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This lecture will address some basic issues
-- details and solutions will be given in later lectures 

--- or (even better) in your own studies

• Why coherence ?
• Basics on wave propagation
• Interference
• Transverse coherence 
• Longitudinal coherence
• Correlation functions
• Coherent matter waves
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Why coherence?
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Electro-magnetic radiation comes in waves: amplitudes and phases 
-- and we have to cope with it !

reconstructed from diffraction

pattern of protein crystal:

LYSOZYME , MW=19,806 Images courtesy Janos Hajdu

Structure of biological macromolecule



courtesy Janos Hajdu

Needs very high radiation power @ λ ≈1Å

SINGLEMACROMOLECULE
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Coherence of a single photon 

pulse from an FEL

simulated image



Why Coherence ?
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Diffraction from LCLS X-ray FEL/Stanford: 

D. Li, et al., DOI: 10.1038/ncomms10140 (2016)



1. At some distance from the source, a wave front propagates 
indepentently � Huygens Principle: 
Each point on the wave front can be considered 
the origin of a spherical wave, the new wave front 
being the envelope of these wavelets
� applicable for e.m., water, acoustic, matter waves  

� Basics for diffraction

Basics on wave propagation
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2. The e.m. wave equation is linear

� If two waves                ,                are solutions, then 

will be a solution as well !

� Basics for interference



Consider a plane wave (complex amplitude      ) 

arriving from the left at slit of width  

Diffraction from a slit
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to screen of 

observation

We use Huygens principle and consider the radiation 

field consisting of wavelets from tiny areas of size ∆y . 

We observe under an angle θ from a “very far distance”.

We call the complex electric wave vector of the first wavelet      .

The next wavelet is:                 with 
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Diffraction from a slit
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Intensity at the screen:  

Can be interpreted as a Fourier transform of the 

transmission function         of the slit 

(note δ ≈ 2πyθ/λ is a linear function of y):
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Diffraction from two narrow slits
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Makes it simple to calculate more complicated slit systems: 

e.g.  Young’s double slit experiment (1801) 

Fourier transform of two delta functions at ±a/2:
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Diffraction from two real slits
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We can even take into account the finite width of the slits:

( ) 2 2

2( ) ( ) ( ) ( ) :realistic slitI FT y FT FTδθ τ τ τ∝ = ⋅

2( ) ( ) ( )realistic slity y y y dyδτ τ τ′ ′ ′= − ⋅∫
The Fourier transform of such a convolution integral is just the 

product of the Fourier transforms:

Note 1:

“diffraction from two slits” (or of a finite number of 

separated waves) is mostly called “interference”.  

Interference from a continuum of waves is called 

“diffraction”. 

There is no fundamental difference !

Note 2:

Due to interference of two waves, there are suddenly locations of permanently 

ZERO intensity (energy density) where each individual wave did generate intensity.

� Energy density is re-distributed in space due to interference !



Far field condition

CAS on FELs and ERLs, Hamburg 2016 Jörg Rossbach, Univ HH

11

We have assumed a plane wave arriving at the slits.

� Typically realized by a point source in very far distance L. 

How far is “far”?

2

1 2 8

a
L L

L
λ− = <<

� There should be no significant phase difference of the 

wave between the two slits (or the illuminated object) 

� Compare the optical path lengths !

� Point source 

distance should be

2

8

a
L

λ
>>

� Fraunhofer diffraction 

Otherwise: Fresnel diffraction (no fun) 

The same condition holds for the distance 

from object to observation screen ! 



transverse coherence
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What matters for interference is the superposition of (two) e.m. waves.

So far we assumed they both come from the same source. This is not realistic.

Let’s now drop this assumption but let’s still consider monochromatic waves.  

?
?

?
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Intensity:
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� Such radiation from slits is called transversely coherent



transverse coherence
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normalized complex correlation function

We consider intensities � need to average over osc. period
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Moving along the screen, the cos∆δ - term oscillates between +1 and -1 

(see page 9) � The interference contrast (=“visibility”) is then V=1:

Imagine, the two fields E
1

and E
2

do NOT stem from the same point source. We can 

still calculate the intensity on the screen according to p.9, but the phase difference on 

the screen does NOT only stem from the time delay τ (due to the observation angle), 

but there may be a further time difference τ’ between E
1

and E
2

: 

Phase difference ∆δ can be expressed as time delay, e.g.:



transverse coherence
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In our simple case A1 = A2:
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The visibility of interference is determined by: 12
cγ

12 1cV γ= =

normalized complex correlation function

- depends on observation angle through 

In this case (A1 = A2):
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transverse coherence
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transverse coherence
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ς

∗⋅
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This is a single number describing the entire beam 

from slit (object), independent of angle of observation.

for perfectly coherent radiation.1ς →

From: A. Singer, et. al: 

Opt.Express 20, No.16 (2012)
Example from FLASH FEL:

0.59 0.1

0.72 0.08
x

y

ς
ς

= ±
= ±



S. Reiche

Z=25 m Z=37.5 m Z=50 m

Z=62.5 m Z=75 m Z=87.5 
m m

Single mode dominates � close to 100% transverse coherence

Transverse coherence
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impact of focusing 
(needed for most experiments)
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transverse coherence
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Why are the phases in 1 and 2 uncorrelated?

Probably because the source is extended !

Consider a ray arriving at double slit 

at an angle ϕ and with intensity 

It contributes a phase difference 

to double slit of:

The averaged phase difference between the 

extended source to the double slit is: 

ϕ
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Van Zitter-Zernicke-Theorem: 

Visibility of interference pattern corresponds  to 

Fourier Transform of source distribution function
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temporal coherence
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Phase information will be lost after 

longitudinal coherence time:



temporal coherence
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. 

�

normalized complex autocorrelation function
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e.g. our single Gaussian wave packet:
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temporal coherence

CAS on FELs and ERLs, Hamburg 2016 Jörg Rossbach, Univ HH 22

. 

22

Possible way of measurement:

Split, delay and overlap at a detector

From: A. Singer, et. al: 

Opt.Express 20, No.16 (2012)



temporal coherence
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If we want a single characteristic number for the average

duration of coherence in the beam, we can calculate the

coherence time: 2
( )c

c dτ γ τ τ
+∞

−∞

= ∫

Add up many wave packets at 

arbitrary time (phase) differences:

Typical values for FELs:

FLASH in SASE mode @ 8 nm:                         τ
c

= 6 fs

FERMI in seeded mode @ ca. 20 nm:         τ
c

= 100 fs



Full optical phase control
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. 

If the transverse correlation is perfect, one may think of

manipulating the optical phase in a perfectly controlled way.

�Use a micro-electrical mechanical system (MEMS) filter

� See http://www.physik.uni-wuerzburg.de/femto-welt/formerframe.html



General case coherence
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. 

Maybe, the autocorrelation function depends on the source point? 

Maybe the transverse correlation function depends on wavelength?

� All this will happen and is characteristic for an FEL

� See talks by K.-J. Kim and M. Yurkov
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Coherence combined
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For a full description of the coherence properties, we need to combine 

transverse and longitudinal coherence properties.  

Example from A. Singer, et. al: 

Opt.Express 20, No.16 (2012)

Note: 

This is only vertical/longitudinal, 

the horizontal/longitudinal similar



Electron diffraction
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. 

According to quantum mechanics, each electron carries wave 

properties at the

de Broglie wavelength: 
0

e

h h

p m c
λ

γβ
= =

According to p. 19 each (incoherently - remember the star!) 

radiating source with opening angle ∆ϕ will act like a point source 

and generate perfect interference as long as the slit separation a is

a
λ
ϕ

<
∆

� transverse coherence length of electron beam: 
2

e
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ϕ

λ
πσ

≈

n
x

x xϕ
εσ σ ε
γβ
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Electron diffraction
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. 

Combine                               ,                        , and                                �

Transv. coherence length of electron beam:

0
e

h h

p m c
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γβ
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2
e
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λ
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≈
n
x

x xϕ
εσ σ ε
γβ

= =

0 0

x x
coh n n

x

L
m c m c

σ β
ε γβε

≈ =h h

� can perform interference 

experiment on nanocrystals of 

24nm diameter

From: C. C. Chang, et. al: 

Nanotechnology 20 (2009) 115401

(89 eV, carbon nanotubes)



Left open….

1. I restricted myself to 1D; extension to 2D needed.

2. I restricted myself to linear polarization case. 

3. What happens with coherence when focusing? 

(Nothing in certain cases, Fermat’s principle helps.)

4. I discussed only 1st order correlations. 

5. Most things can be done also in frequency domain.



Further reading

Text books: 

1. Many illustrations are from:
D. C. Giancoli: Physics (Pearson, 2006)

2. A. Singer, et. al: Spatial and temporal coherence properties of single
free-electron laser pulses, Optics Express 20, No.16 (2012)

2. M.V. Klein, T.E. Furtak: Optics (Wiley, New York, 1986)

3. J. W. Goodman: Statistical Optics (Wiley, New York, 2000)

4. L. Mandel and E. Wolf: Optical Coherence and Quantum Optics 
(Cambridge University Press, 1995)

5. M. Born and E. Wolf: Principles of Optics(Cambridge University 
Press, 2002)

6. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov: The Physics of Free 
Electron Lasers (Springer 1999) 


