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Historic context: from  particle physics 
to light sources, instruments open paths 
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We can look outward a 
telescope, seeing backwards in 
time to the Big Bang… 

Galileo Galilei with the Doge of Venice 

Or we to see the very small can 
utilize a microscope (generalized!) 
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With accelerators, microscope sees infinistesimal 
distances <10-18 m. Exceed Hooke by factor of trillion…  

U = quantum energy λ~hc/U 
Accelerators are microscopes with up to TeV energy 
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Accelerator energy, size limits 
•  Fatal effect in circular accelerators: 

synchrotron radiation power loss 
–  Future e+e- colliders foreseen linear (ILC) 
–  Large R circular machines (e.g. FCC) 

•  Scaling in size/cost prohibitive 
–  Acceleration < 35 MeV/m (SC) 

•  Big $cience should shrink to live 

 

Ps ∝
U 4

R2

The science behemoth: ~TeV linear collider 

50 Km/$1010 seem to be unitary limit…   
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The light source: from particle 
physics “parasite” to essential tool 

•  Accelerators used as synchrotron light sources for >40 years 
•  HEP vice (1st generation) becomes imaging virtue. Dozens of X-

ray facilities worldwide, many-E9€’s invested 
•  Workhorse of biology, materials, nanoscience 

Note use of   
to HEP linac!  

Soleil 3rd generation  
light source   

High brilliance, but 
incoherent X-rays 

Ring derived from HEP  
accelerator, specialized 
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Example: X-ray protein  
crystallography 
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The 4th generation light source: 
the X-ray Free-Electron Laser 

•  Also large linear accelerator (km, E=15 GeV) 
•  Now: coherence, brightness, and fs resolution 

The first X-ray FEL 
at SLAC: Coherent  
X-rays! 

Note use of   
to HEP linac  

Light sources — before: HEP spin-off, now big science (>$1B). 
XFEL Provides much motivation for accelerator research 

SLAC <2000: 
Dedicated to HEP 
 

SLAC >2010: 
Dedicated to FEL 
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Inside the X-ray FEL 

Feedback	yields	instability,	then	coherence	and	very	high	power	
Undulator period ~ few cm, through 3-wave (Bu,Er,I) instability gives 
Doppler shifted coherent light, hard X-rays and beyond 

Exponential gain length 

λu B-field Electron beam Radiation 

Lg Approx. 20    to saturation Lg 
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Essential ingredient of FEL:  
high brightness electron beam 

•  High phase space density (cold, focusable, intense) 
•  Measure: beam brightness 

  
•  Space-charge (plasma) effects strong 
  in high brightness beams, challenging physics 

Phase space  
Density map 

Area=εx 
emittance 

Be =
2I
ε x
2
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Area (temperature) small  Peak density large 

 

The secret:  
RF photoinjector 
(UCLA expertise) 

NB: needs shared with HEP linear collider (very high high Be) 
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High Field RF photoninjector, 
emits single component, cold 
 relativistic plasmas… 

High brightness electrons beget  
high brightness photons 

•  FEL is cold beam instability 
•  Growth rate from Be 
 

•  High I (short pulse), small εx 
gives dense lasing medium 

 
 
•  λu and ρ set length scale 
•  Gives +8 orders of magnitude 

photon brightness: femtosecond, 
coherent X-rays, a revolution in 
“4D” spatial/temporal imaging 

€ 

Erad ∝ exp z /Lg( );  Lg ∝ Be
−1/ 3

ρ1D ∝Be
1/3

€ 

Lg,1D =
λu

4π 3ρ1D

8	



Advanced	Undulator	Concepts	

Parochial UCLA perspective: 4 generations of FEL  
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UCLA 16-mm FEL: 1st SASE gain 

M. Hogan et al., Phys. Rev. Lett., 80, 289–292 (1998). 
M. Hogan et al., PRL, 81, 4867–4870 (1998). 

LANL/UCLA 1st high gain SASE 

A. Murokh, et al., Phys. Rev. E 67, 066501 (2003)  

courtesy G. 
Andonian 

Saturation at UCLA-led  
VISA ~800 nm 

LCLS, 1.5 Å,   
April 2009 
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XFELs a burgeoning field: what is wrong? 
•  Existing facilities are large/expensive  

–  High-cost è limited access è risk to science 
•  Pressure to publish in every experiment 
•  Beam time precious; hard to verify experiments by other teams 

–  Result: Pace of science is slowed, quality hindered 
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Solution: 5th Generation Light Source:  

Re-invent XFEL to fit in campus laboratory. How?  

LCLS	2009	

PAL-XFEL	2015	

XFEL	2015	

SwissFEL	2017	

LCLS	II	2017	

FERMI	2010	

FLASH	2005	

SACLA	2012	
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Begin with the undulator… 
•  Present undulators are typically λu>2 cm, Halbach or 

hybrid devices 
•  Field limits from magnetic material 
•  Gap (and thus λu) set by fabrication, wakefields 
•  Integrate focusing (natural focusing weak  for E>20 MeV)  
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UCLA/Kurchatov Halbach undulator 

Halbach pure PM geometry 
and flux lines 

!
B y = 0( ) = 8µ0M

2π
1− exp −

π
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First device to demonstrate high gain  
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Ultra-compact FEL based on new 
undulators: the recipe 

•  High brightness beam (HBB) 
–  low charge (pC), ultrashort pulses 
–  Ultralow emittance, enables use of… 

 

•  High field, short λ undulator 
–  With HBB, large ρ, short Lg  

•  Lower e- energy needed to reach 
short wavelength 
–  Much smaller accelerator, undulator 

•  Might also reinvent accelerator… 
–  Another lecture; 5th generation light 

source based on plasma/laser accel. 

Hybrid	cryo-undulator:	Pr-based,		
	SmCo	sheath;	λ=9	mm	up	to	2.2	T		

J.B.	Rosenzweig,	et	al.,	Nucl.	Instruments	Methods	A,	593,	39	(2008)		

F.H.	O’Shea	et	al,	PRSTAB	13,	070702	(2010)	
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HZB/UCLA/MPQ Cryo-undulator 
•  Cryogenic, Pr-based hybrid undulator 

–  Innovation in magnetic material, operating T 

•  High field (2.2 T), short λu (9 mm) 
–  Next generation (Dysprosium)is 7 mm period.  
Factor of 3 in λu, still have K~2  

Use	of	cryo-undulator	for		IFEL	energy	modula;on	at	800	nm	
F.	H.	O’Shea,	et	al.,	J.	Phys.	B:	At.	Mol.	Opt.	Phys.	47	234006	(2014)			

Laser	off	

Laser	on	



Advanced	Undulator	Concepts	

Physics possibilities with cryo-undulator 
Original use : table-top terawatt T3, few 
nm FEL with 1.7 GeV, 160 kA beam from 
laser-plasma accelerator. FEL saturates 
10x  sooner than present state-of-art. 

 
Genesis		
T3	FEL	

0.75	nm	FEL	with	1	pC,	ultra-high	brightness,	
<2	fs	beam,	2.1	GeV		driver.		5th	harmonic	
yields	LCLS-λ photons.	Satura^on	in	10	m.	

0.15	Angstrom	SASE	FEL	with	LCLS		
beam.	Satura;on	in	40	m	

Cryo-undulator	design	and	physics	use:	
	F.H.	O’Shea	et	al,	PRSTAB		13,	070702	(2010)	

-Always pushing beam brightness!  
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Generation 4.1: state-of-art injector 
and ultra-short period undulator 

Goal: Enable compact soft-X-ray FEL  
(Keck Foundation funded) at UCLA 
using short-λu MEMS undulator. First step 
using elements of our recipe…  
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No “advanced accelerator” yet 
(some repurposed SLAC linacs!)  



Advanced	Undulator	Concepts	

New enabling technology: MEMS 
electromagnetic undulator  

–  ADD SOLENOID 
Cartoon  

–  Label the picture 
•  ADD NOW AND THEN 

CHART 

Batch-fabricated electromagnets 
First generation 

200 μm  

B

Soft magnet 
core 

Windings 

~30 μm 

~50 μm 

Current 
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Very short period possible: 
20-800 microns 

MEMS= 
Micro- 
Electro- 
Mechanical 
Systems 

Inclusion of focusing still critical… 
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Micromachined undulator 

λr =
λu(1+K

2

2 )
2γ 2

K = qB0λu
2 2πm0c λu

λ scaling 
favorable 

Scaling a 
challenge 

•  Both advantages 
and challenges with 
new technology 
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How do we use this “weak” undulator (K<0.1)? 

Should provide higher gain medium: focus beam harder 

Saturation limits B-field 

(Aside: later we can abandon magnetic materials…) 
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How to  achieve focusing?  

•  Until now, permanent magnet 
focusing quads 

•  Very short focal length (1 cm at 
60 MeV)  

•  Field gradient 600 T/m 
–  Strongest ever in use 

•  Tunable by longitudinal motion 
•  Physics and engineering 

challenge; not easy to integrate 
with FEL undulator 
–  Used at UCLA for inverse Compton 

scattering, PWFA final foci 

•  New solution: MEMS!  

J.	K.	Lim,	et	al.,	Phys.	Rev.	ST	Accel.	Beams	8,	072401	(2005)		
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Currently	Available	

Technology	 Permanent	magnet	quadrupole	

560	T/m	

Inner	diameter	 5	mm	

Tuning	 Axial	transla^on	of	magnets	

∇B

Future	

Μachined	electromagnets	

>3,000	T/m	
200	μm	

Electromagnet	

MEMS electromagnetic quadrupoles 

200 μm 

Top metal 

Vias 

Mag. flux density, x-component 

Bore 

Top View 
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!

POP beams measurements 

J.	Harrison,	Y.	Hwang,	O.	Paydar,	J.	Wu,	E.	Threlkeld,	J.	Rosenzweig,	and	R.	Candler,		
Phys.	Rev.	ST	Accel.	Beams	18,	023501	
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Assembly line of high current EM quadrupoles  
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Fabrication in course at UCLA Nanolab and industrial partner 

Very high field gradients 
due to small dimensions, 
ultra-high current density 
(efficient cooling) 
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Undulator 

e- 

Electromagnets 

800 µm 
period  

200 µm 
gap  

A 

A’ 

B 

B’ 

Legend	

Substrate	Copper	

Permalloy	Silicon	
nitride	

Structural	
photoresist	

Process highlights 
•  Fully 3D solenoidal electromagnets 
•  20µm-thick copper windings for coils 
•  >50µm-thick Permalloy magnet yoke 
•  Ni80Fe20 with Bsat = 1.1 T and µr > 8000 

MEMS Undulator Fabrication 

8 cm long section  
to be:  
- Magnet tests at  
UCLA August 2015 
- Beam tests at BNL  
ATF in Oct. 2016 
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SAMURAI: Spontaneous Amplified 
MicroUndulator Radiation Interactions 

•  >63 MeV beamline 
•  “Hybrid” photoinjector 
•  2 TW Ti: Sapphire laser 
•  Mission: compact FEL, other light 

sources and new accelerators 
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UCLA Keck-SAMURAI FEL : 
High brightness electron injector 

23	

New 

To micro 
undulator 
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Beam parameters for injection 
into Keck FEL micro-undulator 

Beam	energy	 63	MeV	
Beam	charge	 20	pC	
Beam	emiBance		 0.2	mm-mrad	
Energy	spread	 0.1	%	
Pulse	length	(FWHM)	 70	fs	
Peak	current	 ~300	Amp	

Present state of the art:  
<20 A peak current at 0.2 mm-mrad   
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Compact solution for high brightness beam:  
Hybrid SW/TW Hybrid Photoinjector  

Standing	
Wave	Cells	

Traveling	Wave	Cells	

RF	Gun	

No	Reflec;on	

25	MW	RF	in	

Laser	

IC	 Velocity	Bunching	 Post-accelera;on	

3	m	linac	(Op^on)	(1/4	+	1/6	)λ

•  Compact high brightness beam source integrated with RF gun 
(low emittance) + velocity buncher (high peak current) 

•  TW post-acceleration for high current, moderate energy beam 
•  Remove RF reflection from the cavity, simpler waveguide system 
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-  Measured beam dynamics at low power PRF=11.5 MW 
-  Strong velocity bunching observed 
-  Validate model, hybrid characteristics 
-  Moving to KECK SAMURAI Lab 

First beam  measurements at UCLA	
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RF	IN	

RF	Out	

Solenoid+Gun	

Tests	at	Pegasus	Lab,	UCLA.	 2 ps laser in-> 100 fs beam out 

0

0.5

1
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2
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σ t (p
se

c)

Launch phase (deg)

Measured bunching dependence on 
launch phase in hybrid photinjector
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Space charge effects in FELs 
•  With 0.8-mm period undulator, soft X-ray 

machine is in ~100 MeV range (not few GeV) 
•  Dense beam gives space charge response: 

measured by “plasma skin depth” kp
-1 ~ γ3/2  

•  Approaches relevant scale lengths 
–  Transverse kp

-1 ~ β, must focus stronger (microquads) 
–  Longitudinal kp

-1 ~ L1D, longer Lg (also an advantage!)  

Longitudinal repulsive self forces oppose microbunching   

Apply more 
focusing to 
overcome trans. 
repulsion 

27	

kp = 4πrenb /γ
3
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Space charge effects can give  
enhanced FEL efficiency 

•  Gain length increased  

•  Efficiency η also increased  
–  A. Gover and P. Sprangle, IEEE  

J. Quantum Electron. 17, 1196 (1981)  
- I. Gadjev, et al., submitted to NIM 

Lg,R / Lg,1D ≅ 2.6kpLg,1D

More	E-field	demanded	for	bunching	
Large	efficiency	increase	possible		

Termed Raman regime, defined by 
Typical in past of µwave FEL with λr ~ cm 
Microundulator gives soft-X-ray Raman FEL 

kpLg,1D >1

G. Marcus E. Hemsing, J. Rosenzweig, Phys. 
Rev. ST Accel. Beams 14, 080702 (2011) 

Lgé 

ηé 
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ηR /η1D ≅ 3.46kpLg,1D
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Scaling: Compton-to-Raman Transition 

•  In Compton (standard, no space-
charge) regime, the Lg scales as I-1/3 

•  In the Raman regime, Lg~ kp
-1 ~ I-1/2  

•  Efficiencies: Compton I1/3      Raman I1/2    

29	

Gain length scaling with I Efficiency scaling with I1/2 
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UCLA KecK EUV FEL 
•  With the Keck proposal and compact 

accelerator, we can reach λr=26 nm 
–  FEL similar to  Fermi or FLASH in small UCLA lab 

 

Compact FEL  
~20 MW peak power 
 2.5E11 photons (50 eV) 

Competitor for the university scale is HHG  
EUV Raman FEL, despite low charge, gives 
three orders of magnitude > HHG 

Saturation length  
without µquads 
- focusing critical Saturates in ~2 m 

HHG:	see	T.	Popmintchev,	et	al.,		
Science	336,	1287	(2012)	 

kp
-1~β~6 cm; Raman!  

(very strong focus)  
Lg,1D~ 6 cm 
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Future plans:  
Water window Raman regime FEL 
•  Parameter list for highly focused micro-

undulator based SASE FEL 
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Small!  

Small!  
Small!  

Small!  
Small!  
Small!  

-   Firmly in Raman regime 
-  Less diffraction than EUV FEL 
-  Challenging beam sizes, 3 µm!   
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Example: µm beam manipulation 
and diagnostics 

 
•  How to measure sub-µm beam sizes? 

Coherent imaging (borrowed from XFEL!)  
–  At Keck, can radiate TR coherently at 26 nm 

Coherent	transi;on	radia;on	imaging	reconstruc;on	experiment	
A.	Marinelli	et	al.,	PRL	110,	094802	(2013)	

	

� Manipula^ng	sub-µm	beams:	ultra-short	focal	length	
op^cs	with	microquads	and	dipoles	(like	undulator)	

Reconstructed phase                      Reconstructed profile                 Incoherent (detuned) OTR  
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Soft X-ray FEL simulation 
•  Saturation length increased as expected, but… 

•  30 MW peak power, effective efficiency 
ρ=5x10-4; 3x expected by Compton scaling 

Very compact, soft X-ray FEL for biology enabled  

33	
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Evading magnetic material limits   

•  We would like to have short period 
undulators, but with high K (above 0.1) 

•  Need B-fields higher than 1 T 
(equivalent to 300 MV/m E-field) 

•  Possible directions: 
– Electromagnetic waves, confined 
– Electromagnetic waves, free- space 
– Plasma fields 

34	
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Electromagnetic Undulators 
•  Plettner-Byer scheme (optical-IR)  

– Slippage (v>vφ) allows choice of λu by stretching 

– Problem: cancellation of E,B deflection for co-
propagating e- and mode [F~eE(1-βφβ)] 

– Still have material limits (~GV/m) 

Plettner-Byer Overmoded cylindrical structure 
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EM first step: microwave undulator  

Corruga;on	Period=0.4254	λ
Inner	Radius=0.75	λ
Outer	radius= 1.01293 λ
Corruga;on	Thickness= λ/16
Number	of	periods	=98
	

λ=2.625	cm	(SLAC	X-band)	
Undulator	Wavelength=1.393	cm	
Power	required	(linearly	polarized,	K=1)=48.8	MW	
Q0=94,000	

Undulator Mechanical Structure 

Electric Field Distribution  

Tantawi (SLAC), with UCLA collaboration on 5th generation light source 
Standing wave: negative vφ component provides efficient wiggling (E + B add) 

High power;  K~1 reachable at 14 mm λu 



Advanced	Undulator	Concepts	

Installation at SLAC NLCTA 
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Measurement of undulator K parameter 
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RF undulator test spectra 

UCLA-µbunching-induced	super-radiance		
exp’t,	with	S.Tantawi’s	RF	undulator	
-  Note	off	axis	red	shin	
-  Note	also	off-axis	harmonic	(violet)	

•  Seeded experiments  show 
undulator utility 

•  2nd harmonic seeding shown 
•  Off-axis red-shifting, 

harmonics 
 

Color camera image of far-field 
undulator radiation! 
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—  Balanced	hybrid	mode	in	corrugated	guide	creates	ultra-high	field	in	the	

center,	small	surface	fields		
—  Excellent	field	flatness	expected,	beam	dynamics	display	slight	defocusing	
—  Extrapolates	from	X-band	device		
—  THz	structure	mechanical	and	RF	design	complete;	THz	source	at	Univ.	

Maryland	has	been	tested	up	to	80	KW	with	a	pulse	length	of	7	usec	

Next Step:THz (200-300 µm) Undulator  

33/2

6/7

3/22

41.0)(

8.32)(

24.0)(

Lma

Lst

LKMWP

u

ufilling

u

λ

λµ

λ

=

=

≈

1.4	mm	diameter	aperture	

48	ns	filling	;me	

Parameters	for	221	um	undulator	(from	
available	680	GHz	source;	with	pulse	
compression	to	few	MW)		

900	kW	for	K=0.03,		
10	MW	for	K=0.1	(5.5	T)	

Field flatness good for FEL (large coupling) 
Challenge: need 1 GW for K~1 
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CSR-maser for high power THz  
YSpherical+Shell+Resonator+

Electron+Beam+

Input+seed+

Amplified+output+

Z+

X+

Top<down+view+in+<z+direc@on+

Z+

50-cm	radius	3-cm	
height	

•  Bunching	with	nega^ve	
mass	instability	

•  10	MeV	beam	requires	only	
700		G	guide	field	

•  Trade	off	beam	energy,	
radius,	magne^c	field	for	
op^mized	design	

•  Ambi^ous	currents	needed	

Concept	developed	by	
S.	Tantawi	

Electron	
beam		
source	

RF	interac^on	
structure	

Beam	dump	

Bending	magnet	

Quasi-op^cal	
input	coupler	

Quasi-op^cal	
output	coupler	

Beam	

B	
E	

Shell	
surface	Electric	

field	
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λsc ≈ λL / 4γ
2

Free-space undulator 
•  Head on collision with laser gives very 

short period undulator (λL/2) 
•  Termed inverse Compton scattering (ICS) 
•  Counter-propating wave: E and B add 
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ICS source @ BNL 

 

-  Incoherent, but high brightness, ultra-fast process 
-  Very large photon energies reachable (to GeV) 
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Applications of monochromatic ICS 
photons span wide spectral range 

•  Ultra-fast materials characterization 
–  X-rays (keV) for penetrating metals 
–  X-ray probe, (sub)ps resolution  

•  Biology and medicine 
–  Phase contrast imaging, Auger  
–  Photon activation therapy 

•  Intermediate energy (MeV) 
–  Nuclear materials detection 
–  Slow positrons (for materials) 

•  High energy physics (GeV) 
–  γγ collider, polarized e+ 

P.	Oliva,	et	al.,	Appl.	Phys.	LeBers	97,	134104	(2010)	

Phase contrast image 
(single shot) 

Single	shot	X-ray	ps	diffrac^on	
F.H.	O’Shea,	et	al.,		
Phys.	Rev.	ST-Accel	Beams	15,	020702	(2012)	
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Physics of ICS collisions 
•  Free-space EM undulator, or Thomson 

scattering of dense electron-photon beams 

•  Focus laser tightly for efficient production  

•  As aL (norm. vector potential) is equivalent 
to K in undulator, there is a spectral spread 
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Nγ = σT L=σT NeNL/4πσx
2≈ 1010	

Nγ = 0.6α kLσ z( )aL2Ne− ∝ aL
2 aL =

eELλL
2πmec

2

λsc ≈
λL
4γ 2

1+ aL
2

2
+ γθ( )2

⎡

⎣
⎢

⎤

⎦
⎥

Large flux=large BW 
“Nonlinear” scattering 
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Relativistic e-beam	

Nonlinear ICS: Microscopic Electrodynamics

v  Harmonic generation/angular dependence: 
      (Multi-photon process in dense photon field) 
                         hνsc = 4γ2 hνLn 
 
v Red-shifting and BW increase even on axis: 
        hνsc => hνsc / (1+aL

2/2),  
   aL not constant during interaction 

  No field flatness… 
 
 

8
Figure-8 electron motion	 2nd	

2nd	

1st, 3rd…	

Nonlinear	ICS:	aL~1,	transverse	mo;on	rela;vis;c,	with	longitudinal	oscilla;on				

Linear	laser	polariza^on	

Intense	laser	

Variation of  aL during pulse 

Resultant interference 
aL=0.4 
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Nonlinear ICS Experiments 

CO2 laser: aL ≈ 0.1-1.0 
Electron beam:  Q ≈ 0.3 nC, σz ≈ 300 µm, σx ≈ 30 µm, E=65 MeV	
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K-edge	filtering	for	hard	x-ray	harmonics	
2nd harmonic 
Al 750 µm

Superposition 
2nd and 3rd  harmonic

250 µm Al foil
3rd+ …

Al 1000 µm

 2nd harmonics
Al 750 µm

circular 
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Observation of strong nonlinear redshift 

•  Demonstration of red-shifting in ICS 
fundamental using 7.2 keV Fe K-edge  
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a02<0.06		 a02~0.4		
Shows,	along	with	harmonics	angular	distribu^on,		

radia^on	from	nonlinear	figure-8	mo^on	
		

“Mass shift” effect unequivocally detected 

Y.	Sakai,	et	al.,	Phys.	Rev.	ST	Accel.	Beams,	18,	060702	(2015)		

Shift below K-edge, 
no attenuation of center 
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		Beyond	filters:	single	shot	spectrum	measurement	

a0<0.25 

 				Y	Mo-Si	bent	mul:-layer	thickness:	d	≈	3.3	nm,	Bragg	angle	~	25	mrad	@	hν	=	7.6	keV	
					Y	Viewing	angle	of	curved	layer	~	50	mrad	(observa;on	range	of	many	keV)	
					Y	Mul;-layer	reflec;vity	of	~	15%	@	NSLS	X15A	

[5]	Y.	Kamiya,	T.	Kumita	and	P.	Siddons	et	al.,	X-ray	spectrometer	for	observa;on	of	nonlinear	Compton	scanering,	
Proc.	Joint	28th	Workshop	on	Quantum	Aspects	of	Beam	Physics	(World	Scien;fic),	103	(2003)	

	

Laser 
 3.0 J	

Laser 
 1.5 J	

Double		
Differen^al		
Spectrum	
observed!		
	Projec^on	of		Diffracted		

component	
Diffracted		
component	



Advanced	Undulator	Concepts	

Double differential spectrum 
•  Data overlaid on simulation (Lenard-Wiechert)  

50	
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Near axis spectrum reveals 
nonlinear spectral spread 

•  Interesting self-interference effect in simulations, 
experiment cannot resolve (spectrometer limit) 

51	Laser undulators will be challenging for FEL!  

Rel. bandwidth of 1/3! 
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New undulator from plasma 
wakefields in the “blowout” regime 

€ 

nb,max = 20n0

Plasma	electron	distribu^on	(ρ,z)	
blowout	regime	

Complete	electron	rarefac;on	achieved	by		
“blow-out”,	beam	denser	than	plasma	nb>n0	
-  Fields	due	to	electrons	are	EM		
(like	linac	cavity)	
-  Ions	form	a	uniform	charge	column,		
give	linear	focusing		
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Plasma wiggler: undulator from 
strong betatron motion 

A.	Rousse	et	al.,	Phys.	Rev.	Lev.	93,	135005	(2004).	

K	can	reach	~100		(Requires	large	offset,	kpx0	~1)	
	
	
Can	reach	up	to	100	MeV	with	dense	plasma.	

S.	Kiselev,	et	al.,	Phys.	Rev.	Lev.	93	135004	(2004)	

Plasma	wigglers	can	give	magnet	field	equivalent	Bu>100	T	with	sub-cm	wavelength	

Amplitude 
dependent 

Photon energy up to   

Betatron oscillation kβ = 2πren0 /γ = kp / 2γ
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Proposal: resonant excitation 
with magnetic undulator!  

•  Undamped simple harmonic oscillator (ion focusing) 
driven (undulator) on resonance. Similar to cavity 
drive with RF… 

•  Mathematics: 

•  Multiplies one undulator amplitude per radian of 
undulator 

Response		

With	resonance		

Define	“natural”	amplitude	of	undulator			

ku = kβ
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Resonant betatron: simulation 

VORPAL	simula^on:	low	energy	beam		
par^cles	in	red,	placed	at	zero	accel.	phase	
xu=27	um,	bubble	edge	~175	um	
		

Existence of B-field does not  
affect plasma response 

Resonance in plasma  

Ion channel from PWFA blowout 
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Unique mechanism for helical 
betatron undulator 

•  Applica;on:	100	MeV	photons	for	polarized	positrons	
•  Pair	helical	undulator	with	PWFA	over	~meter	length	scales		
•  Recent	results	from	FACET	are	encouraging,	showing	forma^on	of	>1	m	narrow	

wakeless	preformed	plasma	channels	with	10	TW	laser	and	axicon	lenses	
•  Experimental	outlook:	highly	promising	for	FACET2	at	SLAC	

Example: slightly off-resonant  
helical betatron undulator  
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Conclusions 
•  Compact XFELs are intriguing new instruments for  

revolutionizing wide swaths of science 
–  Nanoscience, biology, fs chemistry, EUV lithography, etc.  

•  Opportunities to bring cutting-edge FEL tools to wide use  
•  Convergence of advanced concepts 

–  Frontiers of bright electron beams  
–  Very short period undulators 
–  Enables new FEL regimes, and first 5th generation light source 

•  Various options, from  
–  advanced cm-period undulators 
–  EM undulators (mm-wave to optical) 
–  Plasma undulators 

•  New vistas opened up in radiation sources… 
57	


