LLRF Controls and Feedback

Sven Pfeiffer DESY

Outline:

- 1. Introduction/Motivation
- 2. System Description
- 3. System Modelling
- 4. Feedback Controller Design
- 5. Examples

- LLRF and Feedback
 - Examples: ERL vs. FEL
 - Differences
- Basic LLRF components
- Disturbances and Noise Fast and Slow Distortions

LLRF Controls and Feedbacks

Talk: Concept of ERL; 4th of June

Example 2: Free-Electron Laser (FEL)

Free-Electron-LASer in Hamburg (FLASH)

Compact ERL @ KEK

- Photocathode DC gun
- NRF Buncher
 - Q_L = 1.1·10⁵
- SRF cavities
 - $Q_{\rm L} = 4.8 \cdot 10^5 \dots 1.3 \cdot 10^7$
- Driven by SSA, Klystron, (IOT)
 - 1 Amplifier per cavity
 - ightarrow single cavity regulation

FLASH @ DESY

- NRF gun
 - Q_L = 1.2·10⁵
- SRF cavities
 - Q_L = 3.0·10⁶
- Driven by Klystron
 - 1 amplifier for RF gun
 - ightarrow single cavity regulation
 - − 1 amplifier per 8/16 cavities
 → multi-cavity regulation

- Operated in **Continuous Wave (CW)**
- High beam loading (10's of mA)

Goal of LLRF Controls and Feedback:

- Stabilize certain properties/values to high performance
- Being able to measure the quantities

- Operated in Short Pulse (SP)
- Moderate beam loading (mA)

Basic LLRF Components in an RF field Feedback Loop

Plant: Series connection of components

- Amplifier (Klystron, Solid State Amplifier (SSA), ...)
- Cavities (normal- or superconducting NRF or SRF)
- Pre-amplifier etc...

Sensor: Ability to measure signal to be controlled

• Pick-ups, antenna, magnetic loop, ...

Controller: Processing unit

- Analog (resistor, capacitance, operational amplifier, logic blocks, ...)
- Digital (Microcontroller, DSP, FPGA,...)

Linear or circular machines

Normal-/superconducting RF systems

- RF field frequency
 - Typical in accelerators: MHz ... tens of GHz

CW – Continuous Wave

- Continuous RF field
 - Duty factor 100%

$$\mathrm{DF} = t_{pulse} \cdot f_{rep}$$

Pulsed Mode

- Certain amount of time is useable for beam acceleration
 - LP Long Pulse Mode
 - DF 10% 50%
 - SP Short Pulse Mode
 - DF 1 %, e.g. 1ms on, 99ms off

Disturbance to plant input - d_u(t)

 DAC, vector modulator, temperature & humidity (PCB)

Disturbance to plant - $d_{p}(t)$

 Pre-amplifier, Klystron, HV modulator, cavity length (motor tuner or water regulation), Beam (beam loading and multi bunch effects)

Noise – n(t)

• ADC distortions, noise, quantization noise, temperature & humidity (PCB)

Other:

- Aging, switching in electronics (e.g. fans), ground motion and vibrations, faults in devices and components, thermal heating within macro-pulse, ...
- Electromagnetic interference (EMI)
- Drifts
 - Electronics
 - Synchronization system
 - Timing distribution

2. System Description for RF Field Control Loop

1. Sensor (RF detection)

- 2. Actuator (RF manipulation)
- 3. Amplifier

- 1. Sensor (RF detection)
- 2. Actuator (RF manipulation)
- 3. Amplifier

- Up conversion using vector modulator
 - MO signal split to 0° and 90°
- VM with bandwidth usually tens of MHz (>> cavity BW)

- 1. Sensor (RF detection)
- 2. Actuator (RF manipulation)
- 3. Amplifier

0

- Non-linear behavior in amplitude (e.g. saturation at max. output) and phase
- Linearization of static characteristic curve lacksquare
- Characterization Bandwidth usually tens of MHz (>> cavity BW) •

S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

N

- 1. Sensor (RF detection)
- 2. Actuator (RF manipulation)
- 3. Amplifier

http://tt.desy.de/desy_technologies/accelerators_magnets_und_cryogenic_technologies /weld_free_cavity/index_eng.html

Parameters for SRF cavity

Operating frequency:	$1.3~\mathrm{GHz}$
Length:	$1.036~\mathrm{m}$
Aperture diameter:	$70 \mathrm{mm}$
Cell to cell coupling:	$\approx 2\%$
Quality factor Q_0 :	$pprox 10^{10}$
$r/Q := r_{sh}/Q_0$:	1036Ω

- Pi mode is used for acceleration (TM010 mode)
- 8pi/9 mode only 800kHz separated from operating frequency → may influence accelerating field stability

Modelled with 9 magnetically coupled resonators (RCL circuits)

Mechanical model is neglected at this point, see example at the end

From RCL circuit to cavity characteristics

http://tt.desy.de/desy_technologies/accelerators_magnets_und_cryogenic_technologies /weld_free_cavity/index_eng.html

- RCL circuit equations need to be mapped to measurable cavity parameters (bandwidth, shunt impedance, quality factor etc.)
- Start with high frequency modelling
- End with baseband model required in LLRF control scheme with downconversion

Consider only 1 RCL circuit (as simplification)

Cavity characteristics

Coupling factor:

$$\beta = \frac{R}{Z_{ext}}$$

Loaded shunt impedance:

$$R_L = \left(\frac{1}{R} + \frac{1}{Z_{ext}}\right)^{-1} = \frac{R}{1+\beta}$$

Loaded quality factor:

$$Q_L = \left(\frac{1}{Q_0} + \frac{1}{Q_{ext}}\right)^{-1} = \frac{Q_0}{1+\beta}$$

$$\ddot{V}(t) + \frac{\omega_0}{Q_L}\dot{V}(t) + \omega_0^2 V(t) = \frac{\omega_0 R_L}{Q_L}\dot{I}(t)$$

Differential cavity equation with harmonic RF driving term $I(t) = \hat{I}_0 \sin(\omega t)$

$$\ddot{V}(t) + \frac{\omega_0}{Q_L}\dot{V}(t) + \omega_0^2 V(t) = \frac{\omega_0 R_L}{Q_L}\dot{I}(t)$$

$$\ddot{V}(t) + 2\omega_{1/2}\dot{V}(t) + \omega_0^2 V(t) = \hat{I}_0 \sin(\omega t)$$
(RF source) is given as cavity properties with approximation for high Q cavities :
$$V(t) = \hat{V}\sin(\omega t + \psi(t))$$

$$\dot{V} \approx \frac{R_L \hat{I}_0}{\sqrt{1 + (2Q_L \frac{\Delta \omega}{\omega})^2}}$$
; $\tan \psi \approx 2Q_L \frac{\Delta \omega}{\omega}$

$$driver cave definition of the RF source = \hat{V} + \frac{\hat{V}_0 = R_L \hat{I}_0}{\sqrt{1 + (2Q_L \frac{\Delta \omega}{\omega})^2}}$$
with time constant τ

$$\vec{V}(t) = \frac{\omega_0}{Q_L} = \frac{1}{\tau} (\ll \omega)$$

 $\ddot{V}(t) + 2\omega_{1/2}\dot{V}(t) + \omega_0^2 V(t) = \omega_{1/2}R_L\dot{I}(t)$

 $\omega_0 \dots$ Cavity resonance frequency $\omega \dots$ Driving frequency (RF source)

 $\frac{Tuning \ angle}{\psi(t)} = \angle (I(t), V(t))$

 ω

Angle between driving current and cavity voltage

S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

ω

 \sim -3 dB point $(\Psi = \frac{\pi}{4})$

 $(\Psi = -\frac{\pi}{4})$

Differential cavity equation

The high (carrier) frequency cavity model is not of our interest for studying the cavity response under feedback operation; we are interested at the baseband model (envelope of RF signal)!

Separation of fast RF oscillations from the slowly changing amplitude and phases of the field vector

$$V = \overrightarrow{V}(t)e^{j\omega t}$$
 and $I = \overrightarrow{I}(t)e^{j\omega t}$; $\overrightarrow{V}(t) = V_I + jV_Q$

First order cavity differential equation for envelope, i.e. the cavity baseband equation:

$$\dot{V}_I + \omega_{1/2} V_I + \Delta \omega V_Q = R_L \omega_{1/2} I_I$$
$$\dot{V}_Q + \omega_{1/2} V_Q - \Delta \omega V_I = R_L \omega_{1/2} I_Q$$

As short hand notation with complex vector field:

$$\vec{\overrightarrow{V}} + (\omega_{1/2} - j\Delta\omega) \vec{\overrightarrow{V}} = \omega_{1/2}R_L \vec{\overrightarrow{I}}$$

Remember: $\Delta \omega \ll \omega$ and $\omega_{1/2} \ll \omega$

S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

Q... quadrature (imaginary) Remove fast changing part! () $\overrightarrow{I}(t)$ Phasor diagram

- Short outline, for details, see [Schilcher.1998] and [Vogel.2007]
- n-th mode:

$$\vec{V} + \left((\omega_{1/2})_{\frac{n}{9}\pi} - j(\Delta\omega)_{\frac{n}{9}\pi} \right) \vec{V} = (-1)^{n+1} K_{\frac{n}{9}\pi} (\omega_{1/2})_{\frac{n}{9}\pi} R_L \vec{I}, \ n = 1 \dots 9$$

• Cavity field is the sum of all passband contributions

- RF field detection
 - Down-conversion to baseband (envelop of HF signal)
 - Direct A/P sampling nowadays possible (high speed ADCs)
 → May worsen SNR of ADC
 - Preferred method depends on your application
- RF field manipulation
 - Up-conversion from baseband to HF
 - Bandwidth in tens of MHz range
- Amplifier (Klystron)
 - Mostly non-linear input/output behavior
 - \rightarrow Linearization desired
 - Bandwidth in tens of MHz range
- Cavity (9-cell SRF cavity)
 - Differential equation as baseband model
 - Bandwidth (Hz ... kHz), detuning and higher order modes

System Overview – Example at FLASH

System Overview – Example at FLASH

- 1. System Input-Output Modeling
- 2. Laplace Transformation
- 3. Bode Diagram
- 4. Example: System Modeling using Matlab

Time domain

• Convolution of impulse response g(t) and input u(t)

 $y(t) = g(t) \ast u(t)$

• Makes analysis very complicated

Frequency domain

 Laplace transformation used in system analysis

 $s := \sigma + j\omega$

- Multiplication of impulse response G(s) and input U(s) $Y(s) = G(s) \cdot U(s)$
- Makes system analysis easier

- Fourier transformation
 - Defined for all t

$$F(f) = \int_{t=-\infty}^{\infty} f(t) \cdot e^{-i2\pi ft} dt$$

- Laplace transformation
 - $s := \sigma + j\omega$
 - Defined for all $t \ge 0$ (causal system)
 - $f(t) = 0, \forall t < 0$

$$F(s) = \int_{t=0}^{\infty} e^{-st} f(t) \, dt$$

• Inverse Laplace transformation

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi j} \int_{s=\alpha-j\infty}^{\alpha+j\infty} F(s) \cdot e^{st} \, ds$$

Find transformation as table in www

Sl. No.	Time Domain f(t)	S Domain F(s)
		t
1	Unit impulse $\delta(t)$	1
2	Unit step	$\frac{1}{s}$
3	t	$\frac{1}{s^2}$
4	t^n	$\frac{n!}{s^{n+1}}$
5	f'(t)	sF(s)-f(0)
6	f''(t)	$s^2F(s) - sf(0) - f'(0)$
7	e ^{at}	$\frac{1}{s-a}$; s > a
8	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
9	sin at	$\frac{a}{s^2 + a^2} ; s > 0$
10	cos at	$\frac{s}{s^2+a^2}; s>0$

http://electricalstudy.sarutech.com/images/laplace-transform-table1.gif

From time domain

$$\vec{V} + (\omega_{1/2} - j\Delta\omega) \vec{V} = \omega_{1/2}R_L \vec{I}$$

To frequency domain

$$\vec{sV} + (\omega_{1/2} - j\Delta\omega) \vec{V} = \omega_{1/2}R_L \vec{I}$$
$$(s + (\omega_{1/2} - j\Delta\omega)) \vec{V} = \omega_{1/2}R_L \vec{I}$$

$$G(s) = \frac{\overrightarrow{V}}{\overrightarrow{I}} = \frac{\omega_{1/2}R_L}{s + (\omega_{1/2} - j\Delta\omega)}$$

Complex I/Q representation:

$$G(s) = \frac{\overrightarrow{V}(s)}{\overrightarrow{I}(s)} = \frac{\omega_{1/2}R_L}{s + (\omega_{1/2} - j\Delta\omega)}$$
$$\overrightarrow{V}(s) = \frac{\omega_{1/2}R_L}{s + (\omega_{1/2} - j\Delta\omega)} \cdot \overrightarrow{I}(s)$$

 $\rm I/Q$ representation (MIMO):

$$\dot{V}_I + \omega_{1/2}V_I + \Delta\omega V_Q = R_L \omega_{1/2}I_I$$
$$\dot{V}_Q + \omega_{1/2}V_Q - \Delta\omega V_I = R_L \omega_{1/2}I_Q$$

Assume $\Delta \omega = 0$:

$$\dot{V}_I + \omega_{1/2} V_I = R_L \omega_{1/2} I_I$$
$$\dot{V}_Q + \omega_{1/2} V_Q = R_L \omega_{1/2} I_Q$$

 \rightarrow 2 decoupled 1st order SISO systems

$$G_{II}(s) = G_{QQ}(s) = \frac{V_x}{I_x} = \frac{R_L \omega_{1/2}}{s + \omega_{1/2}}$$

S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

First order system:

 $G(s) = \frac{b_0}{s + a_0}$

Static gain: $K_P = b_0/a_0$ for s $\rightarrow 0$ Time constant: $\tau = 1/a_0$ Step response: $y(t) = K_p(1 - e^{-t/\tau})$

System with time delay T_d :

$$G_d(s) = G(s) \cdot e^{-T_d \cdot s}$$

G(s) ... time delay-free system $G_d(s)$... time delayed system

Bode magnitude and phase plot

- Magnitude: $20 \log_{10}(|G(s = j\omega)|)$
- Phase: $\arg(G(s=j\omega))$

First order system:

 $G(s) = \frac{b_0}{s+a_0}$

Static gain (s \rightarrow 0): $K_P = b_0/a_0$ Corner frequency: $f_c = a_0$

System with time delay T_d :

$$G(s) = G_0(s) \cdot e^{-T_d \cdot s}$$

G₀(s)... time delay-free system
Time delay with gain of 1 and phase roll-off of:

$$|e^{-T_d \cdot s}| = 1$$

$$\angle (e^{-T_d \cdot s}) = \phi(\omega) = -T_d \omega \quad [rad]$$
$$= -T_d \omega \frac{180}{pi} \ [deg]$$

S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

Example:

$$\omega_c = a_0 = 2\pi \cdot 214 \text{ Hz},$$
$$K_P = \frac{b_0}{a_0} = 1 \text{ and}$$
$$T_d = 10\mu s$$

• Serial connection

• Parallel connection

• Feedback

$$\begin{array}{c} u_1 \\ & & \\ \end{array} \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & &$$

$$\begin{array}{c}
 u_1 \\
 \hline
 G_1(s) + G_2(s) \\
 \hline
 Y_1(s) = (G_1(s) + G_2(s)) \cdot U_1(s)
\end{array}$$

A system model is a simplified representation or abstraction of the reality. Reality is generally too complex to copy exactly.

Much of the complexity is actually irrelevant in problem solving, e.g. controller design.

\rightarrow System identification using special input signals

System Identification using Matlab

- 1. Ways to control
- 2. Control Objective
- 3. Stability
- 4. Gang of four
- 5. Types of control

Ways to Control

Precise knowledge on I/O behavior; No action on disturbances

Precise knowledge on I/O behavior; Act by feedforward e.g. on disturbances → No action on signal to be controlled

Feedback and regulate the signal to be controlled by acting on the input

New system with new properties ! See: connection of systems

Make the output y(t) behave in a desired way by manipulating the plant input u(t)

- Regulator problem (output disturbance rejection with constant reference)
 - Counteract the effect of a disturbance d_y(t)
- Servo problem (reference tracking without disturbance)
 - Manipulate u(t) to keep the output y(t) close to the reference r(t)

Goal: in both cases the control error e(t) = r(t) - y(t) should be minimal

Additional: High robustness to plant/process variations $\tilde{G}(s) = G(s) + \Delta G(s)$ \rightarrow e.g. certain phase margin ~60 deg (see next slide)

A system is stable if for a given bounded input signal the output signal is bounded and finite (BIBO stable); if not, the system is called unstable

Stable if impulse response absolutely integrable and bounded

Stable or unstable linear systems

- Open loop or closed loop
- Unstable open loop: Stabilize closed loop system behavior using feedback controller

Stability check in s-domain by e.g.:

- Pole location (all poles in left half plane)
- Bode diagram
- Nyquist plot
- H-infinity norm for MIMO systems Non-linear systems \rightarrow harmonic balance

→ Check stability for "Gang of four (six)"

S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0}$$

This system has *n* poles and *m* zeros, and if it is physically realizable we have $n \ge m$.

A system is stable if for a given bounded input signal the output signal is bounded and finite (BIBO stable); if not, the system is called unstable

Stable if impulse response absolutely integrable and bounded

Stable or unstable linear systems

- Open loop or closed loop
- Unstable open loop: Stabilize closed loop system behavior using feedback controller

Stability check in s-domain by e.g.:

- Pole location (all poles in left half plane)
- Bode diagram
- Nyquist plot
- H-infinity norm for MIMO systems Non-linear systems \rightarrow harmonic balance

→ Check stability for "Gang of four (six)"

Response of y(t) to disturbance d(t) and response of u(t) to measurement noise n(t):

$$G_{yd} = \frac{G}{1+GC} \quad G_{un} = -\frac{C}{1+GC}$$

Robustness to process variations:

$$S = \frac{1}{1+GC}$$
 and $T = \frac{GC}{1+GC}$

S is called sentitivity function T is called complementary sentitivity function Both depends on the loop transfer function L = GCCoupling: S + T = 1Typical: S(0) small, $S(\infty) = 1$; T(0) = 1, $T(\infty)$ small

(Gang of six (6 TF to be checked) using reference filter) S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

Classical FB Control

Frequency domain analysis
 → Bode Diagram, Nyquist Plot

PID-Control

 $\frac{U(s)}{E(s)} = C(s) = K_P$

$$u(t) = K_P \left(e(t) + \frac{1}{T_I} \int_{t_0}^t e(\tau) d\tau + T_D \dot{e}(t) \right)$$
$$U(s) = K_P \left[1 + \frac{1}{T_I s} + T_D s \right] E(s)$$

S. Pfeiffer, CAS on FELs and ERLs, Hamburg, 07.06.2016

Modern FB Control

- Time domain analysis
- \rightarrow State space representation

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

- → Linear-quadratic regulator (LQR) etc. $u(t) = -K \cdot x(t)$
- → H-infinity optimization by shaping the sensitivity and complementary sensitivity function

- RF field feedback loop
- Microphonics suppression
- Disturbance rejection

Example: RF field Control @ FLASH

Example: RF field Control @ FLASH

Pulsed mode (10 Hz) @ 1% duty cycle LLRF Controls:

- Iterative Learning Control for pulse to pulse FF adaptation
- MIMO FB for intra-pulse FB System Identification
- Low frequency
- High frequency

Iterative Learning Control

- Minimizing repetitive P2P errors **MIMO Controller (IIR filter)**
- Notch for $8\pi/9$ mode at ADC
- MIMO suppresses $7\pi/9$ mode

Example: RF field Control @ FLASH

Microphonics and its Suppression

- From pulsed mode to CW: smaller cavity bandwidth (Q_L ... 10⁷)
- Microphonics dominate system performance
- Harmonic and stochastic microphonics
 - Distribution along cavities or modules (phase advance)
 - Mechanical response on the individual cavities

... due to compacting machine @ XFEL injector (distance ~ 400m)

Example: Microphonics Suppression

Example: Microphonics Suppression

Cavity PLL Feedback (LP + PI) Microphonics 0 ¥ 3-stub tuner sources $\Delta \Phi$ 1.3 Ghz Adaptive Feedforward • Piezo DAC $\Delta \omega = e[n]$ ADC PI Σ Y[n] BP Filter coefficient FIR Φ Gain update Filter W[n] X[n] Measurement $Y(n) = \vec{W^{\mathrm{T}}}(n-1) \cdot \vec{X}(n)$ of reference $\vec{W}(n) = \vec{W}(n-1) + \frac{\mu}{\left\|VAR(\vec{X}(n))\right\|} \cdot e(n)\vec{X}(n)$ -IFFT FFT LMS Filter algorithm -1 Transfer function Blue: open loop 10 Detuning (Hz) Red: PI control 5 Black: FF+PI control 10 20 30 40 50 60 70 80 90 100 0 Time (s)

Passive Microphonics Reduction

Measurement at CMTB - DESY

Courtesy of: Jürgen Eschke

Example: Disturbance rejection @ cERL (KEK)

• PI feedback loop (CW mode) and disturbance rejection loop

- Reference: F. Qiu et al., Phys. Rev. ST Accel. Beams 18, 092801, 2015.
- Estimate the disturbance d using plant inverse and filter Q(s)

Beam loading as disturbance 1.6ms and 800 μA

This approach may also be helpful for microphonics reduction

Outlook: Timing and Synchronization

Basic assumption for digital control: Clock is working exactly! Reality: Clock is working up to some accuracy & precision ... Talk tomorrow: Timing and Synchronization, Marco BELLAVEGLIA (INFN-LNF)

The clock is synchronized to the MO. The clock is connected to all digital LLRF components!

• FPGA, ADC, DAC, etc.

Goal: Improve the clock (timing and synchronization system)

Question???

Thank you for your attention!

Contact: sven.pfeiffer@desy.de

Bibliography

- [Nakamura.2014] "Nakamura, Norio and others", Present Status of the Compact ERL at KEK, IPAC 2014
- [Miura.2015] "Performance of the cERL LLRF System" LLRF workshop, 2015
- [Hoffmann.2008], DESY Thesis; http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis-08-028
- [Omet.2014], *http://www-lib.kek.jp/cgi-bin/kiss_prepri.v8?KN=201424001&OF=8*, PhD Thesis, KEK, 2014
- [Pfeiffer.2014], DESY Thesis, http://www-library.desy.de/cgi-bin/showprep.pl?desy-thesis-14-030
- [Schilcher.1998], Vector sum control of pulsed accelerating fields in lorentz force detuned superconducting cavities, Ph.D. thesis, Hamburg University, 1998
- [Vogel.2007], High gain proportional rf control stability at TESLA cavities. *Physical Review Special Topics Accelerators and Beams* 10, 2007
- [Ljung.1999], (1999), System Identification, Theory for the User, Prentice-Hall Inc. USA, 2nd edition, ISBN 0-13-656695-2.
- [Skogestad.2005], Skogestad, S. and Postlethwaite, I. (2005), *Multivariable feedback control: Analysis and design,* Chichester: Wiley, 2 edition, ISBN 9780470011676
- [Stein.2003] "Respect the Unstable," IEEE Control Systems Magazine, Vol. 23, No. 4, pp. 12-25, August 2003.
- [Rybaniec.2016], *FPGA based RF and piezo controllers for SRF cavities in CW mode*, 20th Real Time Conference, 2016, Padova, Italy
- Pictures from DESY website; *https://media.desy.de/DESYmediabank/?l=de&c=3976* and other sources in www

Brief history of feedback control (human designed)

- Automatic feedback control systems have been known and used for more than 2000 years (300 B.C. by a Greek mechanican)
 - Water clock slow tickle of water into measuring container
 - Ensure at constant flowing rate → Float regulator similar to todays flush toilet
 - − If water level in the supply tank not at correct level the float opens or closes the water supply \rightarrow 1st feedback to keep supply tank at constant level
- Around 1681 Denis Papin's invention of a safety valve for regulation of steam pressure
- In the 17th century Cornelis Drebbel invented a purely mechanical temperature control system
- 1745 speed control was applied to a windmill by Edmund Lee
- Nowadays control systems theory began in the latter half of the 19th century
 - Started with stability criteria for a third order system based on the coefficients of the differential equation

[Nise, Norman S. 2004, Control Systems Engineering, 4th Edition, Wiley, USA.]

Digital vs. Analog Control

	Digital	Analogue
Implementation	Learning curve + s/w effort	Easier/known 🙂
Latency	Longer	Short 🙂
DAQ/control	I/Q sampling (also direct) or DDC	Ampli/phase , IF downconversion
Algorithms	Sophisticated. 🙂 State machines, exception handling	Simple. Linear, time-invariant (ex: PID)
Multi-user	Full 🙂	Limited
Remote control & diagnostics	Easy, often no additional h/	Difficult, extra h/w
Flexibility / reconfigurability	High (easier upgrades) 🙂	Limited
Drift/tolerance	No drifts, repeatability 🙂	Drift (temperature), components tolerance
Transport distance without distortion	Longer 🙂	Short
Radiation sensitivity	High	Small 🙂

M. E. Angoletta "Digital LLRF"

EPAC'06

RF detection

- 1. Direct Amplitude and Phase Detection
 - \rightarrow No down-conversion
 - \rightarrow Analog or digital (up to 800MHz ADCs)
- 2. Baseband sampling (analog I/Q detector)
- 3. Digital I/Q sampling
- 4. IF Sampling (non-I/Q sampling)

 $I = A \cdot \cos \phi$ $Q = A \cdot \sin \phi$ $A = \sqrt{I^2 + Q^2}$ $\phi = \operatorname{atan2}(Q, I)$ RF (IF)

2.-4. is based on mixing a reference signal (LO) with the RF signal → RF signal down-converted to an intermediate frequency and into base-band

- Analog I/Q detector (direct conversion from RF to BB)
- Multiplication with LO
- LO split by hybrid \rightarrow phase difference of 90 deg

$$A = \sqrt{I^2 + Q^2}$$

an $\varphi = \frac{Q}{I}$.

2 ADCs necessary for digitalization
→ Higher costs, more space, reduced reliability

t

- Alternative to baseband sampling: only 1 ADC and switched LO (by 90 deg)
- Output signal represents I, Q, -I, -Q
- Field vector computed by 2 samples (I/Q value) and shifted by n · 90 deg (n...0,1,2,3)

RF signal mixed down to an intermediate frequency (IF)

$$y_{RF}(t) = A_{RF} \cdot \sin(\omega_{RF}t + \phi_{RF}) \qquad \underbrace{\text{RF}}_{\text{LO}} \quad IF \qquad y_{IF}(t) = y_{RF}(t) \cdot y_{LO}(t)$$
$$y_{LO}(t) = A_{LO} \cdot \cos(\omega_{LO}t + \phi_{LO}) \qquad \underbrace{\text{LO}}_{\text{LO}} \qquad |f_{IF}| = |f_{RF} - f_{LO}|$$

$$y_{IF}(t) = \frac{1}{2} A_{RF} A_{LO} \cdot (\sin[(\omega_{RF} - \omega_{LO})t + (\phi_{RF} - \phi_{LO})]$$
Lower sideband
+ $\sin[(\omega_{RF} + \omega_{LO})t + (\phi_{RF} + \phi_{LO})])$ Upper sideband

If LO and RF frequency equal \Rightarrow lower sideband at DC, upper sideband at 2 f_{RF} If phase is 0 deg between LO and RF \Rightarrow amplitude detector (in phase) I If phase is 90 deg between LO and RF \Rightarrow phase detector (in quadrature) Q

RF signal mixed down to an intermediate frequency (IF)

ightarrow sampled and mapped into base-band

$$y_{IF}(t) = \frac{1}{2}A_{RF}A_{LO} \cdot (\sin[(\omega_{RF} - \omega_{LO})t + (\phi_{RF} - \phi_{LO})]$$
 Lower sideband Low pass
$$+ \sin[(\omega_{RF} + \omega_{LO})t + (\phi_{RF} + \phi_{LO})])$$
 Upper sideband filtered

$$\ddot{V}(t) + \frac{\omega_0}{Q_L}\dot{V}(t) + \omega_0^2 V(t) = \frac{\omega_0 R_L}{Q_L}\dot{I}(t)$$

Solution for input signal $I(t) = \hat{I}_0 \sin(\omega t)$ (RF source) is given as cavity properties with approximation for high Q cavities :

$$V(t) = \hat{V}\sin(\omega t + \psi(t))$$
$$\hat{V} \approx \frac{R_L \hat{I}_0}{\sqrt{1 + \left(2Q_L \frac{\Delta\omega}{\omega}\right)^2}} \quad ; \quad \tan\psi \approx 2Q_L \frac{\Delta\omega}{\omega}$$

 $\omega_0 \ldots$ Cavity resonance frequency

 ω ... Driving frequency

 $\frac{Tuning \ angle}{\psi(t)} = \angle (I(t), V(t))$

Angle between driving current and cavity voltage

As cavity properties with approximation for high Q cavities:

Resonance curve for amplitude and phase in steady state (no transients)

 $\frac{\text{Half cavity bandwidth}}{\omega_{1/2} = \frac{\omega_0}{2Q_L} = \frac{1}{\tau} (\ll \omega)$

With time constant au

The high (carrier) frequency cavity model is not of our interest for studying the cavity response under feedback operation; we are interested at the baseband model (envelope of HF signal)!

 $\ddot{V}(t) + 2\omega_{1/2}\dot{V}(t) + \omega_0^2 V(t) = 2\omega_{1/2} R_L \dot{I}(t)$

Example: RF GUN Frequency Control @ FLASH

- RF gun temperature disturbance rejection
- Normal conducting RF (NRF) cavity as heater @ FLASH

Detuning:
$$\psi = \phi_P - \phi_F$$
; $\Delta T = \frac{\tan \psi \cdot f_0}{2Q_L K_{f/T}}$
 $K_{f/T} = 21 \text{ kHz/K}$
 $Q_L = 10.000$
 $f_0 = 1.3 \text{ GHz}$
Resolution ~ 0.1 mK
(Sub-mK)

Extremely precise frequency control is essential for all NRF cavities due to limited FB gain caused by high bandwidth (e.g. QL = 10000 \rightarrow f_{1/2}= 65kHz) and relatively large system delay (~2 µs)!

Same y-scaling for both panels