Putting it all together

Werner Herr, CERN

(Version n.n)

http://cern.ch/Werner.Herr/CAS2014/lectures/Praha_review.pdf

Review of the course ...

- > What did we learn?
- > What can we do with that?
- > How can we contribute to an accelerator project?

Review of the course ...

- > What did we learn?
- > What can we do with that?
- > How can we contribute to an accelerator project?

Key issues in an accelerator project

- What is the purpose of the machine?
- Which resources are available?
- Basic steps:
 - > Choice and definition of parameters
 - Design of the machine
 - > Construction of the machine
 - > Operation of the machine
- → General tutorial: design a machine with minimum (possibly confusing) information ...

The purpose of the machine

- Not always a single solution for all applications
- Design depends on the purpose
 - > Light source
 - > Particle physics
 - Medical applications
 - > Industrial applications
 - **\rightarrow**

Accelerators in the world (2013):

High-energy and nuclear physics research	120
Synchrotron light sources	> 50
Ion beam analysis	200
Photon or electron therapy	9100
Hadron, ion therapy	> 50
Radioisotope production	550
Ion implantation	> 10000
Neutrons for industry or security	1000
Radiation processing	2000
Electron cutting and welding	4500
Non-destructive testing	650

Total: > 30000

The choice of the particle and energy

- Depends on the purpose and availability:
 - \triangleright Synchrotron light sources: e^-, e^+
 - \rightarrow Industrial applications: p, ions, ...
 - \rightarrow Medical applications: $p, e^-, ions, ...$
 - \rightarrow HEP experiments: $p, \bar{p}, e^-, e^+, ions, \nu, \mu^{\pm}, ...$
- Sources are important and some particles are hard to get $(\bar{p}, \nu, \mu^{\pm}, \text{ ions, } ..)$

Different types - linear accelerators

- Single pass
- **Low and high energy**
- > High intensity
- **Big size**

Different types - cyclotrons

- Compact
- > Constant field
- **)** Lower energy

Different types - synchrotrons

- Larger
- > Constant radius
- High energy

The choice of the type of particles

- > Hadrons versus Leptons two extreme cases ...
- > We look at two basic parameters for the choice

Magnetic rigidity:

$$B\rho = p/e = m_0 v \gamma/e$$

Synchrotron radiation losses:

$$U_0 = C_{\gamma} \cdot E^4 / \rho$$

> Numerical examples:

The choice of the type of particles

Two machines in the same tunnel:

```
LHC (7000 GeV): B = 8.3 T U = 0.00001 GeV
```

LEP (100 GeV): B = 0.12 T U = 3 GeV

- If you have money for a large magnet system: <u>hadrons</u>
- If you have money for a large RF system: leptons

The choice of the type of machine

- Depends on type of physics
 (assume we want to find dark matter ..)
- Particle energy as large as possible
 - ► Go for a Linac or Synchrotron
 - > For high proton energy: synchrotron
 - > For high lepton energy: synchrotron or linac
 - For high beam power: FFAG??
 - For highest centre-of-mass energy: colliding beams

Why colliding beams?

- **I** Two beams: $E_1, \vec{p_1}, E_2, \vec{p_2}, m_1 = m_2 = m$
- $E_{cm} = \sqrt{(E_1 + E_2)^2 (\vec{p_1} + \vec{p_2})^2}$
- Collider versus fixed target:

Fixed target: $\vec{p_2} = \mathbf{0} \rightarrow E_{cm} = \sqrt{2m^2 + 2E_1m}$

Collider: $\vec{p_1} = -\vec{p_2} \longrightarrow E_{cm} = E_1 + E_2$

- LHC (pp): $14000 \text{ GeV versus} \approx 115 \text{ GeV}$
- \blacksquare LEP (e⁺e⁻): 210 GeV versus ≈ 330 MeV !!

Luminosity

Together with energy the main deliverable for a collider Take home formula:

$$\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y}$$

To consider:

- Reduction factors (crossing angle, hourglass, ..)
- Peak luminosity
- Integrated luminosity
- 'Useful' luminosity (pile up, levelling, ..)

Circular Colliders:

- Additional advantages:
 - > Particles are "re-used" until they interact
- Additional <u>difficulties</u>:
 - > Special lattices
 - > Insertions
 - > Additional collective effects
 - > Require stability for long (24 hrs) time
 - → Advanced course on accelerator physics (next year)

The required systems

Often deserve dedicated (special) schools:

- Magnets: (2009)
- > Superconductivity: (2013)
- RF Systems: (1991, 1993, 2000, 2010)
- Diagnostics: (2008)
- Vacuum, cryogenics, metrology: (1992, 1997, 1999, 2002, 2006)
- Power Converters, Control system: (1990, 2004, 2007, 2014)
- **)** Ion Sources: (2012)

The challenges

- Beam dynamics
 - Get the required performance
 - > Keep the beam in the machine (most critical for hadron storage rings)
- > Accelerator systems
 - > Often not commercially available
 - Cost and availability

CERN accelerator complex (2012)

CERN's accelerator complex

Why so many accelerators?

- We cannot accelerate a particle from zero to large momentum in a single machine
 - > Several stages needed: "injector complex"
 - > Injector complex uses linacs and synchrotrons
 - ightharpoonup Typical energy swing pprox 20
- As example : consider the design of a synchrotron

The choice of the lattice

- Purpose of magnet system:
 - > Keep the beams on a circle or transport the beams
 - > Provide the desired beam parameters (e.g. size) for users and other accelerator components (RF, diagnostics etc.)
 - > Keep the beams stable as long as required

The choice of the magnets

- Lower fields
 - > Normal conducting
 - > Maximum 2 T field
 - > Power (electricity costs!)
- Higher fields
 - > Superconducting, (material cost!)
 - > Fields above 10 T possible
 - > Low power, but need cryogenic installation

The first piece: choice of the size

Magnetic rigidity:

$$p = m_0 c \beta \gamma$$

$$B\rho = mv/e = p/e$$

A handy formula:

$$B[T] \cdot \rho[m] = 3.3356 \ E[GeV]$$

The choice of fundamental parameters

- If you have B: choose E, ρ (e.g. SPS \rightarrow B-field limited to 1.9 T)
- If you have E: choose B, ρ (e.g. LEP \rightarrow energy fixed by \mathbb{Z}_0 mass)
- > If you have ρ : choose E, B (e.g. LHC → LEP tunnel was already there)

The choice of the size: example

- Assume protons with E = 500 GeV and a maximum dipole field of 2 T:
- **We have** $B[T] \cdot \rho[m] = 3.3356 \ E[GeV]$
 - $\rho = 833.9 \ m$
 - $C = 2\pi \rho = 5239.5 \ m$
- > Need some space for other elements (about 1/3 is a good guess)
- > Choose circumference of 9000 m

The choice of the magnets

- We decide to have 120 lattice cells (see later)
- We use 4 dipole magnets per cell, i.e. 480 dipole in total
- Each dipole needs a bending of $2\pi/480 = 0.01309$ rad

$$B \cdot L = 0.01309 \ rad \cdot 3.3356 \cdot 500 \ GeV$$

- With a dipole length of 12 m, we need a B-field of 1.819 T
- $> 480 \cdot 12 \ m = 5760 \ m = 0.64 \cdot 9000 \ m$
- Well within the specification

We have up to now:

- > Proton synchrotron with 9000 m circumference
- > 480 dipoles in 120 cells
- Each cell is 75 m long, 48 m occupied by dipoles

First part of the cell

Complete the cell

- We have to focus the beam !
- The choice to make:
 - The type of lattice
 - Phase advance per cell
- Go for a FODO lattice (we can treat that with the lectures)
- Put a focusing (QF) and defocusing (QD) quadrupole in each cell

Second part of the cell

A FODO cell matrix

$$\mathcal{M}_{cell}^{*)} = \begin{pmatrix} 1 - \frac{L^2}{2f^2} & L(1 + \frac{L}{2f}) \\ (\frac{L^2}{2f^3} - \frac{L}{f^2}) & 1 - \frac{L^2}{2f^2} \end{pmatrix} = \begin{pmatrix} \cos\psi + \alpha\sin\psi & \beta\sin\psi \\ -\gamma\sin\psi & \cos\psi - \alpha\sin\psi \end{pmatrix}$$

L, f - cell length and focusing length of Quadrupole

- *) from your exercises ...
- ⚠ In literature: L is sometimes half-length of cell

Basic relations for the cell

$$sin(\mu/2) = \frac{L_{cell}}{4f}$$

$$\hat{\beta} = \frac{L_{cell}(1 + \sin(\mu/2))}{\sin(\mu)}$$

- Phase advance μ determined by focusing f (i.e. quadrupole strength) and cell length L_{cell}
- Maximum $\hat{\beta}$ depends on cell length L_{cell} , larger cells also mean larger $\hat{\beta}$

Rule of thumb: $\hat{\beta} \approx 1.71 \cdot L_{cell}$

Cell parameters

Criteria for cell parameters:

- Most common phase advance per cell (μ): 60 and 90 degrees, important for closed orbit and chromaticity correction, insertion design
- Maximum β -function $(\hat{\beta})$: important for aperture

$$A(s) = \sqrt{\epsilon \cdot \beta(s)}$$
 $\hat{A}(s) = \sqrt{\epsilon \cdot \hat{\beta}(s)}$

Careful: all these concepts are developed for synchrotrons

Interlude: the emittance saga

- Definition(s) of emittances seems confusing ...
- Different for synchrotrons, linacs, sources, ...?
- Still, popular to mix:
 - Phase space invariants ↔ phase space volume ↔ beam emittances!
 - Hadrons vs leptons? Linear or non-linear dynamics?
 - For definition: (x, x') or (x, p_x) ?
 - Check what people use for their definition and whether it is correct for your application ...
- \longrightarrow Useful standard in most cases: $\epsilon = \sigma \cdot \sigma'$

There is still another confusion:

Interlude: the emittance saga

How do these compare?

- 1.0 μ m
- 1.0 mm mrad
- 1.0 π mm mrad
- **3.14** mm mrad

CERN standard exists (usually ignored by CERN people ...)

In North America: usually defined for 2σ

Basic relations for the machine

Basic relationships for global parameters are available:

Tune: $Q = ncell \cdot \mu/2\pi \quad [\approx 30]$ $<\beta> \approx R/Q \quad [\approx 50m]$

$$<\beta>$$
 \approx R/Q $[\approx 50m]$

$$\alpha \approx 1/Q^2 \ [\approx 0.0011]$$

$$\alpha \approx 1/Q^2 \ [\approx 0.0011]$$
 $< D > \approx \alpha \cdot R/Q \ [\approx 1.6m]$

$$\gamma_{tr} \approx Q \ [\approx 30]$$

Detailed lattice design

- From now on a lattice design computer program is required (for details: next CAS)
 - Detailed design and optimization of the optics
 - > Design of correction systems (orbit, chromaticity, ..)
 - > Effect of off-momentum beams (dispersion and chromaticity)

Dispersion created in dipole magnet

- Correct bending for particles with exact momentum
- > Higher momentum particles bend less
- **>** Lower momentum particles bend more

Problems with dispersion

- **E**mittance increase with radiation
- > With momentum error or spread: more aperture required

$$A(s) = \sqrt{\epsilon \cdot \beta(s)} + D(s) \cdot \Delta p/p$$

Example LHC: $D_x \approx 2 \text{ m} \rightarrow \text{effect for}$ momentum offset can be several times the beam size

The good news: it can be controlled! (see advanced level CAS)

Aperture

Aperture in the machine is always expensive!

Should be small because:

- Cost
- Good field region
- Powering cost
- Available space
- **>** ...

Should be large because:

- > Space for injection
- Space for beam size $(\epsilon, \beta!)$
- > Space for orbit
- > Impedance
- **...**

Requires good compromise between the different requirements

Chromaticity

- For $\Delta Q/(\Delta p/p) < 0$: more focusing, tune is larger
- For $\Delta Q/(\Delta p/p) > 0$: less focusing, tune is smaller

Chromaticity

Tune change with momentum described by chromaticity

$$Q' = \Delta Q / (\Delta p / p)$$

for
$$\Delta p/p < 0$$
 $\Delta Q > 0$ \longrightarrow $Q' < 0$

for
$$\Delta p/p > 0$$
 $\Delta Q < 0$ \longrightarrow $Q' < 0$

Q' is always negative

Problems with chromaticity

- > Tune spread due to momentum spread (non-linear resonances): should not be too large
- Collective instabilities, for damping (e.g. head-tail modes) might need:
 - Positive chromaticity
 - Negative chromaticity

Q' needs to be controlled!

Correction of chromaticity

- \triangleright Sextupole has field $\propto x^2$
- \rightarrow Additional focusing for x > 0
- \rightarrow Additional defocusing for x < 0

- When particles are "sorted" using dispersion:
 - $\Delta p > 0$ focused, $\Delta p < 0$ defocused (SF) or
 - $\Delta p < 0$ focused, $\Delta p > 0$ defocused (SD)
- > Sextupoles can correct chromaticity, best with an optics program

Correction of chromaticity

- Problems:
 - When chromaticity is very large: large (integrated) strengths required
 - > Sextupoles are non-linear: they excite high order resonances ...
- To avoid (better: reduce) unwanted effect:
 - Must have more than one type of sextupole in the machine
 - Distribute strength over many sextupoles

(Linear) Machine imperfections

- Field errors
- Alignment errors (position and tilt)

Orbit and trajectory correction

- Imperfection (e.g. bad alignment) introduce orbit errors
- They must be corrected because
 - > Beam may not get around the machine or through the beam line
 - > Orbit is too large and causes aperture problems
- Important system for operating the machine

Orbit and trajectory correction

A measured closed orbit in LHC, 540 beam position monitors

Orbit and trajectory correction

- The challenge
 - Find a good set of correctors to get the desired orbit or trajectory
 - Must not disturb other (wanted) properties of the machine
- May require several hundred correctors, sophisticated tools exist
- Most important: good and reliable orbit measurement

RF system

- The RF system has three (main) tasks:
 - Accelerate particles during energy increase (ramp)
 - Replace energy loss due to synchrotron radiation (mainly leptons)
 - Longitudinal focusing of the beam
- Must consider:
 - Appropriate frequencies (Linacs!)
 - > Power production and distribution
 - Control of the system

RF system - acceleration

Example synchrotron:

We know from

$$B\rho = mv/e = p/e$$

that the energy gain per turn is:

$$\Delta E_{turn} = e\rho(\Delta B/\Delta t)C$$

when $\Delta B/\Delta t$ is the change of the B-field with time (during ramp).

Since the seen RF voltage is $eVsin(\Phi_s)$, the minimum required RF Voltage is:

$$V_{min} = \Delta E_{turn} / (esin(\Phi_s))$$

RF system - acceleration

During the acceleration the particles get faster (for γ not too large) and the RF frequency has to change. For β not close to one, this can be significant.

- Make sure your RF system can accommodate the frequency change
- Check whether you have to make a phase jump (γ_{tr})

RF system - energy replacement

- Energy loss due to synchrotron radiation large for light particles ($\propto \gamma^4$)
- Make sure enough voltage is available to replace the lost energy
- Example: LEP particles lost 3 GeV (of 100 GeV) per turn, minimum seen Voltage 3 GV!!

RF system - longitudinal focusing

- Longitudinal focusing due to phase stability (watch transition!)
- Longitudinal emittance must be matched
- Determines synchrotron tune Q_s and bunch length σ_s , important for machine performance (collider)
- Both are important for collective instabilities (too high voltage can make bunches too short)

RF system - LINACS

- Demanding, we have:
 - Changing energies, from very low (space charge) to high
 - Choice of frequencies important
 - The choice to make on: structures, RFQ (focusing), ...
 - > Parameter matching important
- Watch out for conventions!

Synchrotron radiation

- Accelerated charge radiates energy
- Linear accelerators: radiated power small compared to delivered power
- Circular accelerators: particles bent perpendicular to direction of motion
 - Radiation strongly increased with increasing energy
 - Radiation strongly increased with decreasing bending radius

Synchrotron radiation

- > Radiation Power $P_s \propto \frac{\gamma^4}{\rho^2}$
- \triangleright Energy loss per turn $\Delta E \propto \frac{\gamma^4}{\rho}$
- > Important for light particles (e⁺/e⁻)

A handy formula (for e^+/e^-):

$$\Delta E \left[keV \right] = 88.5 \frac{E^4 \left[GeV^4 \right]}{\rho \left[m \right]}$$

Consequence: e⁺/e⁻ accelerators with largest energy have usually the smallest field!

The use of synchrotron radiation

- Synchrotron light becomes important application
 - > Synchrotron light sources are tunable
 - > Deliver high brightness beams
- Properties can be used to manipulate the beam dynamics (damping!)
- New developments and details (e.g. FEL)

Beam transfer

- Beams must be transfered between accelerators or storage rings
- Beam lines must conserve the desired properties
 - Beam size increase must be avoided
 - > Losses or filamentation must be avoided
- Can be long and must be optically matched to the entry and exit

Injection and extraction

- Accumulating beam in a ring depends on the type of particles
- Extracting beam also depends on purpose:
 - > Fast extraction for transfer etc.
 - > Slow and resonant extraction
- In all cases: significant loss of beam must be avoided (e.g. energy transfer to FCC-hh: 0.5 1.0 GJ)

Collective effects

- Distinguish 4 different main collective effects (interactions):
 - > Particles within a bunch (space charge, intra-beam scattering)
 - > A single bunch with the environment (impedance and instabilities)
 - Multiple bunches via the environment (multi bunch instabilities)
 - > Between two beams in a collider (next CAS)
- Others: Landau damping (next CAS)
- All these effect can severely limit the bunch intensity

The role of the impedance

■ The longitudinal and transverse impedance limit the intensities

Remember:

 $Z_T \approx (2R/b^2) \cdot (Z/n)$ (Broad-band impedance)

- Real part: instabilities, energy loss
- > Imaginary part: tune shifts

Effects are estimated using the measured or calculated impedance

Collective effects - impedance

- Main issues for collective effects are impedance and particle density:
 - Machine impedance must be well understood and under control
 - Take into account already at design
 - Careful monitoring of impedance required:
- In LEP and LHC every equipment seen by the beam passed through the evaluation procedure

Collective effects - impedance

Result of a rigorous and methodical approach:

Machine	year	$ Z/n \Omega$
PS	pprox 1960	> 50
SPS	pprox 1970	pprox 20
LEP	pprox 1989	pprox 0.25
LHC	pprox 2008	pprox 0.10

- Reliable codes availableMeasurements!Strong reduction

- Often contradicting requirements
- Finance, components

Non-linear effects

- The 'real' world:
 - > Unwanted: imperfections, ...
 - Wanted (unfortunately): sextupoles (chromaticity correction), octupoles (Landau damping), beam-beam effects (colliders), ...
- Huge development in last 30 years (largely driven by beam dynamics in hadron machines)
- Extensive treatment in advanced school

 (we shall deal with contemporary methods!)

Beam instrumentation and diagnostics

The key to a good control of the machine (it is the ONLY way to see the beam):

Beam diagnostics

- Measure beam parameters
- Q, Q', orbit, beam size
- Effect of imperfections (β -beating, ...)
- Control of injection, ...
- **...**

Is an art by itself, you never have enough beam diagnostics \longrightarrow advanced level course, special schools

Hardware systems: magnets

- High precision of large range of fields (mT to 10 T)
- Errors (e.g. field errors, etc.) can cause distortions
- Unwanted multipoles must be: avoided, minimized, measured, corrected
- Must provide reproducible fields (hysteresis!)

Additional systems: vacuum

- Must be efficient to keep good vacuum: 10^{-10} 10^{-11} mbar
- Important for colliders (long life time)
- Very important for hadron machines (scattering and emittance growth)
- Must operate in cryogenics environment
- Beam can affect vacuum properties: radiation, electron cloud ...

Example: LHC beam screen

- LHC beam screen
- Optimized for:
 - > Small impedance!
 - **Cooling**
 - **Aperture**
 - > Radiation effects
 - **>** ...

Additional systems: Power systems

- Dynamic range (in LHC: $\leq 13000 \text{ A}$)
- Not off the shelf, clear specification required
- High precision: (e.g. Q tolerance \longrightarrow 10⁻⁴ 10⁻⁵)
- Tracking and control of several hundred circuits is a challenge
- Errors (e.g. ripple etc.) can cause distortions
- Must provide accurate, reproducible and stable output

Additional systems: cryogenics

- Relevant for superconducting machine:
 - LHC: superconducting magnets (40000 tons at 1.9 K!)
 - **LEP:** superconducting cavities
 - Must maintain the machine at constant temperature (for a long time)
 - Must not introduce effects on beam (noise)

Additional systems: metrology

- A large machine must be well surveyed (closure)
- Not always easy: LEP/LHC are tilted!
- Alignment of elements is crucial, errors of 0.1 mm affect the closed orbit etc.

The "Introductory" course in a nutshell

- Different types of accelerators
- Relativity and e.m. theory
- Longitudinal and linear transverse dynamics
- Beam diagnostics and instruments
- Imperfections, non-linear effects, resonances
- Transferlines and injection/extraction
- Collective effects, impedances, space charge
- Synchrotron radiation and damping
- Magnets and power systems
- Machine protection
- Additional systems: sources, safety, ...

What is next?

Advanced Level CAS Course, follow up of this school

- The "core topics" reviewed
- > "Hands on" afternoon courses for specific topics, the courses in previous schools (2003 2013):
 - 1 Optics design
 - 2 RF measurements
 - 3 Beam diagnostics
- New lectures on special topics

New issues at the next school

- > Special lattices and insertions (low emittance, ..)
- > RF cavities and LINAC structures
- > Magnet design
- More Beam Dynamics (the "real world"):
 - Non-linear beam dynamics, tools, ...
 - Instabilities, impedances, feedback
 - Landau damping
 - Beam-beam effects
 - Machine protection
 - ...
 - ... and it is not only bad!

CAS in 2015

Specialized courses:

Accelerators for medical applications 26.5. - 5.6. 2015, Vienna, Austria Intensity Limitations in accelerators November 2015, CERN, Geneva

General course:

Advanced Level Course Poland