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Main Characteristics of an Accelerator

Newton-Lorentz Force 7 dp = =B 2d term always perpendicular
on a charged particle: F= a =e (E VX B) to motion => no acceleration

ACCELERATION is the main job of an accelerator.

* It provides kinetic energy to charged particles, hence increasing their momentum.
* In order to do so, it is necessary to have an electric field E , preferably along the
direction of the initial momentum.

—=ck,
dt

BENDING is generated by a magnetic field perpendicular to the plane of the
particle trajectory. The bending radius p obeys to the relation :

GeV/
—=Bp in practical units: B p [Tm] = %
e .

FOCUSING is a second way of using a magnetic field, in which the bending
effect is used to bring the particles trajectory closer to the axis, hence
to increase the beam density.
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Energy Gain

In relativistic dynamics, total energy E and momentum p are linked by

E2 = E% + p202 (E=E,+W) W kinetic energy

Hence:  dE=vdp
The rate of energy gain per unit length of acceleration (along z) is then:
dE dp d,
=y p_ap =el
dz dz dt
and the kinetic energy gained from the field along the z path is:

dW=dE=eE_dz - W=efEZdZ=eV

where Vs just a potential.

Some relativistic relations:
E E E m 1 % 1
=mv=—_LFc=LB—=LBymc y=—=—= /J’=—=‘/1——
p c? & c Bym, E, my, (1-p c y?
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Velocity and Energy
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Methods of Acceleration: Electrostatic

Générateur
\f v, V3 \ v
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e —n E,
L
-
|

1 8

Electrostatic Field:

Energy gain: W=n e(V,-V,)

limitation : Vgenerator=2ZV,

= isolation problems
maximum high voltage (~ 10 MV)

used for first stage of acceleration:

particle sources, electron guns 750 kV Cockroft-Walton generator
x-ray tubes at Fermilab (Proton source)
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Methods of Acceleration: Induction

From Maxwell's Equations:

7

The electric field is derived from a scalar potential ¢ and a vector potential A

The time variation of the magnetic field H generates an electric field E

- = 0A

E=-V¢p-— vacuu
? ot wve.

B=uH=VxA

iron yoke coil

| beam

-

Example: Betatron E
The varying magnetic field is used to guide

particles on a circular trajectory as well as ;

for acceleration.

beam

Limited by saturation in iron
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Methods of Acceleration: Radio-Frequency (RF)

. .
4 11 1

A .
Vsin ot

®2 e

Widerde-type

g —
structure

Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF
generator, as shown above, lead to an alternating electric field polarity

Synchronism condition — L=vT/2 v = particle velocity
T = RF period

Similar for standing wave
cavity as shown (with v&c)

L 4

D.Schulte
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RF acceleration: Alvarez Structure

9 Used for protons, ions (50 - 200 MeV, f ~ 200 MHz)
e
L L, Ls ’ L, L,
| | | | ~ |
RF generator é LINAC 1 (CERN)

Synchronism condition (g << L)

= L=v Ty =B, Mr

.
Wy =271 =
L




The advantages of resonant cavities

- Considering RF acceleration, it is obvious that when particles get high
velocities the drift spaces get longer and one loses on the efficiency.
=> The solution consists of using a higher operating frequency.

- The power lost by radiation, due to circulating currents on the electrodes,
is proportional to the RF frequency.
=> The solution consists of enclosing the system in a cavity which resonant
frequency matches the RF generator frequency.

- The electromagnetic power is now
constrained in the resonant volume

- Each such cavity can be independently
powered from the RF generator

- Note however that joule losses will
occur in the cavity walls (unless made
of superconducting materials)
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The Pill Box Cavity

From Maxwell's equations one can derive the wave
equations: 5
2 0°A
VA—80M08—2=0 (A=EOI”H)
4

Solutions for E and H are oscillating modes, at
discrete frequencies, of types TM,,, (fransverse
magnetic) or TE,,, (transverse electric).

Indices linked to the number of field knots in polar co-
ordinates ¢, r and z.

For I<2a the most simple mode, TMyq, has the lowest
frequency, and has only two field components:

E =J,(kr)e™

i iwt
Hg = —Z—Jl(kr) e

0 P = e e i

| 0
| k=22_2 _262a 7,-377Q
a A ¢
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The Pill Box Cavity (2)
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The design of a pill-box cavity can be
sophisticated in order to improve its
performances:

- A nose cone can be introduced in order
to concentrate the electric field around
the axis

- Round shaping of the corners allows a
better distribution of the magnetic field
on the surface and a reduction of the
Joule losses.

It also prevents from multipactoring
effects.

A good cavity is a cavity which efficiently
transforms the RF power into accelerating
voltage.
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Multi-gap Accelerating Structures

L=vT/2 (m mode)

d NI

h\

L = vT (2™ mode)
7 NI n

e [0
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Transit time factor

The accelerating field varies during the passage of the particle
=> particle does not see maximum field all the time => effective acceleration smaller

Defined as: T = energy gain of particle with v = 3¢

‘" maximum energy gain (particle with v — )

+00

S
In the general case, the transit time factor is: fEl(s,r) cos(a)RF ) ds
v

for E(s,r,t) = E,(s,r)- E, (1) L=

}wEl (s,r)ds

. V
Simple model E (s,r)= ~RE _ const.

uniform field: g « 0<T,<1
W8 08 « T,—1 forg— 0, smaller wpye
follows: T =sm——/—— e
2v 2v Important for low velocities (ions)
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Important Parameters of Accelerating Cavities

Shunt Impedance R

2
P = V_ Relationship between gap
R voltage V and wall losses P,

Quality Factor Q

oW, Relationship between R V2
Q= p stored energy W, in the volume —=—
d and dissipated power on the walls Q0 W,
Filling Time T
P —_ aw, o W Exponential decay of the I= Q
44 5 s stored energy W, due to losses W
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Disc loaded traveling wave structures

-When particles gets ultra-relativistic (v~c) the drift tubes become very long
unless the operating frequency is increased. Late 40's the development of
radar led o high power transmitters (klystrons) at very high frequencies

(3 GHz).

-Next came the idea of suppressing the drift tubes using traveling waves.
However fo get a continuous acceleration the phase velocity of the wave needs
to be adjusted to the particle velocity.

CLIC Accelerating Structures (30 & 11 GHz)

solution: slow wave guide with irises  ==> iris loaded structure
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The Traveling Wave Case

| = a)

: ‘2 k = —RE wave number
: e Vo
| /\/_\ z=w(t—1,)

v, = phase velocity

The particle travels along with the wave, and v = particle velocity
k represents the wave propagation factor.

v
E, =E,CcoS| Wyt — Wy —1 =@,
1%
7
If synchronism satisfied: v=y,  and E, = E, cos¢,

where @, is the RF phase seen by the particle.
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Principle of Phase Stability (Linac)

Let's consider a succession of accelerating gaps, operating in the 2
mode, for which the synchronism condition is fulfilled for a phase ®s .

evl
M, M,

PRV RS VAN . VA
For a 2n mode, N/ ! N\ N,
the electric field | |
. . | |
is the same in all . .

. D T - D, t

gaps at any given : @ t=®
time.

eV = e‘} sind_ s the energy gain in one gap for the particle to reach the
\ S next gap with the same RF phase: P, ,P,, ... are fixed points.

If an energy increase is transferred into a velocity increase =>
M, & N, will move towards P, => stable
M, & N, will go away from P, => unstable

(Highly relativistic particles have no significant velocity change)
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A Consequence of Phase Stability

N/

Transverse focusing fields at the entrance and defocusing at the exit of the cavity.
Electrostatic case: Energy gain inside the cavity leads to focusing

RF case: Field increases during passage => transverse defocusing!
_ " v oE, defocusing
Longitudinal phase stability means: — > 0 = —= < () RF force
ot 0z l
The divergence of the field is — 0E  OE oE
zero according to Maxwell : V.E=0 8xx + azz =0 = 8xx >0

External focusing (solenoid, quadrupole) is then necessary
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Energy-Phase Equations

Rate of energy gain for the synchronous particle:

dE, _%_ .
e ek, sing,

Rate of energy gain for a non-synchronous particle, expressed in reduced

variables w=W -W =E-E_ and P=0-9,

cz’lw _ eEO[sln(¢ +¢)) sin ¢s] ~ el cosg.@ (smallqo)

Rate of change of the phase with respect to the synchronous one:
do dt ( dt 1 1 .
—— =0y |5 | |= ——— =2 (v—y
dz RF(dz dz) )= v T, Hv-v)

sees vy, =c(p- )= 55 (8- B )=
25,

IIl

myV, 7
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Energy Phase Oscillations

one gets: d¢ C()RF
_ = = W
dZ 3 3
0Ys/s
Combining the two first order equa'rions into a second order one:
2
d el @ COS
2P =0 with Q3! = ZEar 0S4,
dZ movsys
Stable harmonic oscillations imply:
2
Q. >0 and real
hence: cosg, >0
And since acceleration also means: sin ¢s >0

One finally gets the results: 0<g < %
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Longitudinal phase space

AE, Ap/p acceleration AE, Ap/p
move move (] °
forward ¢ backward ° g o P )
o o opo ®
L @
/ PY o ol ® 00 o
reference deceleration ¢ .. .. :0. ° ¢
The particle trajectory in the
phase space (Ap/p, ¢) describes Emittance: phase space area including
its longitudinal motion. all the particles

NB: if the emittance contour correspond
to a possible orbit in phase space, its
shape does not change with time
(matched beam)
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The Capture Problem

- Previous results show that at ultra-relativistic energies (y>> 1) the longitudinal
motion is frozen. Since this is rapidly the case for electrons, all traveling wave

structures can be made identical (phase velocity=c).
- Hence the question is: can we capture low kinetic electrons energies (y< 1), as
they come out from a gun, using an iris loaded structure matched to c ?

| e :
( T vie E_=E,sing(r)
gun

structure

The electron entering the structure, with velocity v < c, is not synchronous
with the wave. The path difference, after a time dt, between the wave and

the particle is: dz = (c —v)dt
Since () = Wyt —kz with propagation factor k = Orr. _ Lrr
C
A ¢
one gets dZ=Ld¢=—gd¢ and @=2_nc(1_/5)
Wi 27 dt A,g
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The Capture Problem (2)

From Newton-Lorentz:

d d d :
E(mv): mocE(,B)/): me LA = ek, sin ¢
-}
Introducing a suitable variable: SB=cosa
: da _ ek, . . .2
the equation becomes: ar me sin ¢sm a
2

Using 49 _d¢ da . _singdg=2ZE 1ocosa 4,

dt  da dt

-2
AeE,  sin’a

N 2emg (14 _,
ntegrating from t, tot ——  cos¢,—cos¢ = el L, (1+ﬂ0j s
(from B=B, to p=1)

zmc (1- 13 2
. > 0 0
Capture condition  —— L e, [1+ ﬂo]
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Bunching with a Pre-buncher

velocity change. The |
others get accelerated
or decelerated, so the
bunch gets an energy
and velocity modulation.

A long bunch coming . -

from the gun enters ey,

an RF cavity. '_'_ ''''''''''''''''' S
The reference particle L :

is the one which has no A7 =voAt |

t > 0 (retard)

———,——,—— e e ——— >

After a distance L Dyt = P
bunch gets shorter:

bunching effect. )

This short bunch can N Aptis temps T L%

now be captured more E &
efficienty byaT™W | — — — — — — — — - — E T
structure (v,=c).
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Bunching with a Pre-buncher (2)

The bunching effect is a space modulation caused by a velocity modulation,
similar to the phase stability phenomenon. Let's look at the particles in the
vicinity of the reference and use a classical approach.

Energy gain as a function of cavity crossing time:

1

V.
AW = A(Emovz) =myV,Av = eV, sing = eV, ¢ Av="S of

myv,

Perfect linear bunching will occur after a time delay T, corresponding to a
distance L, when the path difference is compensated between a particle and
the reference one:

_ _ _ ¢ (assuming the reference particle
AvT =Az=v Al =v, enters the cavity at time t=0)
WOrp
. 2v,W
Since L = v, onhe gefts: L=—"—
eVOwRF
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Bunch compression

At ultra-relativistic energies (y>> 1) the longitudinal motion is frozen. This is
rapidly the case for electrons.

For example for linear colliders, you need very short bunches (few 100-50um).
Solution: introduce energy/time correlation with a magnetic chicane.

AE/E AE/E AE/E AE/E AE/E
long.
phase z z z z z
space

- [ J (]
N.Walker
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Bunch compression (2)

3 3
before - after
2 L 2 [
If—- 1 |-
< gL S
= 0 3 0
< P
1 P
2 - 12° -2 - 50
I S RN P P PR FRETY MUY SRS PR IR AP I S P S PSS RRUEE PR PR RN RER RS RN FENTS R
1075 5 25 0 25 50 75 10 AP 10 75 -5 25 0 25 5 75 10 A®

Longitudinal phase space evolution for a bunch compressor (PARMELA code simulations)

Introducing correlated energy spread increases total energy spread in the
bunch. => chromatic effects (depend on relative energy spread AE/E)
Solution: compress at low energy before further acceleration

=> absolute energy spread constant but relative is decreased
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Circular accelerators: Cyclotron

Used for protons, ions B = constant
Wgr = constant

'

RF generator, (e
Synchronism condition

=
g -) s RE
2T,
u B
Ton source % - Cyclotron frequency  (p = 4o
S n m
&* 0/
- / 1. yincreases with the energy
Exctraction = ho exact synchronism
electrode
Tons ftrajectory 2. if v<<c = Y = 1
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Cyclotron / Synchrocyclotron

Synchrocyclotron: Same as cyclotron, except a modulation of wge

= constant
Y Ogp = constant Wgxr decreases with time
" q B Allows to go beyond the
The condition: W (t) = Wpp (t) = non-relativistic energies
my ¥ (1)
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Circular accelerators: The Synchrotron

Synchronism condition

T = h TRF h integer,

s harmonic number:
271 R number of RF cycles
=h TRF per revolution

v

N

RF cavity <—

RF
generator

1.  wgr and w increase with energy

2. To keep particles on the closed orbit, B should increase
with time
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Circular accelerators: The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF
phase for which the energy gain fits the increase of the magnetic field at each
turn. That implies the following operating conditions:

A

eVsin® —— Energy gain per turn

©

B

D =P =cte—>  Synchronous particle

RF synchronism

Wpp =h,— .
(h - harmonic number)

extraction

p =cte R =cte — Constant orbit

bending
radius

_p s Vapi .
- Bp = 4 = B Variable magnetic field

If v&c, W, hence Wppremain constant (ultra-relativistic e-)
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Circular accelerators: The Synchrotron

EPA (CERN)

LEAR (CERN) E!gﬁfr‘on Posifr'qn {\ccumulafor

Low Energy Antiproton Ring

Examples of different
proton and electron
synchrotrons at CERN

PS (CERN)
Proton Synchrotron © CERN Geneva
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The Synchrotron

Energy ramping is simply obtained by varying the B field (frequency follows v):

dp . , 2mwep RB
p=eBp = —=epB = (Ap)y,u =ePBl, = —
dt v
Since: E*=E +p’c® = AE=vAp

(AE), =(AW) =2mepRB=eV sing,

Stable phase @, changes during energy ramping

RF RF

. B i
sing, =27pR — "™ ¢s=arcsin(2ir,0R AB)

* The number of stable synchronous particles is equal to the harmonic
number h. They are equally spaced along the circumference.

+ Each synchronous particle satisfies the relation p=eBp. They have the
nominal energy and follow the nominal trajectory.
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The Synchrotron

During the energy ramping, the RF frequency W
increases to follow the increase of the W, = b =w(B,R,)
revolution frequency :

2
Hence: Jrr (1) = V(@) = 1 ec ﬁB(t) (using p(t)=eB(t)p, E=mc* )
h 2nR, 2w E (1) R,

since E* =(myc)’ + p°c’ the RF frequency must follow the variation
of the B field with the law

ol e { B’ }/

h 2R, (moc2 /ecp)’ + B(t)’
This asympToTicallX tends towards f — S when B becomes large
compared fo myc” / (ecp) 27R,

which corresponds to v — ¢
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Dispersion Effects in a Synchrotron

If a particle is slightly shifted in
momentum it will have a different
orbit and the length is different.

The "momentum compaction factor” is
defined as:

Circumference d% _ )% dL
2R oO=—— = a=—-—
dy L dp

)4

If the particle is shifted in momentum it
will have also a different velocity.

As a result of both effects the revolution
frequency changes:

p=particle momentum d ]7
7,

R=synchrotron physical radius
77 =

\QA\

= 77:

=~
5

f.=revolution frequency dp
p
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Dispersion Effects in a Synchrotron (2)

pdL ds, = pdo S p+dp

~Ldp a’s=(p+x)d8

The elementary path difference
from the two orbits is: definition of dispersion D,

dl _ds-ds, x| D, dp

ds, ds, P pp

leading to the total change in the circumference:

dL={dl =f%ds0 =fl;xd?pds0

<>, means that
the average is

1 .D (S) With p=e in <D > considered over
o=— & So straight sections (=2 */m | the bending
L C p(S) we get: R magnet only
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Dispersion Effects in a Synchrotron (3)

" 2aR . B R B p

definition of momentum
compaction factor

f_/sc _ df _dB_dR_dB _dp

E dp _dp d(l‘/”z)% | _ﬁz)—lﬁ

p=m=pyr=> = e L
C p [5 (1—/32)A %/—“[5
yZ
4, _ dp
df. (1 \d Lo _ 1
T

" 1
n=0 at the transition energy Y, =—F
Ja
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Phase Stability in a Synchrotron

From the definition of 1 it is clear that an increase in momentum gives
- below transition (n > 0) a higher revolution frequency
(increase in velocity dominates) while

- above transition (n < 0) a lower revolution frequency (v = ¢ and longer path)
where the momentum compaction (generally > 0) dominates.

eVa
M, M, Stable synchr. Particle
P, P forn <0

N, \ N,

eVs
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Crossing Transition

At transition, the velocity change and the path length change with
momentum compensate each other. So the revolution frequency there is

independent from the momentum deviation.

Crossing transition during acceleration makes the previous stable
synchronous phase unstable. The RF system needs to make a ‘phase jump'.

High energy Low energy

N

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012 41

Synchrotron oscillations

Simple case (no accel.): B = const., below transition Y <V,
The phase of the synchronous particle must therefore be ¢, = O.

¢, - The particle is accelerated
- Below transition, an increase in energy means an increase in revolution frequency

- The particle arrives earlier - fends toward ¢,

\¢2

A

Ver

P, - The particle is decelerated
- decrease in energy - decrease in revolution frequency

- The particle arrives later - tends foward ¢,
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Synchrotron oscillations (2)

Phase space picture A% 4

e
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Synchrotron oscillations (3)

Case with acceleration B increasing Y <V,

VRF

Ap 4 ¢s < ¢ <JT— ¢s
Phase space picture p

stable region -
e

K
unstable regior\ The symmetry of the

. case B = const. is lost
separatrix
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Longitudinal Dynamics

It is also often called “synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled
variables, the energy gained by the particle and the RF phase
experienced by the same particle. Since there is a well defined
synchronous particle which has always the same phase ¢, and the
nominal energy E, it is sufficient to follow other particles with
respect to that particle.

So let's introduce the following reduced variables:

revolution frequency : Af. = f. - f
particle RF phase Ap = ¢ - ¢
particle momentum : Ap = p - ps
particle energy : AE = E - E,
azimuth angle : AB = 0 - 6,
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First Energy-Phase Equation

for=hf. = Ap=-hAO with 0= fa) dt

particle ahead arrives earlier
=> smaller RF phase

For a given particle with r‘especT to the reference one:
d _1dy
Ao, = G (80)=~1 G (Ap)= 7 F

d E2 = E2 + pZCz
Since = &{&\ and 0
a)rs k dp Js AE = VSAP = a)rsRsAp
one gets: AE__ P oL d(A¢)__ PsRs

Wrs h??CUrs dt B hna)rs¢
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Second Energy-Phase Equation

dE
dt

The rate of relative energy gain with respect to the reference
particle is then:

The rate of energy gained by a particle is:

“L==e Vsmq) 2

E\ -
2JTAL—) = eV (sing —sing, )
Expanding the left-hand side to first order:
. . . . . d
A(ET,) = EAT, + T, AE = AET, + T, AE = d—(T,SAE)
t

leads to the second energy-phase equation:

d [ AE\ A
2w — eV(sm¢—sm¢ )
dilo |~
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Equations of Longitudinal Motion

Wrs - h N rs dt h Nrs dt

\ /

deriving and combining

|

i Rsps d¢ e o o _
dt[hna)rs dt] 272 / (sing-sing)-

AE__ D5l d(A¢)=_ PR ¢ 274 (AE ) eV(s1n¢—sm¢)

This second order equation is non linear. Moreover the parameters
within the bracket are in general slowly varying with time.

We will study some cases later...
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Small Amplitude Oscillations

Let's assume constant parameters R, p;, o, and n:

2_ hna)rseI}cosqbs

O (. :
_=9dy — s|= ith
¢-l_cosgz)s(sm¢ sm¢) o € 27tRs ps

Consider now small phase deviations from the reference particle:

sing—sings =sin(gs+Agp)-sings =cosgsAg  (for small A¢)
and the corresponding linearized motion reduces to a harmonic oscillation:
. )
$+ QAP =0
where Qq is the synchrotron angular frequency
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Stability condition for ¢,

Stability is obtained when Q is real and so Q2 positive:

= Q>0 < | ncosg, >0

Y<Ytr Y>Ytr Y>Ytr Y<Ytr
n>0 n<0 n<0 n>0

< > >

Stable in the region if

acceleration deceleration
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Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the
second order differential equation is non-linear:

¢+

Multiplying by ¢ and integrating gives an invariant of the motion:

% 25 (cos¢+¢s1n¢)

cos@,

COS¢ (sm¢ sin @, ) (Q, as previously defined)

which for small amplitudes reduces to:

: 2
‘P_z + 02 (A¢) _ (the variable is A¢, and ¢, is constant)
2 N

Similar equations exist for the second variable : AExd¢/dt
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Large Amplitude Oscillations (2)

.2

When ¢ reaches n-¢, the force goes
to zero and beyond it becomes non
restoring.

Hence n-¢, is an extreme amplitude
for a stable motion which in the

phase space( Qi,Aq) ) is shown as

closed trajectories.

Equation of the separatrix:

O~ ong (0sp+ psing )= - (coa - )+ (- Jsing)

cos@,

Second value ¢,, where the separatrix crosses the horizontal axis:

cos@, +@,sing, = coiir—qbs)+(7r—¢s)sin¢s
Area within this separatrix is called "RF bucket”.
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Energy Acceptance

From the equation of motion it is seen that @ reaches an extreme
when ¢=0. hence corresponding to @ =q.
Introducing this value into the equation of the separatrix gives:

P =292{2+ (29, - m)tang, |

That translates into an acceptance in energy:

AE _ eV
(?) = _nhnEsG((pS)

G(¢s)= [200s¢s+(2¢s —yr)sinqbs]

This “"RF acceptance” depends strongly on ¢, and plays an important role

for the capture at injection, and the stored beam lifetime.
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RF Acceptance versus Synchronous Phase

53

N

= 150°

w

correspond to ho

0
/

acceleration . The RF

\\&
S acceptance increases with
//_—_——_,%/ the RF voltage.

— T T The areas of stable motion

N N Vi iilie.” + | (closed frajectories) are
N = called "BUCKET",
\/\_/\/‘
T T T e As the synchronous phase
¥ gets closer to 90° the

S buckets gets smaller.
W The number of circulating
= " [bucketsis equal to k"

,A/ The phase extension of the

bucket is maximum for ¢
i =180° (or 0°) which

@, =1 20°
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Potential Energy Function

The longitudinal motion is produced by a force that can be derived from

a scalar potential: 2
) U
a¥Y_F Flg)=—02Y
enld v)=-2 :
=—j¢F( ) oS ¢ (cos¢+¢sm¢ )
LIRTRENI
7*‘ o) = F, )
/~ \ v ‘\ :
- C N ~—> ¢ | The sum of the potential
' 3 . energy and kinetic energy is
| constant and by analogy
\\ //-'“&\ U represents the total energy
~ A of a non-dissipative system.
\L~ \ 5
N > ¢
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Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the 15t order
equations:

d¢ ] hna)rs w

W=2n(AE)=2n&Ap . @ 2w pk
- da’—VtV=e V(sing—sings)

The two variables ¢,W are canonical since these equations of
motion can be derived from a Hamiltonian H(p,W,1):

a9 _oH dw __oH
dt oW dt ¢

¢Wt eV[cos¢ cos¢+(¢ ¢)sm¢] 4”h]z;)rsW
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Stationnary Bucket - Separatrix

This is the case sing,=0 (no acceleration) which means ¢,=0 or n. The
equation of the separatrix for ¢,= = (above transition) becomes:

o2 )
ﬂ 2 2 ﬂ_z 2 . ZQ
2 +Q; COS¢_QS 2 Qssin 7
Replacing the phase derivative by the canonical variable W:
A W .
.......................................... ka W=2.777M=—2,7[ pSRs ¢
CUVS hnwrs

and introducing the expression

0 n 27 "o for Qg leads to the following
equation for the separatrix:

with C=2xnR,
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Stationnary Bucket (2)

Setting ¢=m in the previous equation gives the height of the bucket:

_,C |-¢VE,
W =2 c\ 2xhn

This results in the maximum energy acceptance:

/ —eV, E
AE‘,max = (;)”s ka = /3s 2 < 2
T nnh

The area of the bucketf is: Abk=2ﬁ”Wd¢

Since: jj”sin%d¢=4

C
ohe gefts: An=8W, =16—
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Bunch Matching into a Stationnary Bucket

A particle trajectory inside the separatrix is described by the equation:
:2

2 -
ﬂ—%(co s¢+¢sin¢s)=] LN % +Q;cosp=1
N
+W The points where the trajectory
crosses the axis are symmetric with
respect fo ¢~ m
-2

% + Q7 cosg =0 cosg,

=+Q. \/2(cos¢m — cos¢)

W==xW, P cost—
bk 2| COS 2 COS 2
¢m ZJ'E-(I)m
cos(¢) = 2cos’ 9 -1
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Bunch Matching into a Stationnary Bucket (2)

Setting ¢ = x in the previous formula allows to calculate the bunch height:

A

m : @
Wb=kaCOS% =ka81n§ or: Wﬁ%cosT
> (AE) — (A_E) COS%=(ﬁ) Sinﬂ
E; E; 2 E, 2

This formula shows that for a given bunch energy spread the proper
matching of a shorter bunch (¢,, close to =, ¢ small)
will require a bigger RF acceptance, hence a higher voltage

For small oscillation amplitudes the equation of the ellipse reduces to:

_An (16W) /A¢\2
A ~| +| = =1
16 ¢ ( ¢) kAbkq)) k ¢J
Ellipse area is called longitudinal emittance Ap —Abk¢

16
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E - E, [Hev)

£ - E, (MeV)

Effect of a Mismatch

Injected bunch: short length and large energy spread
after 1/4 synchrotron period: longer bunch with a smaller energy spread.

For larger amplitudes, the angular phase space motion is slower
(1/8 period shown below) =>can lead to filamentation and emittance growth

7

/
AN \+180‘

‘ W.Pirkl
stationary bucket accelerating bucket
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Capture of a Debunched Beam with Fast Turn-On

£ - £ (HeV)

€ - £, tHevl
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Capture of a Debunched Beam with Adiabatic Turn-On

“r 17 (a) -l

E - €, the{)

- E, (Mev)

- L, HeV)
£

|- CAPTURE OF DEBUNCHED BEAM VITH ADIABATIC TURN-ON TURN 400 "I CAPTURE OF DEBUNCHED BEAM WITH ADIABATIC TURN-ON TURN 1000
- E —
. L L 1 1 Sl | 1 L 1 1 - 1 1 1 L 1 L L I} Lo 4
o - = = = - s = = = - = = = = 0 E
o trad)
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