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Typical problems
isothermal flows, Poiseuille flow

P1 P2- P1 > P2

Ṁ mass flow rate?

Q heat flow rate?

density distribution?

over the whole range of Kn
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non-isothermal flows, thermal creep

T1 T2- T1 < T2

Ṁ mass flow rate?
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density (or pressure) distribution?
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Typical problems
Thermomolecular pressure difference

P1, T1 P2, T2

Ṁ = 0 no mass flow

What is the pressure ratio?

P2

P1
=

(

T2

T1

)γ

0 ≤ γ ≤ 0.5
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Knudsen number

Kn =
molecular mean free path

characteristic size

Kn�1 Free molecular regime.
Every particle moves independently on each other

Kn�1 Hydrodynamic regime.
Continuum mechanics equations are solved

Kn∼ 1 Transition regime.
Kinetic Boltzmann equation is solved
or DSMC method is applied
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Rarefaction parameter
equivalent mean free path

` =
µvm

P

µ - viscosity

vm =
√

2kT/m most probable molecular vel.

P - pressure
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Boltzmann equation
f(t, r,v) - velocity distribution function

n(t, r) =
∫

f(t, r,v)dv - density

u(t, r) = 1
n

∫

vf(t, r,v)dv - bulk velocity

P (t, r) = m
3

∫

V 2f(t, r,v)dv - pressure

T (t, r) = m
3nk

∫

V 2f(t, r,v)dv - temperature

q(t, r) = m
2

∫

V 2Vf(t, r,v)dv - heat flux vector

V = v − u
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Boltzmann equation

∂f

∂t
+ v · ∂f

∂r
= Q(ff∗)

Q(ff∗) =

∫

(f ′f ′

∗
− ff∗) |v − v∗|bdb dε dv∗

v′ and v∗

′ - pre-collision molecular velocities

v and v∗ - post-collision molecular velocities
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Boltzmann equation
Discrete velocity method:

v1, v2, ... ,vN ,

The BE is split into N differential eqs. coupled via
the collisions integral
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Kinetic equations
Till now, a numerical solution of the exact Boltz.Eq.
requires great computational efforts

BGK model
Q(ff∗) = ν

(

fM − f
)

S model

Q(ff∗) = ν

{

fM

[

1 +
2m(q · V)

15n(kT )2

(

mV 2

2kT
− 5

2

)]

− f

}

fM = n
( m

2πkT

)3/2

exp

[

−m(v − u)2

2kT

]

ν = P/µ - frequency of intermolecular collisions
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Viscous slip coefficient
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The most used formula

uy =
2 − α

α
λ

duy

dux

α -accommodation coefficient
λ - mean free path
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Viscous slip coefficient
All disagreements with experiments are
eliminated by fitting α:

0.1 ≤ α ≤ 2,

while in reality

0.9 ≤ α ≤ 1,

Felix Sharipov – p. 12



Viscous slip coefficient

x

y
uy

-

6

��
��
��
��
��
��
��
�

6

6
6

.

...............
.............
...........
...................
................

....................
......... .............

..............
............ .................

....................
.......................

..........................
.............................

.................................
....................................

.......................................

uy = σP`
duy

dx
at x = 0

σP - viscous slip coefficient

` equivalent mean free path
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Viscous slip coefficient
Diffuse scattering
σP =

√
π/2 = 0.886 estimation by Maxwell

σP = 1.016 solution of BGK model
σP = 1.018 solution of S model
σP = 0.985 solution of Boltzmann Eq.
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Viscous slip coefficient
Non-diffuse scattering

Estimation by Maxwell

σP = 0.886
2 − α

α

S model with CL bound.cond., (Sharipov-2003)

σP = 1.018
2 − αt

αt

− 0.264
1 − αt

αt

σP is sensitive to the gas-surface interaction
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Gas-surface interaction law
Experiment by Porodnov et al. (1974)
technical (contaminated) surface

gas He Ne Ar Kr Xe H2 N2 CO2

αt 0.88 0.85 0.92 1.0 1.0 0.95 0.91 0.99

For a technical surface αt is very close to unity for the most
of gases
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Thermal slip coefficient
uy = σT

µ

%

d ln T

dy
at x = 0

Diffuse scattering
σT = 0.75 estimation by Maxwell
σT = 1.175 solution of S model
σT = 1.01 solution of Boltzmann Eq.
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Temperature jump coefficient
Tg = Tw + ζT`

dT

dx

Diffuse scattering
ζT = 1.662 estimation by Maxwell
ζT = 1.954 solution of S model
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Flow through a tube

Ṁ =
πa2P

vm

(

−GP

a

P

dP

dx
+ GT

a

T

dT

dx

)

GP = GP (δ) GT = GT (δ)

δ =
a

`
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Flow through a tube
Free molecular regime δ = 0

GP =
8

3
√

π
, GT =

1

2
GP

Hydrodynamic regime δ → ∞

GP =
δ

4
+ σP, GT =

σT

δ
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Flow through a tube
Transitional regime GP

 1

 1.5

 2

 2.5

 3

 3.5

 0.01  0.1  1  10

BGK

GP

δ

Cercignani et al. (1966)
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Flow through a tube
Transitional regime GT
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Loyalka (1994)
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Flow through a tube
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GT
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Loyalka (1994)
Sharipov, 1999
Loyalka & Hickey, 1991

BGK does not,
while S provides
reliable results for
non-isothermal flows
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Flow through a tube
Numerical data on GP and GT can be found in

Sharipov & Seleznev, Data on Internal Rarefied
gas Flows J. Phys. Chem. Ref. Data 27, 657-706
(1998)

Numerical calculations of Ṁ can be carried out
on-line

http://fisica.ufpr.br/sharipov
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Direct Simulation Monte Carlo
M particles are considered simultaneously

M ∼ 107 − 108

• Free motion of particles
• Interaction with solid surface, Elimination and

Generation of particles
• Simulation of collisions
• Calculation of macroscopic quantities
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Orifice flow

~

P0 P1

-

W =
Ṁ

Ṁ0

, Ṁ0 =

√
πa2

vm

P0
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Orifice flow into vacuum P1 = 0
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Orifice flow at P1 > 0
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Orifice flow at P1 > 0

Flowfield at P0/P1 = 100 and δ = 1000

0 4 8 12 16
0

4

8 1.0000

0.3162

0.1000

0.0316

0.0100 %/%0 density

0 4 8 12 16
0

4

8 1.0000

0.6687

0.4472

0.2991

0.2000 T/T0 temperature

0 4 8 12 16
0

4

8 8.0000

2.8284
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0.3536

0.1250 Mach number
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Orifice flow at P1 > 0

Flowfield at P0/P1 = 10 and δ = 1000
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Holweck pump

High vacuum

Fore vacuum
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Holweck pump. First stage
Four problems are solved

• Poiseuille flow in x direction G
(P )
x (δ)

• Poiseuille flow in z direction G
(P )
z (δ)

• Couette flow in x direction G
(C)
x (δ)

• Couette flow in z direction G
(C)
z (δ)
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It takes long CPU time
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Holweck pump. Second stage
S - pumping speed

Gη =
S

vm`2

`
dP

dη
= sin α

U
vm

P cos α[G
(C)
z − `z

`
G

(C)
x ] − GηPh

G
(P )
z sin2 α + `z

`
G

(P )
x cos2 α

It takes short CPU time
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Holweck pump. Second stage
It allows us easily to change many parameters
such as:

• groove inclination
• fore vacuum and high vacuum pressures
• angular velocity of rotating cylinder,
• species of gas
• temperature of the gas
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Holweck pump. Results
Limit compression pressure ratio
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Holweck pump. Results
Dimensional pumping speed
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Recent results
Slip and jump boundary conditions

• Velocity slip coefficients of single gas for
different gas-surafce interaction laws

• Velocity slip coefficients for gaseous mixtures
• Temperature jump coefficient of single gas

for different gas-surafce interaction laws
• Temperature jump coefficient for gaseous

mixtures
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Recent results
over the whole range of the gas rarefaction

• Single gas flows through long tubes and
channels

• Mixture gas flows through long tubes and
channels

• Gas flow through orifices and slits
• Couette flow of a single gas
• Couette flow of mixtures
• Modelling of vacuum pumps
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Numerical programs
Some calculations of flow rate through tubes,
channels and orifices can be carried out in
dimensional quantities on line

http://fisica.ufpr.br/sharipov/

Thank you for your attention
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