

X-Ray FEL Oscillator

Kwang-Je Kim

June 6, 2016

CERN Accelerator School

Hamburg, Germany

Hard X-Ray ($\lambda \leq A$) FEL: Self-Amplified Spontaneous Emission (SASE)

- Excellent time resolution ($\Delta \tau \sim fs$)
- High transverse coherence
- Limited temporal coherence ($\Delta\omega/\omega \sim 10^{-3} \rightarrow 10^{-5}$)
- LCLS, SACLA, Euro-XFEL, Swiss XFEL, PAL-XFEL, FERMI (soft x-ray),...

KJK CAS Hamburg

2

Free Electron Laser Oscillator (FELO)

- A low-gain device with a low-loss x-ray cavity
- Optical pulse formed over many electron passes
 - The FELO output is stable even with electron beam fluctuation
- An FELO may be regarded as an infinite sequence of undulator, mode shaper, and fresh e-beam

An FELO for hard X-Rays; XFELO

- XFELO was first proposed by R. Collela and A. Luccio at 1983 BNL workshop by using Bragg reflectors as high reflectivity normal incidence mirrors
 - The same WS where BNP proposed SASE
 - Taking into account of the advances in accelerator (ERL)and x-ray optics, it was "resurrected" in 2008 by KJK, Y. Shvyd'ko, and S. Reiche

- Tuning is possible with the four-crystal, zigzag cavity
 - R. M.J. Cotterill (1968, ANL); KJK and Y. Shvyd'ko (2009)
- Electron beam with a constant, ~ MHz rep rate will be ideal
 KIK CAS Hamburg

Filtering by crystals expedite and stabilize the development of the ultra-narrow spectrum. Spectrum saturation takes much longer than intensity saturation

An X-Ray FEL Oscillator is fully coherent and stable

- Full transverse and longitudinal coherence
- Transform limited BW: Δħω = (3-10) meV for (0.3-1) ps pulse length
- 10⁸-10⁹ γ's /pulse, or 10¹⁴-10¹⁵ γ's /second
- Complete polarization control with crossed U
- →100-fold higher spectral flux, 10,000-fold higher brightness than USR

Electron energy can be reduced for a harmonic XFELO for high-quality electron beam (H. X. Deng and Z. M. Dai)

- Operation at fundamental:
 - □ λ=λ_U (1+ K²/2)/2γ²
 - − SASE: $E_e \ge 8$ (SLAC:14) GeV for high exponential gain
 - Oscillator: E_e ≥ 7 GeV (gain need only overcome the roundtrip loss)
- Operation at harmonics h:
 - □ $\lambda_{h} = (\lambda_{U} / h)(1 + K^{2}/2)/2\gamma^{2}$
 - − Oscillator: Madey's theorem → gain ∞ $h \rightarrow E_e \sim 4$ GeV, h=5,7 gives sufficient gain/pass
 - At this energy SASE produces negligible harmonic power of hard x-rays
- Harmonic XFELO can produce hard x-rays with lower
 E-beam energy→ reduced size and cost

4 GeV LCLS II SCRF linac can drive 5th harmonic XFELO

 $E_{\rm ph} = 14.4 \text{ keV}, 2\vartheta_{\rm r} = 18.4^{\circ}, C^{*}$ (337) $E_{\rm ph} = 13.8 \text{ keV}, 2\vartheta_{\rm r} = 29.3^{\circ}, C^{*}$ (355) $E_{\rm ph} = 9.13 \text{ keV}, 2\vartheta_{\rm r} = 17.0^{\circ}, C^{*}$ (333)

Performance of LCLS-II based XFELO

	Parameter	Value	Units
Electron bunch	Energy	4.0	GeV
	Peak current	100-140	Α
	Bunch charge	100	pC
	Bunch length	400	fs
	Energy spread	0.1	MeV
	Norm. emittance	0.3	μm
	Undulator period	2.6	cm
	Undulator K	1.433	
	# undulator periods	1250	
Optical cavity	Loss/round trip	15	%
X-ray pulse	5 th harmonic energy	14.4	keV
	X-ray pulse length (FWHM)	500	fs
	Spectral BW (FWHM)	5	meV
	Pulse rep rate	1-2	MHz
	# of photons/pulse	3	10 ⁸

Technical Issues

- Electron injector producing the required beam qualities
- Diamond reflectivity and thermo-mechanical properties
- Stability of x-ray cavity
- Low-loss x-ray focusing optics
 - Curved, grazing incidence mirror
 - Be CRL 🗞
- Diamond survival under intense x-ray environment

Injector Design: For $I_p < 100$ A, the small emittance & energy spread from the gun can be maintained thru the injector. A de-chirper removes the energy slope from bunchers (W. Qin, Y. Ding, K. Bane,..)

Diamond: Excellent Thermo-Mechanical Properties

TISNCM diamonds tested for reflectivity & Crystal stabilization works at 1 Hz BW

Diamond Reflectivity Studies: C(008) @ 14.3 keV

HERIX Monochromator Stabilization

Focusing optics for X-ray cavity

 Grazing incidence KB mirrors are being perfected at JTEC, but are large & heavy.

Be-CRL can be a low-loss device for large focal length application (>20m)

Estimates for Damage Thresholds (N. Medvedev)

Single shot effects:

- x 1) Nonequilibrium electron kinetics ~100 fs
- × 2) Nonthermal melting ~150 fs (0.7 eV/atom, N_e ~1.5%)
- X 3) Thermal melting ~1-10 ps
 Multishot effects:
- × 1) Melting, stresses, fatigue (require heating)
- × 2) Electrons recombine: fluorescence <1 ns
- x 3) Point defects are not produced

KJK CAS Hamburg

4) Surface effects may play a role ~1 μm

otorrenergy

APS experiment for the resilience of diamond under x-ray exposure in an XFELO cavity up to

- 4 hours (T. Kolodziej, Yuri, Stan, Deming Shu,..)
 - 35 ID-B: 8 kW/mm² in 120x30 μm² spot (~XFELO)
 - No evidence of damage under medium resolution topography
 - Possible shifts of rocking curve by < 1 meV

Science with an XFELO

- Enhanced IXS (MR or HR) for elucidating the emergent phenomena of strongly correlated system
 - High Tc Superconductivity,..
- Moessbauer, XPCS,...
- Nonlinear quantum optics
- A science retreat at SLAC in June 29-July 1

measure resonance of 57 Fe sample, adjust cavity length with piezo:

With pico-meter stabilization, XFELO II can produce x-ray spectral comb, opening up experimental quantum x-ray optics

Ultimate X-Ray Facility: X-ray Oscillator-Power Amplifier

XFELO Low current, ps electron beam Full coherence Ultra-fine spectrum Seeded Hi Gain Amplifier High-current, fs electron beam Tapering

- Super conducting accelerator
- Interleaved bunches from two injectors

• Stable, high-power, fs x-ray pulse

Concluding remarks

- An XFELO will enhance the capability of X-ray FEL as a scientific instrument
 - Provide high rep rate hard x-rays of unique properties for LCLS II
 - Complements SASE (ultrafast)
- We have demonstrated:
 - The diamond mirror has high reflectivity, and seems to survive the high-intensity environment.
 - Be-CRL will be a compact and low loss focusing element
 - The specs for placing XFELO elements at 1 Hz BW
- The drive accelerator could be
 - ERL
 - USR with a bypass and kickers, and pulsed operation
 - European XFEL (pulsed or CW) and LCLS II (CW)
- A "perfect" facility with HGXFEL& XFELO), together (XFELO seeding HGFEL), or separately