
5 3D FEL analysis

Chapter 5 extends the one-dimensional (1D) theoretical analysis of FELs to the

three-dimensional (3D) regime. Although the FEL interaction is predominantly

longitudinal in nature, transverse physics cannot be neglected if one wants to

have a complete picture of the FEL. Specifically, we must understand the roles

of radiation diffraction and guiding, and the how the electron beam emittance

and betatron motion in the undulator affect performance. We first describe these

effects qualitatively in Sec. 5.1, where we emphasize the underlying physical pic-

ture. In Sec. 5.2 we revisit the electron trajectory in the undulator, taking into

account the 3D undulator magnetic field and the coupling of the transverse de-

grees of freedom to the longitudinal motion. Section 5.3 generalizes the FEL pen-

dulum equations and the 1D field equation to 3D by including these transverse

effects. The low-gain solution will be presented in Sec. 5.4 in the form of a gen-

eralized Madey theorem. To solve the coupled Maxwell-Klimotovich equations

in the high-gain regime, Van Kampen’s normal mode expansion is introduced in

Sec. 5.5, and a 3D dispersion relation is derived for the radiation growth rate in

terms of four universal scaled parameters. Finally, a powerful variational solution

is discussed and a handy fitting formula for the FEL gain length is presented

near the end of this chapter.

5.1 Qualitative Discussion

5.1.1 Diffraction and Guiding

A remarkable feature of a SASE FEL is its transverse coherence. As we have dis-

cussed, the spontaneous undulator radiation has a transverse phase space area

that is determined by the electron beam emittance (2πεx)
2. This area is typically

much larger than the diffraction-limited phase space area (λ/2)2, especially at

x-ray wavelengths, so that undulator radiation is composed of many transverse

modes. In a SASE FEL, the initial transverse phase space of the spontaneous

emission also consists of an incoherent sum of many spatial modes. However,

since the FEL interaction is localized within the electron beam near the peak

electron density, there is one “dominant” mode whose transverse size σr is dic-

tated by the beam area, and whose natural divergence satisfies σrσr′ = λ/4π.

Higher order spatial modes either diffract more, which results in greater effective
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Figure 5.1 Illustration of Moore’s guided mode. In the top panel the preferentially
guided mode is plotted in black, while the higher order modes are in gray. The
intensity at each z location is scaled to keep the height of the guided (black) mode
invariant, so that what appears to be a decrease in the power in the higher order
(gray) modes is actually the larger gain of the Gaussian guided profile outstripping the
smaller gain associated with all other modes. The bottom panel compares the natural
diffraction of the radiation with that of the guided mode generated by FEL gain.

losses, or are of larger spatial extent and couple less efficiently to the particles.

Thus, the fundamental mode has the highest effective gain, so that it eventually

becomes the preferred spatial distribution for the SASE radiation. This surviving

fundamental mode appears to be guided after a sufficient undulator distance, a

phenomenon commonly referred to as “optical guiding” or “gain guiding” [1, 2].

We illustrate the general idea of gain guiding schematically in Fig. 5.1. The ini-

tial radiation is assumed to have a broad distribution of many transverse modes.

Since gain is only effective within the central area, however, one “matched”

transverse mode shape is selected over all others, and this mode then appears

to be guided over many vacuum Rayleigh lengths due to the gain. The trans-

verse mode selection is also clearly evident in Fig. 5.2, which was obtained from

a 3D GENESIS simulation of SASE. Initially, the radiation power is randomly

distributed in the transverse plane, but after a sufficient amount of propagation

only one localized coherent mode survives. Note that in order for one Gaussian-

like transverse mode to completely dominate, there must be enough propagation

time for the competing modes to communicate transversely via diffraction.

In the 1D analysis, we introduced the important FEL scaling or Pierce param-

eter ρ, defined through the relation neκ1χ1 = 4k2uρ
3 which is equivalent to

ρ =

(
e2K2[JJ]2ne

32ε0γ3
rmc2k2u

)1/3

=

[
1

8π

I

IA

(
K[JJ]

1 +K2/2

)2
γrλ

2
1

2πσ2
x

]1/3

, (5.1)

where IA = ec/re ≈ 17045 A is the Alfvén current. Many important charac-
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Figure 5.2 Evolution of the LCLS radiation angular distribution at different z
location. Courtesy of S. Reiche.

teristics of the FEL scale with ρ: the gain length and saturation length scale

inversely with ρ, while the bandwidth is proportional to ρ. To be more explicit,

for vanishing e-beam energy spread the ideal gain length is given by

LG0 =
λu

4
√
3πρ

. (5.2)

When 3D effects are included, a different dimensionless combination of pa-

rameters may govern the gain characteristics of the FEL. To see this, consider

the extreme case where the effect of diffraction is “large,” meaning that the ra-

diation mode size is significantly larger than the electron beam size. To better

describe the interaction between the electrons and the radiation in this 3D limit,
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the beam area 2πσ2
x in Eq. (5.1) should be replaced by the diffraction limited

cross section introduced in Ch. 1.2.1, i.e.,

2πσ2
x → 2π

λ1

4π
ZR. (5.3)

Here ZR is the Rayleigh length of the radiation, which from our discussion on gain

guiding ought to be of order a few gain lengths. Thus, by inserting 2πσ2
x → λ1LG

into Eq. (5.1) and then the resulting expression for ρ into (5.2), one can solve

the resulting algebraic equation for the gain length LG to find

L−1
G =

4π

λu

33/4

2

√
I

γIA

K2[JJ]2

(1 +K2/2)
. (5.4)

This equation gives an approximate formula for the growth rate when the 3D

effect of diffraction dominates, specifically, when the optical mode is larger than

the electron beam cross sectional area. Thus, it may be convenient to introduce

the diffraction D-scaling for certain FEL applications as was done in Ref. [3].

Notice that L−1
G scales as I1/2 in the 3D diffractive limit, which is in contrast to

the I1/3 behavior that characterizes the 1D limit when the electron beam size

is larger than that of the optical mode. Additionally, the D-scaling shows that

shrinking the electron beam cross section much below that of the radiation mode

does not further reduce the gain length. In fact, reducing the beam size beyond

a certain point actually tends to increase the gain length, since decreasing the

physical beam size necessarily increases the angular spread of an electron beam

with non-zero emittance. While we will investigate the e-beam and radiation

divergence further in the next section, it is evident from this discussion that the

optimal electron beam size should roughly match the size of the radiation beam:

σx ∼ σr =
√

εrZR ∼
√
εrLG, (5.5)

where εr = λ1/4π is the radiation emittance.

The above qualitative arguments are useful for understanding the effect of

diffraction and for estimating the gain length of certain high-gain FEL projects

operating in the infra-red and visible wavelengths, where the optical mode size is

larger than the e-beam size. Nevertheless, we will continue to scale quantities by

the dimensionless parameter ρ for two reasons. First, ρ-scaling is more relevant

for x-ray FELs because the typical optical mode size is smaller than the rms

beam size. Second, ρ does not require introducing the (formally undetermined)

Rayleigh range, and instead relies on the electron beam cross sectional area:

ρ =
1

2γr

[
I

IA

(
λuK[JJ]√
22πσx

)2
]1/3

. (5.6)

5.1.2 Beam Emittance and Focusing

An electron beam with finite emittance εx has a rms angular spread σx′ = εx/σx,

so that its size will expand in free space as we discussed in Ch. 1.1.4 and ex-
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pressed in Eq. (1.26). Hence, to keep a nearly constant e-beam size and maximize

the FEL interaction in a long undulator channel requires proper electron focus-

ing. As shown in the next section, the undulator magnetic field does provide a

“natural” focusing effect. The natural focusing strength, however, is typically too

weak, so that external focusing by quadrupole magnets is often required. This

focusing is used to decrease the beam size, thereby increasing the ρ parameter

and decreasing the gain length. As mentioned in the previous section, decreasing

the beam size below that of the optical mode may actually degrade the FEL

performance, because the increasing angular spread introduces a spread in the

resonant wavelength. This effect is similar to that of energy spread, and can be

understood by considering the FEL resonance condition

λ1(ψ) =
λu

2γ2

(
1 +

K2

2
+ γ2ψ2

)
, (5.7)

where ψ is the angle the particle trajectory1 makes with respect to the z-axis.

From Eq. (5.7), we see that the spread in particle angles given by Δψ = σx′

causes a spread in the resonant wavelength

Δλ

λ1
= σ2

x′
λu

λ1
=

εx
βx

λu

λ1
. (5.8)

To not adversely affect the FEL gain, we demand that the induced wavelength

variation due to the angular spread be less than the FEL bandwidth ∼ ρ, namely

that
Δλ

λ1
= σ2

x′
λu

λ1
� ρ ≈ λu

4πLG
. (5.9)

Due to optical guiding, the radiation Rayleigh range is of order the gain length,

ZR ∼ LG, so that (5.9) implies that the electron beam angular divergence should

be no more than that of the radiation:

σx′ =

√
εx
βx

≤
√

εr
LG

∼ σr′ . (5.10)

The inequalities regarding the beam size (5.5) and angular divergence (5.10)

together require

εx,y � εr =
λ1

4π
, (5.11)

while the optimal focusing beta function for a given emittance saturates the

inequality (5.10):

βx ∼ LG
εx
εr

. (5.12)

A smaller beam emittance allows for a tighter focused beam size, and hence a

smaller gain length. In the following sections, we expand upon these qualitative

arguments by quantitatively studying the effects of diffraction, guiding, beam

emittance, and betatron motion on the FEL gain.

1 We found essentially the same formula in Eq (2.49) in terms of the optical angle φ, since
one can exchange φ ↔ ψ by redefining the optical axis.
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5.2 Electron Trajectory

In the previous chapter on 1D FEL theory, we considered motion in the undulator

field

B(0, 0, z) = −B0 sin(kuz)ŷ, (5.13)

and showed that the electron trajectory in the transverse plane was given by the

“wiggle motion”

xw(z) =
K

γku
sin(kuz) yw(z) = 0, (5.14)

where K ≡ eB0/mcku is the dimensionless deflection (or undulator) parameter.

Equation (5.14) represents the ideal trajectory of an electron injected along the

optical axis of the undulator. Our description of the full transverse dynamics

associated with arbitrary initial conditions will average over the fast oscillations

in the undulator field in a manner similar to that of the previous chapter. There,

the averaged equations described the slowly evolving longitudinal coordinates

(θ, η); in this chapter, we will include the transverse degrees of freedom, paying

particular attention to the variation in phase θ caused by non-zero (x,p). We

write the transverse coordinates as a sum of the wiggle motion and the slow

(betatron) evolution:

x(z) = xw(z) + xβ(z), (5.15)

y(z) = yβ(z). (5.16)

In Eqs. (5.15)-(5.16), xβ(z) is the slowly evolving part of x that represents

the transverse beam envelope. If the magnetic field (5.13) described an actual

undulator, for example, than xβ(z) = x(0)+x′(0)z, and the transverse dynamics

would be simple rectilinear motion2. Realizable undulator fields, however, focus

the electrons transversely which results in a slow oscillatory motion whose period

is much longer than the undulator wavelength λu. The combined fast (wiggle)

and slow (betatron) motion is shown in Fig. 5.3.

In general, the amplitude of the betatron oscillation is larger than that of the

undulator wiggle motion. To determine the betatron motion more precisely, we

must investigate the magnetic field at points other than those along the z-axis.

5.2.1 Natural Focusing in an Undulator

The undulator field Eq. (5.13) is only valid very near the y = 0 plane because it

does not satisfy the vacuum Maxwell equations in 3D [i.e., the curl of Eq. (5.13)

does not vanish]. An exact solution of Maxwell’s equations describing a planar

2 This is the transverse motion we used in Ch. 2.4 to study undulator radiation. It is an
appropriate approximation if the undulator length Lu is much shorter than the natural
undulator focusing length ∼ γλu/K.
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Figure 5.3 Combined motion of the wiggler and betatron oscillations in a planar
undulator. The wiggle motion is along x̂, while the betatron oscillation has a much
longer period along ŷ.

undulator with flat poles is

B(x; z) = −B0 cosh(kuy) sin(kuz)ŷ −B0 sinh(kuy) cos(kuz)ẑ. (5.17)

This reduces to Eq (5.13) when y = 0, while the ẑ-component of B accounts for

the fringe field shown in Fig. 5.4(a). The Lorentz force on an electron due to the

3D undulator field is given by

−e[v ×B] = −e

⎡
⎢⎢⎢⎢⎢⎢⎣

Bz
dy

dt
−By

dz

dt

−Bz
dx

dt

By
dx

dt

⎤
⎥⎥⎥⎥⎥⎥⎦
=

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

γm
dx

dt

γm
dy

dt

γm
dz

dt

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.18)

The velocity along x can be determined if we notice from (5.17) that

−e

(
Bz

dy

dt
−By

dz

dt

)
=

eB0

ku

d

dt

[
cosh(kuy) cos(kuz)

]
. (5.19)

Thus, the x̂-component of (5.18) can be directly integrated, and we find that

x′ ≡ dx

dz
=

dx/dt

dz/dt
≈ K

γ
cosh(kuy) cos(kuz) + x′(0), (5.20)

where we approximate dz/dt ≈ c. This result follows simply from the Hamilto-

nian formalism of Appendix A, for which (5.20) is a consequence of the conser-

vation of canonical momentum along x̂. Furthermore, we see that (5.20) yields

similar wiggle motion to the 1D result (5.14), only now the oscillation ampli-

tude depends slowly on the y coordinate. Inserting the velocity (5.20) into the

ŷ-component of the Lorentz force (5.18) and neglecting the slow and small time

dependence of γ, we find that the motion in the vertical plane is governed by

y′′ ≈ −K2ku
γ2
r

cos2(kuz) sinh(kuy) cosh(kuy)

≈ −
(
Kku
γr

)2

cos2(kuz)y (5.21)
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Figure 5.4 (a) The fringe magnetic field of a flat face planar undulator that gives rise
to natural focusing. (b) Illustration of a parabolic-pole faced undulator that focuses
the beam in both directions.

to first order in kuy. After averaging over an undulator period, this leads to the

harmonic oscillator equation

y′′ = −k2n0y, with kn0 =
Kku√
2γ

≡ 1

βn
. (5.22)

We see that there is a restorative force along y, so that in the vertical plane

the beam’s natural beta function βn is given by the inverse of the oscillation

frequency kn0. The natural focusing action in y (but not x) could have been

anticipated by realizing that the fast oscillations lead to an average (pondero-

motive) force that pushes particles towards regions of lower field strength.

Natural focusing in both planes can be achieved by designing the magnitude

of the magnetic field to be a minimum on axis. For example, one can shape the

undulator pole faces to have a parabolic profile [4] as shown in Fig. 5.4(b), in

which case the magnetic field is

B = −B0

ky

[
kx sinh(kxx) sinh(kyy) sin(kuz)x̂

+ ky cosh(kxx) cosh(kyy) sin(kuz)ŷ

+ ku cosh(kxx) sinh(kyy) cos(kuz)ẑ
]
,

(5.23)

with k2x + k2y = k2u to satisfy Maxwell’s equations in vacuum. The field (5.23)

leads to natural focusing in both directions, and it can be shown that the natural

focusing strength in the x and y planes satisfy k2nx + k2ny = k2n0.

To summarize, the transverse motion in a planar undulator is given by

x = xw + xβ y = yβ (5.24)

with the wiggle motion xw given by integrating the velocity equations in the

wiggler (5.20), and the betatron motion xβ is given by

xβ = x0 cos(knxz) +
x′0
knx

sin(knxz) (5.25a)

yβ = y0 cos(knyz) +
y′0
kny

sin(knyz). (5.25b)
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Here, the value of the natural undulator focusing kn depends on the pole shape,

with k2nx + k2ny = k2n0. The simple harmonic motion in the transverse direction

conserves the action Jy = (p2y + k2nyy
2)/2kny as the electron executes circular

motion in the phase space (kn0y, py) = (kn0y, y
′). If the poles are shaped the

invariant Jx can be constructed in an analogous manner; in either case the

motion conserves knxJx, whose limit is p2x/2 for knx → 0.

While the evolution of the transverse degrees of freedom is largely independent

of the longitudinal ones, the equation of motion for the ponderomotive phase

does depend upon p. This coupling arises because particles of equal energies but

different transverse momenta have different longitudinal velocities, which results

in a spread of θ due to the variation in the resonance condition. To be explicit,

we consider the average longitudinal velocity scaled by c:

v̄z
c

=

√
1− x′2 − 1

γ2
≈ 1− 1

2

(
x′2 + y′2 +

1

γ2

)
. (5.26)

For a planar undulator with flat poles, (5.20) expresses both the wiggle motion

and slow drift along x̂, while (5.22) describes the simple harmonic motion in ŷ.

Averaging over an undulator period, we have

x′2 + y′2 =
K2

2γ2
cosh2(kuy) + x′(0)2 + y′(z)2

≈ K2

2γ2
(1 + k2uy

2) + x′(0)2 + y′(z)2

=
K2

2γ2
+ 2 (kn,xJx + kn,yJy) , (5.27)

where we have expressed the angular spread in terms of the actions Jx,y, so

that (5.27) is valid for arbitrary pole shape. Thus, natural undulator focusing

preserves the average longitudinal velocity for each electron. To see why this is

so, consider the betatron motion along y shown in Fig. 5.3: y′ is maximum on

axis while zero at maximum y. The magnetic field at this turning point is larger

than that on axis, resulting in wiggle oscillations along x that have a larger

amplitude. As shown in (5.27), these two effects compensate each other, so that

x′2 + y′2 and, hence, v̄z, is constant. Thus, we have

v̄z
c

= 1− 1 +K2

2γ2
− p2 + k2βx

2

2
= 1− 1 +K2

2γ2
− (kn,xJx + kn,yJy) . (5.28)

The values of Jx and Jy depend on the initial conditions (x(0),p(0)), which

in turn vary from electron to electron. Along any particular particle trajectory,

however, Jx,y are conserved. If we initialize the transverse electron distribution

function to be constant along lines of fixed J (i.e., distribute the particles uni-

formly in the phase conjugate to J ), than the resulting matched beam envelope

is invariant along the undulator as we show in Fig. (5.5). For a beam of emittance
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Figure 5.5 Matched beam in a undulator focusing channel.

εx, the matched rms beam size is

σy ∼
√

εxγrλu

2πK
=

√
εx,nλu

2πK
. (5.29)

The matched beam size (5.29) is typically much larger than the optimal beam size

σopt ∼
√
λ1LG/4π, especially at x-ray wavelengths; for example, if εx = λ1/4π,

than σy/σopt ≈ √
K/2ρ � 1. Thus, high-gain x-ray FELs require additional

focusing provided by external magnets.

5.2.2 Betatron Motion in an External Focusing Lattice

As we saw in the previous section, the natural focusing strength kn0 ∝ γ−1 is

typically too weak to produce a sufficiently small matched beam size, especially

for short wavelength FELs that use high energy electron beams. To further re-

duce the cross sectional area, x-ray FELs usually incorporate alternating-gradient

focusing such as that provided by a FODO lattice. We discussed stable beam

propagation in a FODO lattice in Sec. 1.1.4, concentrating on a focusing lattice

designed to maintain a nearly constant beam size and divergence. While the full

FODO dynamics can be easily incorporated into numerical simulations, we will

make some additional approximations in order to gain further analytic under-

standing regarding the effects of finite beam size, divergence, and emittance on

the FEL performance.

Our discussion of the single particle transverse dynamics requires a few addi-

tional concepts used in accelerator physics. As implied by the fact that the linear

dynamics is governed by a second order differential equation, linear particle op-

tics can be mapped to a generalized simple harmonic oscillator, with natural

coordinates given by the particle amplitude and phase in both transverse di-

rections. In accelerator terminology, the transverse degrees of freedom can be

written in terms of the Courant-Snyder (Twiss) lattice functions βx and αx as

xβ(z) =
√
2Jxβx(z) cosΦx(z) (5.30)

p(z) ≡ x′β(z) = −
√

2Jx

βx(z)

[
sinΦx(z) + αx(z) cosΦx(z)

]
, (5.31)
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Figure 5.6 Variation of the horizontal beta function along the distance of two FODO
cells for a small phase advance per cell. The derivative β′

x ≡ dβx/dz is close to the
values ±2, but the deviation of βx from the average value β̂ is relatively small. The
FODO cell length 2� is assumed to be much smaller than the average beta β̂.

where the betatron phase advance Φx(z) ≡
∫
dz′ 1/βx(z

′) describes the general-

ized rotation in phase space, βx(z) sets the oscillation amplitude, and the actions

Jx and Jy are (distinct) invariants for each particle determined by the initial

conditions. Eq. (5.31) follows from differentiating (5.30) and using the definitions

dΦx/dz = 1/βx and dβx/dz = 2〈x′x〉 = −2αx. From (5.31), we can write the

transverse velocity squared of an electron as

p2 =
2Jx

βx(z)

{
α2
x(z) + [1− α2

x(z)] sin
2 Φx(z) + αx(z) sin[2Φx(z)]

}
≈ 2Jx

βx(z)

{
1± sin[2Φx(z)]

}
, (5.32)

where the final line results from the fact that the particular FODO lattice used

for FELs has αx(z) ≈ ±1 as we showed in (1.33). The beam has positive αx

(negative correlation 〈xx′〉) in the drift space following the focusing quadrupole,

while after the defocusing quad αx ≈ −1. Furthermore, since the average beta-

function is much greater than the drift length, β̄ � �, the phase Φx(z) changes

only a small amount over the drift space, so that we can average the final term

to zero if the gain length is much larger than drift space [5]. Thus, we can

approximate the angle squared in the transverse degrees of freedom by

p2x(z) ≈
2Jx

β̄x
= constant, p2y(z) ≈

2Jy

β̄y
= constant. (5.33)

Although the Jx are constants of motion for each electron, different electrons

generally have different transverse actions. In fact, the ensemble average of Jx

over all the electrons is the rms transverse emittance of the beam, i.e.,

〈Jx〉 = εx 〈Jy〉 = εy. (5.34)

While (5.30)-(5.31) is a complete representation of the transverse motion with

(5.33) a reasonably accurate approximation to p2 for most FEL applications,
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our subsequent analysis requires a more analytically amenable description of the

transverse physics. The model motion should reflect the fact that the rms beam

size is nearly constant in the FODO lattice and, more importantly, have a faithful

representation of the coupling between the transverse and longitudinal degrees

of freedom. While we have seen that the transverse physics is independent of

the longitudinal ones, both p and x affect the evolution of the particle phase by

changing the mean velocity of the particle. In terms of the approximation (5.33),

we have

v̄z
c

≈ 1− 1 +K2/2

2γ2
− Jx + Jy

β̄
. (5.35)

Thus, our approximate motion should at a minimum respect the following char-

acteristics of the true dynamics in the FODO lattice:

1. Result in a stable beam with nearly constant rms size equal to
√

εxβ̄x;

2. Be periodic in z with period given by β̄x/2π = 1/(2πkβ);

3. Possess an invariant whose beam average is proportional to εx that can be

associated with a decrease in v̄z similar to (5.35).

All three conditions can be satisfied by approximating the particle trajectories by

the simple harmonic motion for smooth focusing that we studied in the previous

section. For this reason and for analytic tractability, in what follows we will

approximate the effect of the FODO lattice by a smooth focusing field whose

focusing strength (oscillator frequency) kβ = 1/β̄x.

To see how these approximations work in practice, we include Fig. 5.7 that

compares some aspects of the single particle dynamics in a FODO lattice with

a smooth focusing channel. In Fig. 5.7(a) we plot as a solid line the phase space

ellipses at the center of the drift space after both the focusing (top) and defo-

cusing (bottom) quadrupole. We also include dots representing particle positions

in each half-section after 0 (0.5), 4 (4.5), 8 (8.5), and 12 (12.5) lattice periods.

The FODO parameters are based on the LCLS lattice that has β̄x ≈ 18 m and

� ≈ 4 m. For comparison, we also plot the phase space ellipse for a smooth fo-

cusing channel/simple harmonic oscillator (SHO) with kβ = 1/β̄x as a dashed

line, including particle phase space points at the same z locations. The two show

reasonable agreement when averaged over several lattice periods.

In addition, we plot the β̄xp
2
x/2 for the FODO lattice, and compare it to the

invariant action Jx of the smooth focusing channel/SHO in Fig. 5.7(b). Note

that p2x for the FODO lattice is only truly invariant in the drift section, and

that it oscillates about the mean value given by Jx. Thus, the single-particle

transverse coupling to θ provided by the smooth focusing lattice only matches

that of a FODO lattice when averaged over many focusing cells. Furthermore,

the difference from the mean changes sign every half period such that β̄xp
2
x/2

averaged over any full period approximately equals the action Jx.

As shown in Fig. 5.7, the particle trajectories in the smooth focusing channel

only roughly mimic those of the FODO lattice. Nevertheless, in the next few
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Figure 5.7 Comparison between the particle motion in a FODO lattice and a constant
focusing channel (simple harmonic oscillator/SHO). The solid line ellipses in panel (a)
are equal-action contours drawn at the center of the each drift space, with the top
being just after the focusing quad, and the bottom just after the defocusing quad.
The dotted lines are equal action lines for the constant focusing lattice (simple
harmonic oscilaltor/SHO). Filled and unfilled dots represent one single particle
position plotted every four FODO periods. Panel (b) plots the particle β̄xp

2
x/2 in the

FODO lattice as a solid line, whose average (dashed line) equals
Jx = (βxp

2
x + x2/βx)/2 for the constant focusing channel/SHO.

sections we will present analysis based upon this approximate motion that results

in rather accurate semi-analytic predictions regarding the FEL gain and mode

shape. This is because these radiation characteristics do not depend directly

on the individual particle orbits, but rather on certain averaged properties of

the particle beam distribution. Since the low-order moments of a beam in a

FODO lattice are accurately represented by an ensemble of electrons moving in

a smooth focusing channel, they yield remarkably accurate predictions for the

FEL performance. The matched beam size (as shown in Fig. 5.5) and divergence

are given in terms of the emittance εx as

σx =

√
εx
kβ,x

, σx′ =
√

εxkβ,x. (5.36)

The equations for the matched beam and coupling to θ in a FODO lattice are

identical in form to those describing the natural focusing that we derived in

the previous Section. Thus, the smooth focusing approximation for the 3D FEL

equations of motion can be used in either setting provided that the focusing
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strength kβ = 1/β̄ is appropriately interpreted. We now turn to completing the

derivation of the FEL equations in 3D.

5.3 3D Equations of the FEL

In this section, we derive 3D governing equations for an FEL. Our goal is to

obtain the coupled Maxwell-Klimontovich system for the radiation and electron

beam. The radiation field will be governed by the paraxial wave equation driven

by an appropriately defined FEL current, while the characteristic curves of the

Klimontovich equation are given by the single particle equations in 3D. These

particle equations generalize the 1D FEL pendulum equations to include trans-

verse effects.

5.3.1 Field equation

The derivation of the paraxial wave equation is a straightforward 3D generaliza-

tion of the 1D arguments laid out in Ch. 3. The full Maxwell equation for the

transverse electric field is[
1

c2
∂2

∂t2
− ∂2

∂z2
−∇2

⊥

]
Ex = − 1

ε0c2

[
∂Jx
∂t

+ c2
∂ρe
∂x

]
, (5.37)

where ∇2
⊥ is the transverse Laplacian, ρe is the electron charge density, and the

three-dimensional current density is

Jx = −ecK cos(kuz)

Ne∑
j=1

1

γj
δ[z − zj(t)]δ[x− xj(t)]. (5.38)

FELs are characterized by

Jx ∼ vxρe ∼ cK

γ
ρe

∂

∂t
∼ ω1 ∼ 2πc

λ1
(5.39)

and

∂

∂x
∼ 1

σx
∼ 1√

λ1λu

{√
1/Nu in the low gain regime

4π
√
ρ in the high gain regime.

(5.40)

Thus, for K > 1 the ratio of the charge to current source is small:

c2∂ρe/∂x

∂Jx/∂t
∼ 1

2π

{√
1/Nu in the low gain regime

4π
√
ρ in the high gain regime.

(5.41)

Additionally, the charge density term does not resonantly drive the field at

lowest order. In fact, it can be shown that the slowly varying part of ρe comes in

with another transverse derivative, so that the resonant coupling to the charge

density is actually O(ρ) [or O(1/Nu)] smaller than that to the current density

Jx. Thus, we can drop the charge density term from the Maxwell equation.
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We again introduce the Fourier transform of the field envelope centered at the

normalized frequency ν = ω/ω1

Ex = Ẽ(x, t; z)eik1(z−ct) + c.c.

=

∫
dν eiνk1(z−ct)Eν(x; z)e

iΔνkuz + c.c. (5.42)

and make the slowly-varying phase and envelope approximation, assuming that

|∂Eν/∂z| � k1 |Eν |. The derivation proceeds exactly as the 1D analysis done in

Sec. 3.4, with the transverse Laplacian now along for the ride: we drop second

order z derivatives, introduce the slowly varying ponderomotive particle phase

θj(z) ≡ (ku + k1)z − ck1t̄j(z)

≡ (ku + k1)z − ck1

[
tj(z)− K2

ck1(4 + 2K2)
sin(2kuz)

]
, (5.43)

and average the equation over an undulator period. The resulting paraxial wave

equation for the slowly varying amplitude Eν(x; z) is(
∂

∂z
+ iΔνku +

∇] ⊥2

2ik1

)
Eν(x; z) = −κ1

k1
2π

Ne∑
j=1

e−iνθj(z)δ[x− xj(z)], (5.44)

where we recall that the normalized frequency difference Δν ≡ ν−1 and the cou-

pling κ1 ≡ eK[JJ]/4ε0γr. Note that we approximate 1/k by 1/k1 in the transverse

derivatives, as the difference between these is assumed small. Additionally, it is

easy to verify that the field equation above is related to the undulator paraxial

equation (2.58) by the transverse Fourier transform, with the added generaliza-

tion that the initial electron phase ω1tj(0) relevant to spontaneous emission is

replaced in the FEL with the dynamical ponderomotive phase −θj(z).

5.3.2 Electron equations of motion

Most of the heavy lifting required to derive the single particle equations of motion

has already been done, partly in the 1D analysis of Sec. 3.2 and partly when we

discussed the transverse degrees of freedom earlier in this Chapter. Here, we

review some of the salient points and collect the final 3D equations.

The rate of work done on the electrons by the radiation is given by F ·v, which
for the FEL equals the product of the undulator wiggle velocity along x̂ and the

transverse electric field. Changing the independent variable from t → z, we have

mc2
dγ

dz
= −e

dx

dz
Ex

=
eK

γ
cos(kuz)

[∫
dν Eν(x; z)e

iν(k1z−ω1t)eiΔνkuz + c.c.

]
. (5.45)

Replacing the Lorentz factor with the normalized energy deviation from reso-

nance η ≡ (γ−γr)/γr, and the particle time with θ using (5.43), we average over
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the fast oscillations in the undulator to obtain

dη

dz
= χ1

∫
dν Eν(x; z)e

iνθ + c.c. (5.46)

where again χ1 ≡ eK[JJ]/(2γ2
rmc2).

To determine the rate of change of the ponderomotive phase, we differentiate

(5.43)

dθ

dz
= (ku + k1)− k1

c

v̄z
, (5.47)

where v̄z is the mean particle velocity averaged over an undulator period. The

particle is slowed from its maximum longitudinal speed
√

1− 1/γ2 due to the

transverse motion, which now includes both an average of the fast wiggle oscil-

lation in the undulator field and the slow betatron dynamics given by (5.25):

c

v̄z
≈ 1 +

1

2γ2
+

x′2 + y′2

2
≈ 1 +

1 +K2/2

2γ2
r

(1− 2η) + kβ,xJx + kβ,yJy, (5.48)

where the focusing strength kβ is determined by either the natural undulator

focusing or by the external FODO lattice if the latter is much stronger. The

first two constant terms in (5.48) cancel the (ku + k1) in the phase equations

(5.47) due to the resonance condition, leaving only the deviations from the ideal

on-resonance, on-axis trajectory in the phase evolution

dθ

dz
= 2kuη − k1

2

(
p2 + k2βx

2
)

(5.49)

= 2kuη − k1kβJ = 2kuη − k1H⊥. (5.50)

Here, the focusing kβ is the inverse of the average betatron function β̄x,y, and we

use the smooth focusing approximation to characterize the transverse betatron

oscillation, in which case (p2 + k2βx
2)/2 = kβJ = H⊥ is a constant of motion.

The transverse degrees of freedom therefore obey

dx

dz
= p

dp

dz
= −k2βx. (5.51)

Collecting the 3D particle equations for convenience, we have

dθ

dz
= 2kuη − k1

2
(p2 + k2βx

2), (5.52)

dη

dz
= χ1

∫
dν eiνθEν(x; z) + c.c., (5.53)

dx

dz
= p,

dp

dz
= −k2βx, (5.54)

where χ1 = eK[JJ]/(2γ2
rmc2).

5.3.3 Coupled Maxwell-Klimontovich Equations

We describe the electrons with their microscopic distribution in phase space.

In a manner similar to the 1D analysis, we define the electron Klimontovich
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distribution function

F (θ, η,x,p; z) =
k1
ne

Ne∑
j=1

δ[θ − θj(z)]δ[η − ηj(z)]

× δ[x− xj(z)]δ[p− pj(z)],

(5.55)

where ne is the peak electron volume density. Note that integrating (5.55) over p

and setting δ(x−xj) → 1/(2πσ2
x) yields the 1D F defined in (4.8). The evolution

of the Klimontovich distribution function is governed by the continuity equation

∂F

∂z
+

dθ

dz

∂F

∂θ
+

dη

dz

∂F

∂η
+

dx

dz
· ∂F
∂x

+
dp

dz
· ∂F
∂p

= 0, (5.56)

with the equations of motion given by Eqs. (5.52), (5.53), and (5.54).

The rest of this chapter will be devoted to analyzing the 3D FEL equations in

the small signal regime, applicable for linear FEL gain before saturation. To do

this, we again divide the distribution function F into a smooth background F̄

that is independent of θ and a fluctuation δF that describes the θ-scale variations.

This δF contains the particle shot noise and the FEL-generated micro-bunching,

while assuming F̄ to be uniform in θ (the coasting beam approximation) is valid

if the e-beam current, energy spread, emittance, etc. is nearly constant over a

coherence length. Using the decomposition F = F̄ + δF , we Fourier transform

(5.56) and neglect the higher-order terms ∼ EνFν to obtain the following linear

system {
∂

∂z
+ p · ∂

∂x
− k2βx · ∂

∂p

+iν

[
2ηku − k1

2
(p2 + k2βx

2)

]}
Fν = −χ1Eν

∂

∂η
F̄

(5.57)

{
∂

∂z
+ p · ∂

∂x
− k2βx · ∂

∂p

}
F̄ = 0, (5.58)

where Fν is the Fourier transform of δF , which we assume is localized about the

one of the odd harmonic resonant frequencies ν ≈ h (typically we take h = 1).

The linear system (5.57)-(5.58) applies before saturation when the optical power

P � ρPbeam.

A significant difference between the 3D equation (5.58) and its 1D counterpart

is the fact that the background distribution F̄ now has non-trivial z-dependence

due to the transverse degrees of freedom. To solve for F̄ (x,p; z), we integrate

along the transverse particle trajectories, which are the characteristic curves of

(5.58). The physics of this solution was discussed in Sec. 1.1.5: the value of F̄ is

transported along the single particle trajectories, so that [6]

F̄ (x,p; z) = F̄ [x0(x,p, z; 0),p0(x,p, z; 0); 0]. (5.59)

Here, the initial coordinates (x0,p0) are functions of the present coordinates
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(x,p) and z that satisfy the transverse equations of motion subject to the ini-

tial conditions (x0,p0) = (x,p) at z = 0. For an arbitrary initial point s, the

trajectories in the smooth focusing lattice are

x0(x,p, z; s) = x cos[kβ(z − s)]− p

kβ
sin[kβ(z − s)] (5.60)

p0(x,p, z; s) = p cos[kβ(z − s)] + kβx sin[kβ(z − s)]. (5.61)

Having solved for F̄ at lowest order, we conclude this section by collecting the

linearized equations for the field Eν and density perturbation Fν . We insert the

definition of the electron distribution function into the paraxial wave equation

(5.44), include the Liouville equation Eq. (5.57), and extend both to harmonic

interaction to find that the linear Maxwell-Klimontovich equations for the FEL

in 3D are (
∂

∂z
+ iΔνku +

∇2
⊥

2ik

)
Eν = −κhne

∫
dpdη Fν (5.62){

∂

∂z
+ p · ∂

∂x
− k2βx · ∂

∂p

+i

[
2νηku − k

2
(p2 + k2βx

2)

]}
Fν = −χhEν

∂

∂η
F̄ .

(5.63)

We will solve the linear FEL equations (5.62)-(5.63) with F̄ given by (5.59)

in both the low-gain and high-gain regimes using two different mathematical

techniques. The low-gain solution will be obtained by integrating over the un-

perturbed trajectories/characteristics of δF and Eν , namely, those ignoring the

coupling between the distribution function and the electromagnetic field. This

solution will be valid if the Eν does not change significantly during its interaction

with the undulator, meaning that this solution will generalize the 1D low-gain

results of Sec. 3.3 and Sec. 4.2.

The high gain analysis will more closely resemble that of Sec. 3.4, and will

focus on understanding the 3D FEL solution with the largest growth rate. While

this method could in principle include the low-gain results as a special case,

we will simplify the discussion by restricting our attention to only the growing

modes.

5.4 Solution in the Low-Gain Regime

In this section we derive a formula for the linear gain including the effects of beam

emittance and energy spread when the external focusing can be approximated by

the constant focusing parameter kβ . This derivation follows that of Ref. [6], and

is a 3D generalization of the 1D analysis in Sec. 4.2 that solves the low-gain FEL

equations by integrating along the transverse particle trajectories (characteristic

curves). To consolidate notation, we abbreviate the transverse phase space coor-

dinates as Z ≡ (x,p), in which case the derivatives on the left-hand-side of the


