






field map of a storage ring dipole magnet 
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α 

ds 

  „normalised bending strength“ 

2πρ = 17.6 km  
        ≈ 66%   

rule of thumb: 

convenient units:  
Example LHC: 



7000 GeV  Proton storage ring 
     dipole magnets  N = 1232 
                                 l = 15 m 
                                q = +1 e 

Example LHC: 



required:     focusing forces to keep trajectories in vicinity of the ideal orbit  

    linear increasing Lorentz force 

    linear increasing magnetic field  

normalised quadrupole field: 

gradient of a  
quadrupole magnet: 

what about the vertical plane: 
    ... Maxwell   

LHC main quadrupole magnet 

simple rule: 



Example: 
 heavy ion storage ring TSR 

Separate Function Machines: 

Split the magnets and optimise  
them according to their job:  

bending, focusing etc  

 only terms linear in x, y taken into account   dipole fields    
                                                                           quadrupole fields 

* man sieht nur  
dipole und quads  linear 



Equation for the vertical motion: * 
no dipoles … in general …  

quadrupole field changes sign 

x 

general trajectory:                    ρ  ρ + x 

€ 

By = B0 + x
∂By

∂x

general radial acceleration 

... using  

€ 

x'= dx
ds

=
dx
dt

dt
ds



Differential Equation of harmonic oscillator   …  with spring  constant K 

Ansatz: 

Define …  hor. plane: 

            … vert. Plane: 

general solution:  linear combination of two independent solutions  

general solution: 



Hor. Focusing Quadrupole  K > 0: 

For convenience expressed in matrix formalism: s = s0 
s = s1 

determine a1 , a2  by boundary conditions: 



hor. defocusing quadrupole:  

drift space:   
                       K = 0  

!     with the assumptions made, the motion in the horizontal and vertical planes are  
       independent  „ ... the particle motion in x & y is uncoupled“   

s = s1 s = 0 

Ansatz: 

Remember from school: 



focusing lens  

dipole magnet 

defocusing lens  

Transformation through a system of lattice elements 

combine the single element solutions by multiplication of the matrices 

x(s) 

s 

court. K. Wille 

                          0 

typical values  
in a strong  
foc. machine: 
x ≈ mm, x´  ≤ mrad 
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= M(s2,s1) *
x
x '
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in each accelerator element the particle trajectory corresponds to the movement of a  
harmonic oscillator „ 



Question: what will happen, if the particle performs a second turn ?  

x 

... or a third one or ... 1010 turns 

0 

s 



Astronomer Hill:   
                differential equation for motions with periodic focusing properties 

 „Hill‘s equation“ 

Example: particle motion with  
periodic coefficient 

equation of motion: 

   restoring force  ≠ const,                                        we expect a kind of quasi harmonic       
          k(s) = depending on the position s                oscillation:  amplitude & phase will depend  
          k(s+L) = k(s),   periodic function                 on the position s in the ring. 



General solution of Hill´s equation: 

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles  

ε, Φ = integration constants determined by initial conditions 

Inserting (i) into the equation of motion …  

Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice. 

For one complete revolution: number of oscillations per turn „Tune“ 

(i) 



The Beta Function 

Amplitude of a particle trajectory:  

Maximum size of a particle amplitude    

β determines the beam size  
( ... the envelope of all particle  
trajectories at a given position  
“s” in the storage ring. 

It reflects the periodicity of the 
magnet structure. 

€ 

x(s) = ε * β(s) *cos(ψ(s) +ϕ)



general solution of 
Hill equation 

 from (1) we get 

Insert into (2) and solve for ε 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 



Beam Emittance and Phase Space Ellipse 

x´ 

x 
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x(s) 

s

Liouville: in reasonable storage rings  
area in phase space is constant. 

               A = π*ε=const  

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  
Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!  



… solve for x´ 

… and determine       via: 

x´ 

x 
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shape and orientation of the phase space ellipse  
depend on the Twiss parameters β α γ  



Particle Tracking in a Storage Ring 

Calculate x, x´ for each linear accelerator  
element according to matrix formalism  

plot x, x´as a function of „s“  

● 



… and now the ellipse: A beam of 4 particles  
    each having a slightly different emittance:  
  note for each turn x, x´at a given position „s1“ and plot in the  
          phase space diagram 



single particle trajectories, N ≈ 10 11  per bunch 

Gauß  
Particle Distribution: 

particle at distance 1 σ from centre  
                                ↔ 68.3 % of all beam particles 

aperture requirements:  r 0 =  12 * σ 

LHC:  

€ 

β =180m
ε = 5*10−10mrad



A magnet structure consisting of focusing and defocusing quadrupole lenses in  
alternating order with nothing in between. 
(Nothing = elements that can be neglected on first sight: drift, bending magnets,  
 RF structures ... and especially experiments...) 

Starting point for the calculation: in the middle of a focusing quadrupole 
Phase advance per cell µ = 45°,  
 calculate the twiss parameters for a periodic solution  



x´ 

x 

●
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Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           
                      x                         px 



According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: 

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

where βx= vx / c 

the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 

q = position = x 
p = momentum = γmv = mcγβx 

ε 



Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 

emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  



1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!! 
      as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes. 

2.) At lowest energy the machine will have the major aperture problems,  
       here we have to minimise  

3.) we need different beam optics adopted to the energy:  
     A Mini Beta concept will only be adequate at flat top.  

LHC injection  
optics at 450 GeV 

LHC mini beta  
optics at 7000 GeV 



U0 

t

€ 

frf = 500MHz
c = λ f

typical momentum spread of an electron bunch:  

Energy Gain per „Gap“: 

drift tube structure (GSI Unilac) Bunch length of  
Electrons ≈ 1cm 



general solution: 

Normalise with respect to Δp/p: 

Dispersion function D(s)  

        * is that special orbit, an ideal particle would have  for Δp/p = 1  

        * the orbit of any particle is the sum of the well known xβ  and the dispersion 

        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  



. ρ 

xβ 

Closed orbit for Δp/p > 0 

Dispersion 
 Example: homogeneous dipole field 

xβ 

Example  Amplitude of Orbit Oscillation  
 contribution due to Dispersion 

   ≈ beam size 
 Dispersion must vanish at  

  the collision point  



Dispersion is visible  

HERA Standard Orbit 

dedicated energy change of the stored beam 
      closed orbit is moved to a   
         dispersions trajectory 

HERA Dispersion Orbit 

Attention: at the Interaction Points  
                 we require D=D´= 0  





Transferlines & Injection: Orbit Errors  

* quadrupole strengths     --> "beta beat" Δβ / β  
* alignment of magnets    -->  orbit distortion in transferline & storage ring   
* septum & kicker pulses  -->  orbit distortion & emittance dilution in storage ring  

Kicker "plateau" at the end of the  PS - SPS transferline  
measured via injection - oscillations  

Example: Error in position Δa: 

Δa =0.5 σ 

→ 



Transferlines & Injection: Optics Errors 

Normalised Phasespace: 

Ellipse → circle a 
b=3a 

Mismatch of Beam Optics 

Example: b = 3a 

→ see also: Edwards / Syphers,  
               K. Brown, 
               Chao, Tigner 

● 
● 



Injection errors (position or angle) dilute the beam 
emittance 

Non-linear effects (e.g. magnetic field 
multipoles ) introduce distort the harmonic 
oscillation and lead to amplitude dependent effects 
into particle motion. 

Over many turns, a phase-space 
oscillation is transformed into an emittance 
increase. 



Example: Linac 4 source 

horizontal phase space 
 of beam from particle source 
 and required phase space configuration  
 at RFQ entrance 

horizontal phase space 
 of beam from particle source 
 and phase space configuration  
 after optics match in the LEBT  
 at RFQ entrance 



p2-Bunch 

p1-Bunch 
IP 

± σ  
10 11 particles 

10 11 particles 

11.) Luminosity 

€ 

β*x,y = 0.55 m
εx,y = 5∗10−10 rad m
σ x,y =17 µm

Example:  Luminosity run at LHC 



A mini-β insertion is always a kind of special symmetric drift space. 
 greetings from Liouville 

at a symmetry point β is just the ratio of beam dimension and beam divergence. 

x´ 

x 
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β*=55cm, σ*=16µm 
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For hadrons the beam density at injection can either limited by space charge effects or by the injector 
capacity 
If we cannot increase charge density, we can sometimes fill the horizontal phase space to increase 
injected intensity. 
On the condition that the acceptance of receiving machine is larger than delivered beam emittance 

Elements used 
                     Septum 
                    3 or 4 fast kicker magnets to create a closed local beam bump 



Multiturn Injection,  "Phase Space Stacking"  
 ... and how it looks in phase space    

Example: fractional tune ≈ 0.25 



Multiturn Injection,  "Phase Space Stacking"  
 ... and how it looks in phase space    

Nota bene:   accurate tune control  ... Qx 

                               accurate bump control ... in steps ! 
                      thin septum (electrostatic ... ) 

                      filamentation fills smeers out the phase space 
                     often combined with (electron-) cooling techniques 

Turn 11 



Linear approximation: 

 * ideal particle          design orbit  

 * any other particle  coordinates x, y  small quantities 
      x,y << ρ 

                   magnetic guide field: only linear terms in x & y of B  
                       have to be taken into account    

Taylor Expansion of the B field: 

normalise to momentum 
        p/e = Bρ 



Equation of Motion: 

Consider local segment of a particle trajectory 
... and remember the old days: 
(Goldstein page 27)   

radial acceleration: 

Ideal orbit: 

Force: 

general trajectory:   ρ  ρ + x 



y
ρ 

s 
● x 

remember: x ≈ mm , ρ ≈ m …   develop for small x 

1 

1 … as ρ = const 

2 

2 

Taylor Expansion 



guide field in linear approx. 

:  m 

independent variable: t → s 

:  v 2 



Equation for the vertical motion: * 
no dipoles … in general …  

quadrupole field changes sign 
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θ ● 


