synthesizer phase noise

radial loop

keeps the beam to its design radial position during acceleration

cavity amplitude loop


- 1) compensates imperfections in the cavity amplifier chain
- 2) amplitude has to follow a ramping function

synchronization loop (not shown)

locks the phase to a master RF

Beam Control System: from analog to digital

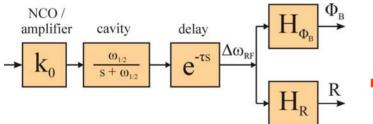
How do we setup the control loops?

in '80s: DDS/NCO replace VCO (VCO: lack of absolute accuracy, stability limitations if freq. tuning is required over a broad range)

in recent years (LEIR, AGS, RHIC): fully digital beam control system

- digitize RF signals (I/Q, DDC)
- all control loops are purely digital
- feedback gains: function of the beam parameters (keep the same loop performances through the acceleration cycle)

Radial and phase loops


beam dynamics delivers the differential equations \implies transfer functions

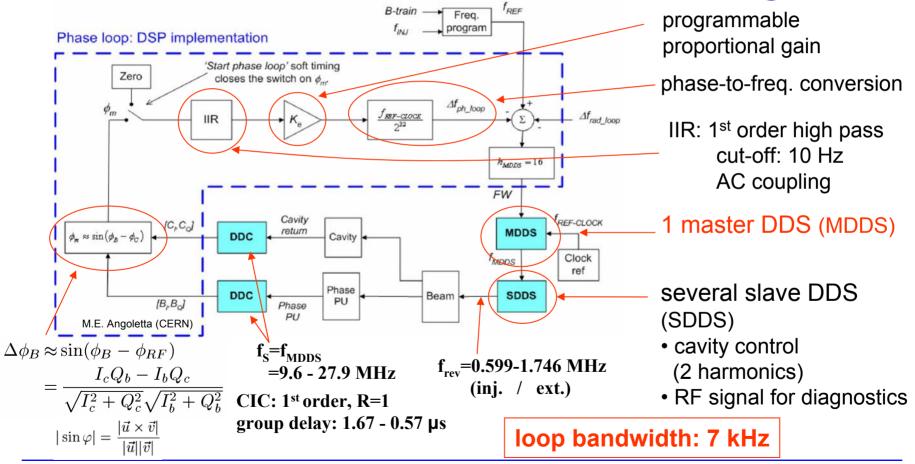
transfer functions without derivation:

RF freq. (NCO output) to phase deviation of the beam from the synchronous phase

RF freq. (NCO output) to radial position R

model of the system:

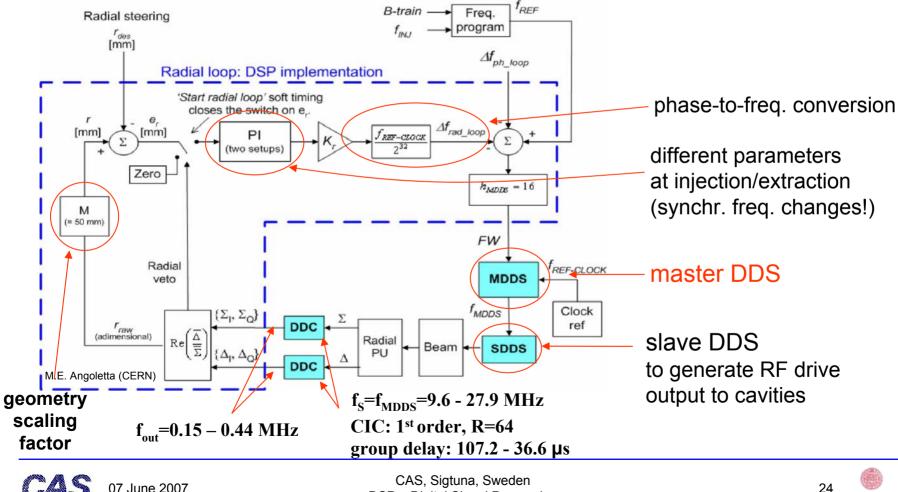
 $H_{\phi_B}(s) = \frac{\Delta \phi_B}{\Delta \omega_{BF}} = \frac{s}{s^2 + \omega_S^2}$ $H_R(s) = \frac{R}{\Delta\omega_{RF}} = \frac{b}{s^2 + \omega_S^2}$


 $\omega_s = \omega_s$ (E): synchrotron frequency, depend on the beam energy $b=b(E,\Phi_s)$: function of energy, synchronous phase since energy varies along the ramp time varying model ! LPV: linear parameter varying model

design of the controller: parameters have to be adjusted over time to meet the changing plant dynamics (guarantee constant loop performance and stability)

Phase loop: example

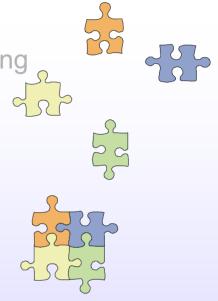
implementation example (test system for LEIR): **PS Booster** @ CERN



Radial loop: example

implementation example (test system for LEIR): **PS Booster** @ CERN

T. Schilcher

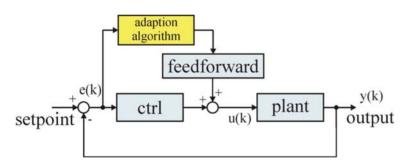

UPPSALA UNIVERSITET

Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - digital down conversion (DDC)
- 3. upconversion

4. algorithms in RF applications

- feedback systems
 - cavity amplitude and phase
 - radial and phase loops
- adaptive feedforward
 - system identification



Adaptive Feedforward

goal:

- suppress repetitive errors by feedforward in order to disburden the feedback
- cancel well known disturbances where feedback is not able to (loop delay!)
- adapt feedforward tables continuously to compensate changing conditions

warning:

adding the error (loop delay corrected) to system input **does not work**! (dynamics of plant is not taken into account)

How to obtain feedforward correction?

we need to calculate the proper input which generates output signal -e(k)

inverse system model needed!

Adaptive Feedforward (2)

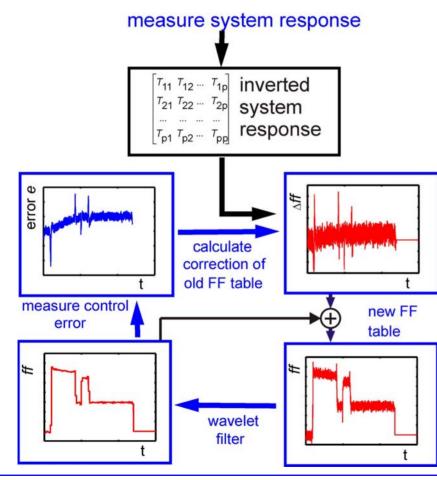
in reality: model for plant not well known enough

- system identification model
- measure system response (e.g. by step response measurements)

in successive measurements: apply $\Delta u(t_k)$ and measure response $\Delta \vec{y}$

 \implies results in *R* (with some math depending on the test input)

 \longrightarrow invert response matrix $T=R^{-1}$ (possible due to definition of sampling time $\tau_k = t_k + \tau_d$)


$$\Delta \mathbf{f} \mathbf{f} = \mathbf{T} \cdot \mathbf{e} = \mathbf{T} \cdot (\mathbf{r} - \mathbf{y})$$

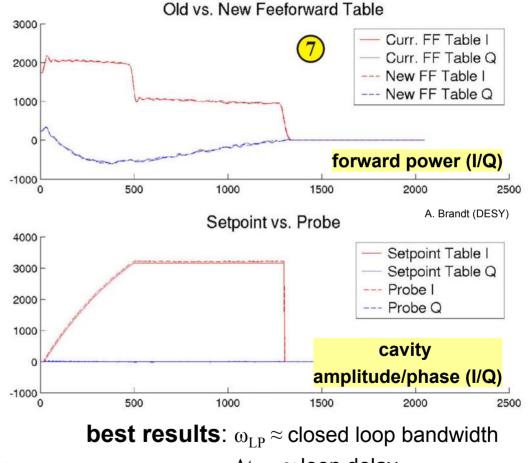
 $\Delta \vec{\mathbf{u}} = \mathbf{T} \cdot \Delta \vec{\mathbf{v}}$

Adaptive Feedforward (3)

pulsed superconducting 1.3 GHz cavity: works fine in principle

but:

- remeasure T when operating point changes (amplitude/phase) (non-linearities in the loop)
- response measurement could not be fast enough
 - need for a fast and robust adaptive feedforward algorithm!


Adaptive Feedforward (4)

"time reversed" filtering:

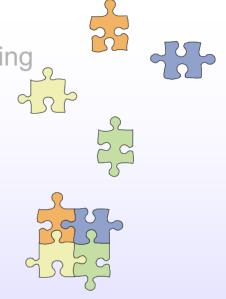
- developed for FLASH, in use at FLASH/tested at SNS
- works only for pulsed systems
- not really understood but it works within a few iterations!

recipe:

- record feedback error signal e(t)
- time reverse $e(t) \rightarrow e(-t)$
- lowpass filter e(-t) with ω_{IP}
- reverse filtered signal in time again
- shift signal in time (Δt_{AFF}) to compensate loop delay
- add result to the previous FF table

 $\Delta t_{AFF} \approx$ loop delay

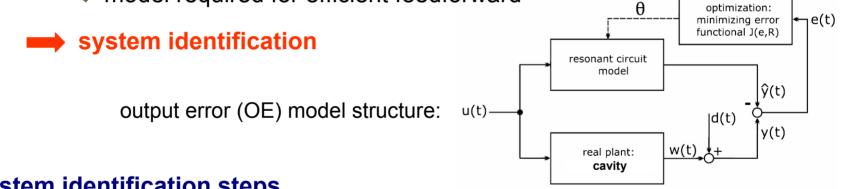
UPPSAL


Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - digital down conversion (DDC)
- 3. upconversion

4. algorithms in RF applications

- feedback systems
 - cavity amplitude and phase
 - radial and phase loops
 - adaptive feed forward

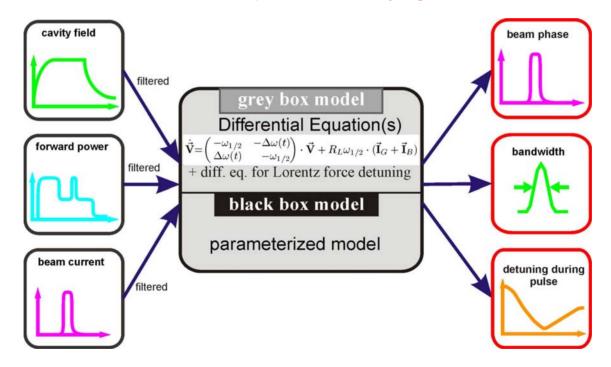

system identification

System Identification in RF plants

- goal: design (synthesis) of high performance cavity field controllers is model based:
 - mathematical model of plant necessary
 - model required for efficient feedforward

system identification steps

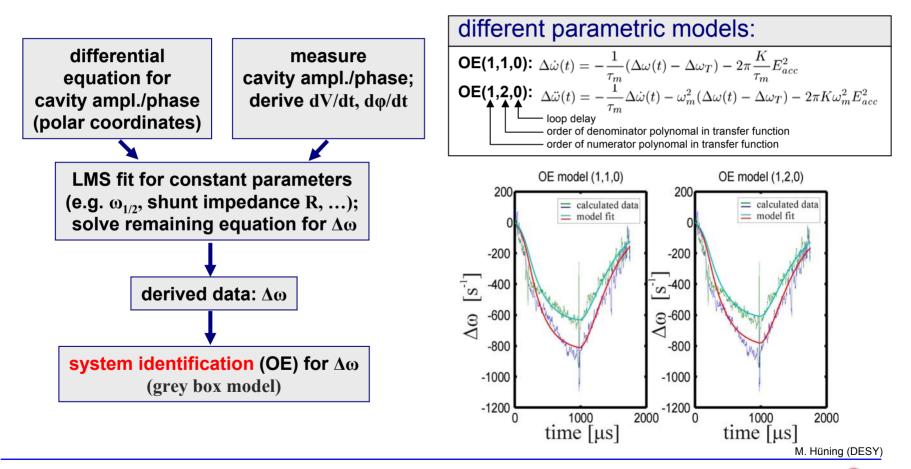
- record output data with proper input signal (step, impulse, white noise)
- choose model structure
 - grey box (preserves known physical structures with a number of unknown free parameters)
 - black box (no physical structure, parameters have no direct physical meaning)
- \rightarrow estimate model parameter (minimize e(t))
- validate model with a set of data not included in the identification process



 θ : parameter set

System Identification in RF plants (2)

example:


pulsed high gradient superconducting cavities with Lorentz force detuning LPV: linear parameter varying model

System Identification in RF plants (3)

example: identification of Lorentz force detuning in high gradient cavity

Conclusion/ Outlook

- performance is very often dominated by systematic errors and nonlinearities of sensors and analog components
- digital LLRF does not look very different from other RF applications (beam diagnostics...) common platforms?
- extensive diagnostics in digital RF systems allow automated procedures and calibration for complex systems (finite state machines...)
- digital platforms for RF applications provide playground for sophisticated algorithms

Now it's your turn to contribute to this exciting field!

