Advanced Undulator Concepts for Future Free-electron Lasers

Prof. J. Rosenzweig, UCLA Dept. of Physics and Astronomy CERN Accelerator School June 7, 2016

Historic context: from particle physics to light sources, instruments open paths

We can look outward a telescope, seeing backwards in time to the Big Bang...

Or we to see the very small can utilize a microscope (generalized!)

Galileo Galilei with the Doge of Venice

With accelerators, microscope sees infinistesimal distances <10⁻¹⁸ m. Exceed Hooke by factor of trillion...

U = quantum energy

$\lambda \sim hc/U$ **UCLA** Accelerators are microscopes with up to TeV energy

Accelerator energy, size limits

 Fatal effect in circular accelerators: synchrotron radiation power loss

- Future e+e- colliders foreseen linear (ILC)

- Large R circular machines (e.g. FCC)
- Scaling in size/cost prohibitive
 Acceleration < 35 MeV/m (SC)

• Big \$cience should shrink to live

The science behemoth: ~TeV linear collider

crystal

The **light source**: from particle physics "parasite" to essential tool

- Accelerators used as **synchrotron light sources** for >40 years
- HEP vice (1st generation) becomes imaging virtue. Dozens of Xray facilities worldwide, many-E9€'s invested
- Workhorse of biology, materials, nanoscience

The **4th generation** light source: the **X-ray Free-Electron Laser**

- Also large linear accelerator (km, E=15 GeV)
- Now: coherence, brightness, and fs resolution

Undulator period ~ few cm, through 3-wave (B_{u}, E_{r}, I) instability gives Doppler shifted **coherent** light, **hard X-rays and beyond**

UCLA

Essential ingredient of FEL: high brightness electron beam

- High phase space density (cold, focusable, intense)
- Measure: beam brightness

$$B_e = \frac{2I}{\varepsilon_r^2}$$

• Space-charge (*plasma*) effects strong in high brightness beams, challenging physics

The secret: RF photoinjector (UCLA expertise)

CLA NB: needs shared with HEP linear collider (very high high B_e) 7

High brightness electrons beget high brightness photons

- FEL is cold beam instability
- Growth rate from B_{e}

$$L_{g,1D} = \frac{\lambda_u}{4\pi\sqrt{3}\rho_{1D}} \qquad \rho_{1D} \propto B_e^{1/3}$$

• High I (short pulse), small ε_x gives **dense lasing medium**

 $E_{rad} \propto \exp(z/L_g); L_g \propto B_e^{-1/3}$

- λ_{u} and ρ set length scale
- Gives +8 orders of magnitude photon brightness: femtosecond coherent X-rays, a revolution in "4D" spatial/temporal imaging
 UCLA

Parochial UCLA perspective: 4 generations of FEL

M. Hogan et al., Phys. Rev. Lett., 80, 289-292 (1998).

LANL/UCLA 1st high gain SASE

M. Hogan et al., PRL, **81**, 4867–4870 (1998).

XFELs a burgeoning field: what is wrong?

• Existing facilities are large/expensive

- High-cost \rightarrow limited access \rightarrow risk to science
 - Pressure to publish in every experiment
 - Beam time precious; hard to verify experiments by other teams
- Result: Pace of science is slowed, quality hindered

Solution: 5th Generation Light Source: Re-invent XFEL to fit in campus laboratory. How?

Begin with the undulator...

- Present undulators are typically $\lambda_{\rm u}{>}2$ cm, Halbach or hybrid devices
- Field limits from magnetic material
- Gap (and thus λ_{υ}) set by fabrication, wakefields
- Integrate focusing (natural focusing weak for E>20 MeV)

$$\vec{B}(y=0) = \frac{8\mu_0 M}{\sqrt{2}\pi} \left(1 - \exp\left(-\frac{\pi}{2}\right)\right) \exp\left(-k_u b\right) \hat{y}$$

Halbach pure PM geometry and flux lines

Ultra-compact FEL based on new undulators: the recipe

High brightness beam (HBB)

- low charge (pC), ultrashort pulses
- Ultralow emittance, enables use of... J.B. Rosenzweig, et al., *Nucl. Instruments Methods A*, 593, 39 (2008)
- High field, short λ undulator – With HBB, large ρ , short L_a
- Lower e- energy needed to reach short wavelength
 - Much smaller accelerator, undulator
- Might also reinvent accelerator...
 - Another lecture; 5th generation light source based on plasma/laser accel.

Hybrid cryo-undulator: Pr-based, SmCo sheath; λ =9 mm up to 2.2 T

F.H. O'Shea et al, PRSTAB 13, 070702 (2010)

UCLA

HZB/UCLA/MPQ Cryo-undulator

- Cryogenic, Pr-based hybrid undulator
 Innovation in magnetic material, operating T
- High field (2.2 T), short λ_u (9 mm)

 Next generation (Dysprosium)is 7 mm period.
 Factor of 3 in λ_u, still have K~2

Use of cryo-undulator for IFEL energy modulation at 800 nm F. H. O'Shea, et al., J. Phys. B: At. Mol. Opt. Phys. 47 234006 (2014)

UCLA

Physics possibilities with cryo-undulator

15.44

-Always pushing beam brightness!

0.75 nm FEL with 1 pC, ultra-high brightness, <2 fs beam, **2.1 GeV driver**. 5th harmonic yields LCLS- λ photons. Saturation in 10 m.

Original use : table-top terawatt T³, few nm FEL with 1.7 GeV, **160 kA** beam from laser-plasma accelerator. FEL saturates 10x sooner than present state-of-art.

0.15 Angstrom SASE FEL with LCLS beam. Saturation in 40 m

Cryo-undulator design and physics use: F.H. O'Shea et al, *PRSTAB* 13, 070702 (2010)

Generation 4.1: state-of-art injector and ultra-short period undulator

New enabling technology: MEMS electromagnetic undulator

MEMS= Micro-Electro-Mechanical Systems

Batch-fabricated electromagnets First generation

UCLA Inclusion of focusing still critical...

Micromachined undulator

Should provide higher gain medium: focus beam harder

(Aside: later we can abandon magnetic materials...)

UCLA

How to achieve focusing?

- Until now, permanent magnet focusing quads
- Very short focal length (1 cm at 60 MeV)
- Field gradient 600 T/m
 Strongest ever in use
- Tunable by longitudinal motion
- Physics and engineering challenge; not easy to integrate with FEL undulator
 - Used at UCLA for inverse Compton scattering, PWFA final foci
- New solution: MEMS!

J. K. Lim, et al., *Phys. Rev. ST Accel. Beams* **8**, 072401 (2005)

MEMS electromagnetic quadrupoles

J. Harrison, Y. Hwang, O. Paydar, J. Wu, E. Threlkeld, J. Rosenzweig, and R. Candler, Phys. Rev. ST Accel. Beams **18**, 023501

		Currently Available		Future	2			
	Technology	Permanent magnet quadrupole		Machined electromagnets				
	∇B	560 T/m		>3,000 T/m				
	Inner diameter	5 mm		200 µm				
	Tuning	Axial translation of magnets		Electromagnet				
3	Fop N	View Top m	Electromagnet drive current Overfocused Focused on X-axis Underfocused	POP be	= -600 mA = -100 mA	I=-500 mA	SUREM I=-400 mA I=100 mA	I=-300 mA
		3 mm	Focused on y-axis	I=800 mA	I = 900 mA	I=1000 mA	I=2000 mA	I=3000 mA
Cl		200 µm	Overfocused	-1 -0.2	5 0.5	1.25 ZX	10	0

Assembly line of high current EM quadrupoles

Fabrication in course at UCLA Nanolab and industrial partner

MEMS Undulator Fabrication

Process highlights

- Fully 3D solenoidal electromagnets
- 20µm-thick copper windings for coils
- >50µm-thick Permalloy magnet yoke
- $Ni_{80}Fe_{20}$ with $B_{sat} = 1.1 \text{ T}$ and $\mu_r > 8000$

Electromagnets

8 cm long section to be:

- Magnet tests at
- UCLA August 2015
- Beam tests at BNL ATF in Oct. 2016

SAMURAI: Spontaneous Amplified MicroUndulator Radiation Interactions

- >63 MeV beamline
- "Hybrid" photoinjector
- 2 TW Ti: Sapphire laser
- Mission: compact FEL, other light sources and new accelerators

UCLA

UCLA Keck-SAMURAI FEL : High brightness electron injector

High brightness 63 MeV e-beam

Beam parameters for injection into Keck FEL micro-undulator

Beam energy	63 MeV		
Beam charge	20 рС		
Beam emittance	0.2 mm-mrad		
Energy spread	0.1 %		
Pulse length (FWHM)	70 fs		
Peak current	~300 Amp		

Present state of the art: <20 A peak current at 0.2 mm-mrad

Compact solution for high brightness beam: Hybrid SW/TW Hybrid Photoinjector

- Compact high brightness beam source integrated with RF gun (low emittance) + velocity buncher (high peak current)
- TW post-acceleration for high current, moderate energy beam
- Remove RF reflection from the cavity, simpler waveguide system

First beam measurements at UCLA

- Measured beam dynamics at low power P_{RF} =11.5 MW
- Strong velocity bunching observed
- Validate model, hybrid characteristics
- Moving to KECK SAMURAI Lab

Space charge effects in FELs

- With 0.8-mm period undulator, soft X-ray machine is in ~100 MeV range (not few GeV)
- Dense beam gives space charge response: measured by "plasma skin depth" $k_p^{-1} \sim \gamma^{3/2}$
- Approaches relevant scale lengths $k_p = \sqrt{4\pi r_e n_b / \gamma^3}$
 - Transverse $k_p^{-1} \sim \beta$, must focus stronger (microquads)
 - Longitudinal $k_p^{-1} \sim L_{ID}$, longer L_g (also an advantage!)

UCLA

Longitudinal repulsive self forces oppose microbunching

Space charge effects can give enhanced FEL efficiency

Gain length increased

 $L_{g,R} \,/\, L_{g,1D} \cong \sqrt{2.6k_p L_{g,1D}}$

- Efficiency η also increased
 - A. Gover and P. Sprangle, IEEE
 - J. Quantum Electron. 17, 1196 (1981)
 - I. Gadjev, et al., submitted to NIM

More E-field demanded for bunching *Large efficiency increase possible*

 $\eta_R \,/\, \eta_{1D} \cong 3.46 k_p L_{g,1D}$

Termed Raman regime, defined by $k_p L_{g,1D} > 1$ Typical in past of μ wave FEL with $\lambda_r \sim cm$ Microundulator gives <u>soft-X-ray Raman FEL</u>

G. Marcus E. Hemsing, J. Rosenzweig, Phys. Rev. ST Accel. Beams 14, 080702 (2011)

UCLA

Scaling: Compton-to-Raman Transition

- In Compton (standard, no spacecharge) regime, the L_a scales as $I^{-1/3}$
- In the Raman regime, $L_a \sim k_{o}^{-1} \sim l^{-1/2}$
- Efficiencies: Compton $I^{1/3} \rightarrow Raman I^{1/2}$

UCLA Keck EUV FEL

- With the Keck proposal and compact accelerator, we can reach λ_r =26 nm
 - FEL similar to Fermi or FLASH in small UCLA lab

Future plans:

Water window Raman regime FEL

• Parameter list for highly focused microundulator based SASE FEL

Parameter	Value
Undulator Period	$(800 \mu m)$ Small!
Undulator Peak Field	1T(K=0.074)
Beam Energy	175 MeV Small!
FEL Radiation Wavelength	3.5 nm Small!
Beam Current (charge)	300 A (10 pC)
Beam Emittance (normalized)	0.02 mm-mrad
Beam Energy Spread (normalized, slice)	1E-4
Beam Size (average)	3 μm Small!
1D Gain Length (Compton limit, $L_{g,1D}$)	5.6 cm Small!
Beam Plasma Wavelength (Normalized, k_p^{-1})	6 cm Small!
3D Gain Length (Space Charge)	11.2 cm
Saturation Length	2.25 m

- Firmly in Raman regime
- Less diffraction than EUV FEL

- Challenging beam sizes, 3 μm!

Example: µm beam manipulation and diagnostics

 Manipulating sub-µm beams: ultra-short focal length optics with microquads and dipoles (like undulator)

Coherent transition radiation imaging reconstruction experiment A. Marinelli et al., *PRL* 110, 094802 (2013)

How to measure sub-µm beam sizes?
 Coherent imaging (borrowed from XFEL!)
 At Keck, can radiate TR coherently at 26 nm

UCI

Soft X-ray FEL simulation

• Saturation length increased as expected, but...

30 MW peak power, effective efficiency

 ρ=5x10⁻⁴; 3x expected by Compton scaling

Very compact, soft X-ray FEL for biology enabled

Evading magnetic material limits

- We would like to have short period undulators, but with high K (above 0.1)
- Need B-fields higher than 1 T (equivalent to 300 MV/m E-field)
- Possible directions:
 - Electromagnetic waves, confined
 - Electromagnetic waves, free-space
 - Plasma fields

Electromagnetic Undulators

- Plettner-Byer scheme (optical-IR)
 - Slippage (v>v $_{\phi}$) allows choice of λ_{\cup} by stretching
 - Problem: cancellation of E,B deflection for copropagating e- and mode $[F \sim eE(1-\beta_{\phi}\beta)]$
 - Still have material limits (~GV/m)

Overmoded cylindrical structure

EM first step: microwave undulator

Tantawi (SLAC), with UCLA collaboration on 5th generation light source Standing wave: negative v_{ϕ} component provides efficient wiggling (E + B add)

Corrugation Period=0.4254 λ Inner Radius=0.75 λ Outer radius= 1.01293 λ Corrugation Thickness= $\lambda/16$ Number of periods =98

 λ =2.625 cm (SLAC X-band) Undulator Wavelength=1.393 cm Power required (linearly polarized, K=1)=48.8 MW Q₀=94,000

High power; $K \sim 1$ reachable at 14 mm λ_u

nstallation at SLAC NLCTA

Measurement of undulator K parameter

UCLA

RF undulator test spectra

Color camera image of far-field undulator radiation!

UCLA-µbunching-induced super-radiance exp't, with S.Tantawi's RF undulator

- Note off axis red shift

UCI Δ

Note also off-axis harmonic (violet)

- Seeded experiments show undulator utility
- 2nd harmonic seeding shown
- Off-axis red-shifting, harmonics

Next Step:THz (200-300 μ m) Undulator

- Balanced hybrid mode in corrugated guide creates ultra-high field in the center, small surface fields
- Excellent field flatness expected, beam dynamics display slight *defocusing*
- Extrapolates from X-band device
- THz structure mechanical and RF design complete; THz source at Univ.
 Maryland has been tested up to 80 KW with a pulse length of 7 usec

Parameters for 221 um undulator (from available 680 GHz source; with pulse compression to few MW)

$$P(MW) \approx \frac{0.24K^2L^{2/3}}{\lambda_u^{7/6}}$$
900 kW for K=0.03,
10 MW for K=0.1 (5.5 T)
$$t_{filling} (\mu s) = 32.8L\sqrt{\lambda_u}$$
48 ns filling time
$$a(m) = 0.41\lambda_u^{2/3}\sqrt[3]{L}$$
1.4 mm diameter aperture

Challenge: need 1 GW for K~1

CSR-maser for high power THz

Free-space undulator

- Head on collision with laser gives very short period undulator ($\lambda_L/2$) $\lambda_{sc} \approx \lambda_L/4\gamma^2$
- Termed inverse Compton scattering (ICS)
- Counter-propating wave: E and B add

- Incoherent, but high brightness, ultra-fast process
- UCLA- Very large photon energies reachable (to GeV)

Applications of monochromatic ICS photons span wide spectral range

- Ultra-fast materials characterization
 - X-rays (keV) for penetrating metals
 - X-ray probe, (sub)ps resolution
- Biology and medicine
 - Phase contrast imaging, Auger
 - Photon activation therapy
- Intermediate energy (MeV)
 - Nuclear materials detection
 - Slow positrons (for materials)
- High energy physics (GeV)
 - $\gamma\gamma$ collider, polarized e+

P. Oliva, et al., Appl. Phys. Letters 97, 134104 (2010)

Physics of ICS collisions

 Free-space EM undulator, or Thomson scattering of dense electron-photon beams

 $N_{\gamma} = \sigma_{\rm T} \, \mathrm{L} = \sigma_{\rm T} \, N_{\rm e} N_{\rm L} / 4\pi \sigma_{x}^{2} \approx 10^{10}$

- Focus laser tightly for efficient production $N_{\gamma} = 0.6\alpha (k_L \sigma_z) a_L^2 N_{e^-} \propto a_L^2$ $a_L = \frac{eE_L \lambda_L}{2\pi m_e c^2}$
- As a_L (norm. vector potential) is equivalent to K in undulator, there is a spectral spread

$$\lambda_{sc} \approx \frac{\lambda_L}{4\gamma^2} \left[1 + \frac{a_L^2}{2} + (\gamma\theta)^2 \right]$$

Large flux=large BW "Nonlinear" scattering

UCLA

Nonlinear ICS: Microscopic Electrodynamics

Nonlinear ICS: a_{L}^{2} , transverse motion relativistic, with longitudinal oscillation

Harmonic generation/angular dependence:
 (Multi-photon process in dense photon field)

 $hv_{\rm sc} = 4\gamma^2 hv_{\rm L}n$

* Red-shifting and BW increase even on axis: $hv_{sc} => hv_{sc} / (1 + a_L^2/2),$ $a_L not$ constant during interaction No field flatness... UCLA Resultant interference $a_L = 0.4$

Nonlinear ICS Experiments

CO₂ laser: $a_L \approx 0.1-1.0$ Electron beam: $Q \approx 0.3$ nC, $\sigma_z \approx 300 \ \mu$ m, $\sigma_x \approx 30 \ \mu$ m, E=65 MeV

K-edge filtering for hard x-ray harmonics

Observation of strong nonlinear redshift

"Mass shift" effect unequivocally detected

 Demonstration of red-shifting in ICS fundamental using 7.2 keV Fe K-edge

Shift below K-edge, no attenuation of center

Shows, along with harmonics angular distribution, radiation from nonlinear figure-8 motion Y. Sakai, et al., *Phys. Rev. ST Accel. Beams*, 18, 060702 (2015)

Beyond filters: single shot spectrum measurement

☆ Mo-Si *bent multi-layer* thickness: *d* ≈ 3.3 nm, Bragg angle ~ 25 mrad @ *hv* = 7.6 keV
 ☆ Viewing angle of curved layer ~ 50 mrad (observation range of many keV)
 ☆ Multi-layer reflectivity of ~ 15% @ NSLS X15A

[5] Y. Kamiya, T. Kumita and P. Siddons et al., X-ray spectrometer for observation of nonlinear Compton scattering, Proc. Joint 28th Workshop on Quantum Aspects of Beam Physics (World Scientific), 103 (2003)

Double differential spectrum

• Data overlaid on simulation (Lenard-Wiechert)

UCLA

Near axis spectrum reveals nonlinear spectral spread

• Interesting self-interference effect in simulations, experiment cannot resolve (spectrometer limit)

New undulator from plasma wakefields in the "blowout" regime

UCLA

Complete electron rarefaction achieved by "blow-out", beam denser than plasma $n_b > n_0$

- Fields due to electrons are EM (like linac cavity)

- Ions form a uniform charge column, give linear focusina

Plasma wiggler: undulator from strong betatron motion

Can reach up to 100 MeV with dense plasma.

Plasma wigglers can give magnet field equivalent B_u >100 T with sub-cm wavelength UCLA S. Kiselev, *et al.*, Phys. Rev. Lett. 93 135004 (2004)

Proposal: resonant excitation with magnetic undulator!

- Undamped simple harmonic oscillator (ion focusing) driven (undulator) on resonance. Similar to cavity drive with RF...
- Mathematics:

 $x'' + k_{\beta}^{2}x = \frac{k_{u}K}{\gamma} \exp(ik_{u}z), \quad K = \frac{eB_{0}}{k_{u}m_{e}c} \quad \text{With resonance}$ $x = -i\frac{K}{2\gamma}z\exp(ik_{u}z) \quad \text{Response}$ $x_{u} = \frac{K}{k_{u}\gamma} \quad \text{Define "natural" amplitude of undulator}$

 $x = -ix_u(k_u z) \exp(ik_u z)$

 Multiplies one undulator amplitude per radian of undulator

UCLA

Resonant betatron: simulation

Plasma ion species	Ar+
Plasma density	10^{15} cm^{-3}
Undulator magnetic field amplitude	1 T
Undulator period	3 cm
Drive beam energy	20 GeV
Drive beam charge	3.2 nC
Drive beam dimensions σ_x, σ_z	30 μm, 30 μm
Witness beam energy (negligible charge)	250 MeV

UCL

VORPAL simulation: low energy beam particles in red, placed at zero accel. phase x_u =27 um, bubble edge ~175 um

Unique mechanism for helical betatron undulator

Example: slightly off-resonant helical betatron undulator

- **Application**: 100 MeV photons for polarized positrons
- Pair helical undulator with PWFA over ~meter length scales
- Recent results from FACET are encouraging, showing formation of >1 m narrow wakeless preformed plasma channels with 10 TW laser and axicon lenses
- Experimental outlook: highly promising for FACET2 at SLAC

UCLA

Conclusions

- Compact XFELs are intriguing new instruments for revolutionizing wide swaths of science
 - Nanoscience, biology, fs chemistry, EUV lithography, etc.
- Opportunities to bring cutting-edge FEL tools to wide use
- Convergence of advanced concepts
 - Frontiers of bright electron beams
 - Very short period undulators
 - Enables new FEL regimes, and first 5th generation light source
- Various options, from
 - advanced cm-period undulators
 - EM undulators (mm-wave to optical)
 - Plasma undulators
- New vistas opened up in radiation sources...