LONGITUDINAL DYNAMICS

Frank Tecker

with lots of material from the course by Joël Le Duff Many Thanks!

Introductory Level Accelerator Physics Course Granada, 28 October - 9 November 2012

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

1

Overview

- Methods of Acceleration
- Accelerating Structures
- Synchronism Condition and Phase Stability (Linac)
- Bunching and bunch compression
- Circular accelerators: Cyclotron / Synchrotron
- Dispersion Effects in Synchrotron
- Synchrotron Oscillations
- Energy-Phase Equations
- Longitudinal Phase Space Motion
- Stationary Bucket
- Injection Matching

Bibliography			
M. Conte, W.W. Mac Kay	An Introduction to the Physics of particle Accelerators (World Scientific, 1991)		
P. J. Bryant and K. Johnse	n The Principles of Circular Accelerators and Storage Rings (Cambridge University Press, 1993)		
D. A. Edwards, M. J. Syph	ers An Introduction to the Physics of High Energy Accelerators		
H. Wiedemann	(J. Wiley & sons, Inc, 1993) Particle Accelerator Physics (Springer Variage Parlin 1993)		
M. Reiser	(Springer-Verlag, Bernin, 1993) Theory and Design of Charged Particles Beams (J. Wiley & sons, 1994)		
A. Chao, M. Tigner	Handbook of Accelerator Physics and Engineering (World Scientific 1998)		
K. Wille	The Physics of Particle Accelerators: An Introduction (Oxford University Press, 2000)		
E.J.N. Wilson	An introduction to Particle Accelerators (Oxford University Press, 2001)		

And CERN Accelerator Schools (CAS) Proceedings

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

3

Main Characteristics of an Accelerator

Newton-Lorentz Force on a charged particle:

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{dt}} = e\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

2nd term always perpendicular to motion => no acceleration

ACCELERATION is the main job of an accelerator.

• It provides **kinetic energy** to charged particles, hence increasing their **momentum**. • In order to do so, it is necessary to have an electric field \vec{E} , preferably along the direction of the initial momentum.

$$\frac{dp}{dt} = eE_z$$

BENDING is generated by a magnetic field perpendicular to the plane of the particle trajectory. The bending radius ρ obeys to the relation :

$$\frac{p}{e} = B\rho \qquad \text{in practical units:} \quad B \ \rho \ [\text{Tm}] \approx \frac{p \ [\text{GeV/c}]}{0.3}$$

FOCUSING is a second way of using a magnetic field, in which the bending effect is used to bring the particles trajectory closer to the axis, hence to increase the beam density.

Energy Gain

In relativistic dynamics, total energy E and momentum p are linked by

$$E^{2} = E_{0}^{2} + p^{2}c^{2} \qquad (E = E_{0} + W) \qquad W \text{ kinetic energy}$$

Hence: dE = vdp

The rate of energy gain per unit length of acceleration (along z) is then:

$$\frac{dE}{dz} = v\frac{dp}{dz} = \frac{dp}{dt} = eE_z$$

and the kinetic energy gained from the field along the z path is:

$$dW = dE = eE_z dz \quad \rightarrow \quad W = e\int E_z dz = eV$$

where V is just a potential.

Some relativistic relations:

$$p = mv = \frac{E}{c^2}\beta c = \beta \frac{E}{c} = \beta \gamma m_0 c \qquad \gamma = \frac{E}{E_0} = \frac{m}{m_0} = \frac{1}{\sqrt{1 - \beta^2}} \qquad \beta = \frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}}$$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012 5

Methods of Acceleration: Electrostatic

Electrostatic Field:

Energy gain: W=n $e(V_2-V_1)$

limitation : $V_{aenerator} = \Sigma V_i$

⇒ isolation problems maximum high voltage (~ 10 MV)

used for first stage of acceleration: particle sources, electron guns x-ray tubes

750 kV Cockroft-Walton generator at Fermilab (Proton source)

7

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

Methods of Acceleration: Induction

From Maxwell's Equations:

The electric field is derived from a scalar potential φ and a vector potential A The time variation of the magnetic field H generates an electric field E

$$\vec{E} = -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t}$$
$$\vec{B} = \mu\vec{H} = \vec{\nabla}\times\vec{A}$$

The varying magnetic field is used to guide particles on a circular trajectory as well as for acceleration. Limited by saturation in iron

Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF generator, as shown above, lead to an alternating electric field polarity

The advantages of resonant cavities

- Considering RF acceleration, it is obvious that when particles get high velocities the drift spaces get longer and one loses on the efficiency.
 The solution consists of using a higher operating frequency.
- The power lost by radiation, due to circulating currents on the electrodes, is proportional to the RF frequency.

=> The solution consists of enclosing the system in a cavity which resonant frequency matches the RF generator frequency.

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

11

The Pill Box Cavity

→ E,> H_A

From Maxwell's equations one can derive the wave equations:

$$\nabla^2 A - \varepsilon_0 \mu_0 \frac{\partial^2 A}{\partial t^2} = 0$$
 $(A = E \text{ or } H)$

Solutions for E and H are oscillating modes, at discrete frequencies, of types TM_{xyz} (transverse magnetic) or TE_{xyz} (transverse electric).

Indices linked to the number of field knots in polar coordinates φ , r and z.

For I<2a the most simple mode, TM_{010} , has the lowest frequency, and has only two field components:

The Pill Box Cavity (2)

The design of a pill-box cavity can be sophisticated in order to improve its performances:

- A nose cone can be introduced in order to concentrate the electric field around the axis

- Round shaping of the corners allows a better distribution of the magnetic field on the surface and a reduction of the Joule losses.

It also prevents from multipactoring effects.

A good cavity is a cavity which efficiently transforms the RF power into accelerating voltage.

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

13

Transit time factor

The accelerating field varies during the passage of the particle => particle does not see maximum field all the time => effective acceleration smaller

Defined as: $T_a = \frac{\text{energy gain of particle with } v = \beta c}{\text{maximum energy gain (particle with } v \rightarrow \infty)}$

In the general case, the transit time factor is:

for
$$E(s,r,t) = E_1(s,r) \cdot E_2(t)$$

$$T_a = \frac{\int_{-\infty}^{+\infty} E_1(s,r) \cos\left(\omega_{RF} \frac{s}{v}\right) ds}{\int_{-\infty}^{+\infty} E_1(s,r) ds}$$

Simple model
uniform field: $E_1(s,r) = \frac{V_{RF}}{g} = \text{const.}$ • $0 < T_a < 1$ follows: $T_a = \sin \frac{\omega_{RF}g}{2v} / \frac{\omega_{RF}g}{2v}$ • $T_a \rightarrow 1$ for $g \rightarrow 0$, smaller ω_{RF} Important for low velocities (ions)

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

15

Important Parameters of Accelerating Cavities

Shunt Impedance R

$$P_d = \frac{V^2}{R}$$
 Relationship between gap
voltage V and wall losses P_d

Quality Factor Q

$Q = \frac{\omega W_s}{P_d}$	Relationship between	<i>R</i> _	V^2
	and dissipated power on the walls	$\overline{Q} = \overline{\omega W}$	$\overline{\omega W_s}$

Filling Time T

$$P_{d} = -\frac{dW_{s}}{dt} = \frac{\omega}{Q}W_{s} \qquad \begin{array}{l} \text{Exponential decay of the} \\ \text{stored energy } W_{s} \text{ due to losses} \end{array} \qquad \tau = \frac{Q}{\omega}$$

Disc loaded traveling wave structures

-When particles gets <u>ultra-relativistic</u> (v~c) the drift tubes become very long unless the operating frequency is increased. Late 40's the development of radar led to high power transmitters (klystrons) at very high frequencies (3 GHz).

-Next came the idea of suppressing the drift tubes using traveling waves. However to get a continuous acceleration the phase velocity of the wave needs to be adjusted to the particle velocity.

solution: slow wave guide with irises ==> iris loaded structure

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

17

 $E_{z} = E_{0} \cos\left(\omega_{RF}t - \omega_{RF}\frac{v}{v_{\varphi}}t - \phi_{0}\right)$

If synchronism satisfied: $v = v_{\varphi}$ and $E_z = E_0 \cos \phi_0$ where Φ_0 is the RF phase seen by the particle.

Principle of Phase Stability (Linac)

Let's consider a succession of accelerating gaps, operating in the 2π mode, for which the synchronism condition is fulfilled for a phase Φ_s .

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

19

Transverse focusing fields at the entrance and defocusing at the exit of the cavity. Electrostatic case: Energy gain inside the cavity leads to focusing RF case: Field increases during passage => transverse defocusing!

Longitudinal phase stability means : $\frac{\partial V}{\partial t} > 0 \Rightarrow \frac{\partial E_z}{\partial z} < 0$ The divergence of the field is zero according to Maxwell : $\nabla \vec{E} = 0 \Rightarrow \frac{\partial E_x}{\partial x} + \frac{\partial E_z}{\partial z} = 0 \Rightarrow \frac{\partial E_x}{\partial x} > 0$ External focusing (solenoid, quadrupole) is then necessary

Energy-Phase Equations

Rate of energy gain for the synchronous particle:

$$\frac{dE_s}{dz} = \frac{dp_s}{dt} = eE_0\sin\phi_s$$

Rate of energy gain for a non-synchronous particle, expressed in reduced variables $w = W - W_s = E - E_s$ and $\varphi = \phi - \phi_s$

$$\frac{dw}{dz} = eE_0[\sin(\phi_s + \varphi) - \sin\phi_s] \approx eE_0\cos\phi_s.\varphi \quad (small \,\varphi)$$

Rate of change of the phase with respect to the synchronous one:

$$\frac{d\varphi}{dz} = \omega_{RF} \left(\frac{dt}{dz} - \left(\frac{dt}{dz} \right)_s \right) = \omega_{RF} \left(\frac{1}{v} - \frac{1}{v_s} \right) \cong -\frac{\omega_{RF}}{v_s^2} \left(v - v_s \right)$$

Since:
$$v - v_s = c(\beta - \beta_s) \cong \frac{c}{2\beta_s} (\beta^2 - \beta_s^2) \cong \frac{w}{m_0 v_s \gamma_s^3}$$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

21

Energy Phase Oscillations

one gets:

$$\frac{d\varphi}{dz} = -\frac{\omega_{RF}}{m_0 v_s^3 \gamma_s^3} w$$

Combining the two first order equations into a second order one:

$$\frac{d^2\varphi}{dz^2} + \Omega_s^2 \varphi = 0 \qquad \text{with} \qquad \Omega_s^2 = \frac{eE_0 \omega_{RF} \cos \phi_s}{m_0 v_s^3 \gamma_s^3}$$

Stable harmonic oscillations imply:

$$\Omega_s^2 > 0$$
 and real

hence:

 $\cos\phi_{\rm s} > 0$ $\sin\phi_{s} > 0$ And since acceleration also means:

 $0 < \phi_s < \frac{\pi}{2}$

One finally gets the results:

The Capture Problem

- Previous results show that at <u>ultra-relativistic energies</u> (γ >> 1) the <u>longitudinal</u> motion is frozen. Since this is rapidly the case for electrons, all traveling wave structures can be made identical (phase velocity=c).

- Hence the question is: can we capture low kinetic electrons energies (γ < 1), as they come out from a gun, using an iris loaded structure matched to c ?

$$\left(\begin{array}{c} 1 & \underline{e^{-}} \\ \beta_{0} < 1 \end{array} \right)$$
gun structure
$$v_{\phi} = c \quad E_{z} = E_{0} \sin \phi(t)$$

The electron entering the structure, with velocity v < c, is not synchronous with the wave. The path difference, after a time dt, between the wave and the particle is: dz = (c - v)dt

Since
$$\phi = \omega_{RF}t - kz$$
 with propagation factor $k = \frac{\omega_{RF}}{v_{\varphi}} = \frac{\omega_{RF}}{c}$
one gets $dz = \frac{c}{\omega_{RF}}d\phi = \frac{\lambda_g}{2\pi}d\phi$ and $\frac{d\phi}{dt} = \frac{2\pi}{\lambda_g}c(1-\beta)$

The Capture Problem (2)

From Newton-Lorentz:

$$\frac{d}{dt}(mv) = m_0 c \frac{d}{dt}(\beta\gamma) = m_0 c \frac{d}{dt} \left(\frac{\beta}{\left(1-\beta^2\right)^{\frac{1}{2}}}\right) = eE_0 \sin\phi$$

Introducing a suitable variable:

 $\beta = \cos \alpha$

the equation becomes:

Using $\frac{d\phi}{dt} = \frac{d\phi}{d\alpha} \frac{d\alpha}{dt}$

Integrating from t_0 to t _____ (from $\beta = \beta_0$ to $\beta = 1$)

Capture condition

$$\frac{d\alpha}{dt} = -\frac{eE_0}{m_0c}\sin\phi\sin^2\alpha$$

$$-\sin\phi\,d\phi = \frac{2\pi m_0c^2}{\lambda_g eE_0}\frac{1-\cos\alpha}{\sin^2\alpha}\,d\alpha$$

$$\cos\phi_0 - \cos\phi = \frac{2\pi m_0c^2}{e\lambda_g E_0}\left(\frac{1-\beta_0}{1+\beta_0}\right)^{\frac{1}{2}} \leq E_0 \geq \frac{\pi m_0c^2}{e\lambda_g}\left(\frac{1-\beta_0}{1+\beta_0}\right)^{\frac{1}{2}}$$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

25

2

Bunching with a Pre-buncher (2)

The bunching effect is a space modulation caused by a velocity modulation, similar to the phase stability phenomenon. Let's look at the particles in the vicinity of the reference and use a classical approach.

Energy gain as a function of cavity crossing time:

$$\Delta W = \Delta \left(\frac{1}{2}m_0 v^2\right) = m_0 v_0 \Delta v = eV_0 \sin \phi \approx eV_0 \phi \qquad \Delta v = \frac{eV_0 \phi}{m_0 v_0}$$

Perfect linear bunching will occur after a time delay τ , corresponding to a distance L, when the path difference is compensated between a particle and the reference one:

$$\Delta v \ \tau = \Delta z = v_0 \Delta t = v_0 \frac{\phi}{\omega_{RF}}$$
 (assuming the reference particle
enters the cavity at time t=0)
Since $L = v_0 \tau$ one gets:
$$L = \frac{2v_0 W}{eV_0 \omega_{RF}}$$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

27

Bunch compression

At ultra-relativistic energies ($\gamma \gg 1$) the longitudinal motion is frozen. This is rapidly the case for electrons.

For example for linear colliders, you need very short bunches (few $100-50\mu$ m). Solution: introduce energy/time correlation with a magnetic chicane.

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

28

Longitudinal phase space evolution for a bunch compressor (PARMELA code simulations)

Introducing correlated energy spread increases total energy spread in the bunch. => chromatic effects (depend on relative energy spread $\Delta E/E$) Solution: compress at low energy before further acceleration => absolute energy spread constant but relative is decreased

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

29

Cyclotron / Synchrocyclotron

Synchrocyclotron: Same as cyclotron, except a modulation of ω_{RF}

В

 $\gamma \, \omega_{\text{RF}}$

= constant

= constant

 $\omega_{ extsf{RF}}$ decreases with time

The condition:

$$\omega_{s}(t) = \omega_{RF}(t) = \frac{q B}{m_{0} \gamma(t)}$$

Allows to go beyond the non-relativistic energies

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

31

- 1. ω_{RF} and ω increase with energy
- 2. To keep particles on the closed orbit, B should increase with time

Circular accelerators: The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

33

Circular accelerators: The Synchrotron

The Synchrotron

Energy ramping is simply obtained by varying the B field (frequency follows v):

$$p = eB\rho \implies \frac{dp}{dt} = e\rho \dot{B} \implies (\Delta p)_{turn} = e\rho \dot{B}T_r = \frac{2\pi e\rho RB}{v}$$

Since:

$$E^2 = E_0^2 + p^2 c^2 \implies \Delta E = v \Delta p$$

$$(\Delta E)_{turn} = (\Delta W)_s = 2\pi e\rho R\dot{B} = e\hat{V}\sin\phi_s$$

Stable phase φ_s changes during energy ramping

$$\sin \phi_s = 2\pi \rho R \frac{\dot{B}}{\hat{V}_{RF}} \implies \phi_s = \arcsin\left(2\pi \rho R \frac{\dot{B}}{\hat{V}_{RF}}\right)$$

• The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.

• Each synchronous particle satisfies the relation $p=eB\rho$. They have the nominal energy and follow the nominal trajectory.

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

The Synchrotron

During the energy ramping, the RF frequency increases to follow the increase of the revolution frequency :

$$\omega_r = \frac{\omega_{RF}}{h} = \omega(B, R_s)$$

Hence:
$$\frac{f_{RF}(t)}{h} = \frac{v(t)}{2\pi R_s} = \frac{1}{2\pi} \frac{ec^2}{E_s(t)} \frac{\rho}{R_s} B(t)$$
 (using $p(t) = eB(t)\rho$, $E = mc^2$)

Since $E^2 = (m_0 c^2)^2 + p^2 c^2$ the RF frequency must follow the variation of the B field with the law

$$\frac{f_{RF}(t)}{h} = \frac{c}{2\pi R_s} \left\{ \frac{B(t)^2}{(m_0 c^2 / ec\rho)^2 + B(t)^2} \right\}^{\frac{1}{2}}$$

This asymptotically tends towards $f_r \rightarrow \frac{c}{2\pi R_s}$ when B becomes large compared to $m_0 c^2 / (ec\rho)$ which corresponds to $v \rightarrow c$

Dispersion Effects in a Synchrotron

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

37

. *x*

 ρ

Dispersion Effects in a Synchrotron (2)

$$\alpha = \frac{p}{L} \frac{dL}{dp} \qquad \qquad ds_0 = \rho d\theta \\ ds = (\rho + x) d\theta$$

 $s - r p \times s_0 = s_0 + s_0 +$ The elementary path difference from the two orbits is: definition of dispersion D_x

$$\frac{dl}{ds_0} = \frac{ds - ds_0}{ds_0} = \frac{x}{\rho} \stackrel{\downarrow}{=} \frac{D_x}{\rho} \frac{dp}{p}$$

leading to the total change in the circumference:

$$dL = \int_{C} dl = \int \frac{x}{\rho} ds_{0} = \int \frac{D_{x}}{\rho} \frac{dp}{p} ds_{0}$$

$$\alpha = \frac{1}{L} \int_{C} \frac{D_{x}(s)}{\rho(s)} ds_{0}$$
With $\rho = \infty$ in
straight sections $\alpha = \frac{\langle D_{x} \rangle_{m}}{R}$

$$\alpha = \frac{\langle D_{x} \rangle_{m}}{R}$$
we get:

Phase Stability in a Synchrotron

From the definition of η it is clear that an increase in momentum gives - below transition ($\eta > 0$) a higher revolution frequency (increase in velocity dominates) while

- above transition ($\eta < 0$) a lower revolution frequency ($v \approx c$ and longer path) where the momentum compaction (generally > 0) dominates.

39

Crossing Transition

At transition, the velocity change and the path length change with momentum compensate each other. So the revolution frequency there is independent from the momentum deviation.

Crossing transition during acceleration makes the previous stable synchronous phase unstable. The RF system needs to make a 'phase jump'.

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

41

Synchrotron oscillations

Simple case (no accel.): **B** = const., below transition $\gamma < \gamma_{tr}$

The phase of the synchronous particle must therefore be $\phi_0 = 0$.

- The particle is accelerated

φ₁

- Below transition, an increase in energy means an increase in revolution frequency
- The particle arrives earlier tends toward ϕ_0

- The particle is decelerated
 - decrease in energy decrease in revolution frequency
 - The particle arrives later tends toward ϕ_0

Longitudinal Dynamics

It is also often called "synchrotron motion".

The RF acceleration process clearly emphasizes two coupled variables, the energy gained by the particle and the RF phase experienced by the same particle. Since there is a well defined synchronous particle which has always the same phase ϕ_s , and the nominal energy E_s , it is sufficient to follow other particles with respect to that particle.

So let's introduce the following reduced variables:

revolution frequency	$\Delta f_r = f_r - f_{rs}$	
particle RF phase	:	$\Delta \phi = \phi - \phi_s$
particle momentum	:	$\Delta p = p - p_s$
particle energy	:	$\Delta E = E - E_s$
azimuth angle	:	$\Delta \theta = \theta - \theta_{\rm s}$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

45

Second Energy-Phase Equation

The rate of energy gained by a particle is:

$$\frac{dE}{dt} = e\hat{V}\sin\phi \frac{\omega_r}{2\pi}$$

The rate of relative energy gain with respect to the reference particle is then: (\dot{E})

$$2\pi\Delta\left(\frac{E}{\omega_r}\right) = e\hat{V}(\sin\phi - \sin\phi_s)$$

Expanding the left-hand side to first order:

$$\Delta \left(\dot{E}T_r \right) \cong \dot{E}\Delta T_r + T_{rs}\Delta \dot{E} = \Delta E \dot{T}_r + T_{rs}\Delta \dot{E} = \frac{d}{dt} \left(T_{rs}\Delta E \right)$$

leads to the second energy-phase equation:

$$2\pi \frac{d}{dt} \left(\frac{\Delta E}{\omega_{rs}} \right) = e \hat{V} \left(\sin \phi - \sin \phi_{s} \right)$$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

47

This second order equation is non linear. Moreover the parameters within the bracket are in general slowly varying with time.

We will study some cases later...

Small Amplitude Oscillations

Let's assume constant parameters $\mathsf{R}_{\mathsf{s}},\mathsf{p}_{\mathsf{s}},\,\omega_{\mathsf{s}}$ and $\eta\colon$

$$\ddot{\phi} + \frac{\Omega_s^2}{\cos\phi_s} (\sin\phi - \sin\phi_s) = 0$$
 with $\Omega_s^2 = \frac{h\eta\omega_{rs}e\hat{V}\cos\phi_s}{2\pi R_s p_s}$

Consider now small phase deviations from the reference particle:

$$\sin\phi - \sin\phi_s = \sin(\phi_s + \Delta\phi) - \sin\phi_s \cong \cos\phi_s \Delta\phi$$
 (for small $\Delta\phi$)

and the corresponding linearized motion reduces to a harmonic oscillation:

$$\ddot{\phi} + \Omega_s^2 \Delta \phi = 0$$

where Ω_s is the synchrotron angular frequency

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

49

Stability condition for ϕ_s

Stability is obtained when Ω_s is real and so Ω_s^2 positive:

Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the second order differential equation is non-linear:

$$\ddot{\phi} + \frac{\Omega_s^2}{\cos\phi_s} \left(\sin\phi - \sin\phi_s\right) = 0 \qquad (\Omega_s \text{ as previously defined})$$

Multiplying by ϕ and integrating gives an invariant of the motion:

$$\frac{\phi^2}{2} - \frac{\Omega_s^2}{\cos\phi_s} \left(\cos\phi + \phi\sin\phi_s\right) = I$$

which for small amplitudes reduces to:

$$\frac{\dot{\phi}^2}{2} + \Omega_s^2 \frac{(\Delta \phi)^2}{2} = I' \qquad \text{(the variable is } \Delta \phi, \text{ and } \phi_s \text{ is constant)}$$

Similar equations exist for the second variable : $\Delta E \propto d\phi/dt$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

51

Large Amplitude Oscillations (2)

When ϕ reaches π - ϕ_s the force goes to zero and beyond it becomes non restoring. Hence π - ϕ_s is an extreme amplitude for a stable motion which in the

phase space($\frac{\phi}{\Omega_s}$, $\Delta \phi$) is shown as closed trajectories.

Equation of the separatrix:

$$\frac{\phi^2}{2} - \frac{\Omega_s^2}{\cos\phi_s} \left(\cos\phi + \phi\sin\phi_s\right) = -\frac{\Omega_s^2}{\cos\phi_s} \left(\cos(\pi - \phi_s) + (\pi - \phi_s)\sin\phi_s\right)$$

Second value ϕ_m where the separatrix crosses the horizontal axis:

$$\cos\phi_m + \phi_m \sin\phi_s = \cos(\pi - \phi_s) + (\pi - \phi_s) \sin\phi_s$$

Area within this separatrix is called "RF bucket".

Energy Acceptance

From the equation of motion it is seen that ϕ reaches an extreme when $\phi = 0$, hence corresponding to $\phi = \phi_s$. Introducing this value into the equation of the separatrix gives:

$$\dot{\phi}_{\max}^2 = 2\Omega_s^2 \left\{ 2 + \left(2\phi_s - \pi \right) \tan \phi_s \right\}$$

That translates into an acceptance in energy:

$$\left(\frac{\Delta E}{E_s}\right)_{\max} = \mp \beta \sqrt{-\frac{e\hat{V}}{\pi h\eta E_s}} G(\phi_s)$$
$$G(\phi_s) = \left[2\cos\phi_s + (2\phi_s - \pi)\sin\phi_s\right]$$

This "RF acceptance" depends strongly on ϕ_s and plays an important role for the capture at injection, and the stored beam lifetime.

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

53

Potential Energy Function

The longitudinal motion is produced by a force that can be derived from a scalar potential: $I_{2\phi}^{2\phi}$

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

55

Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the 1^{st} order equations:

The two variables ϕ , W are canonical since these equations of motion can be derived from a Hamiltonian $H(\phi, W, t)$:

$$\frac{d\phi}{dt} = \frac{\partial H}{\partial W} \qquad \qquad \frac{dW}{dt} = -\frac{\partial H}{\partial \phi}$$
$$H(\phi, W, t) = e\hat{V}[\cos\phi - \cos\phi_s + (\phi - \phi_s)\sin\phi_s] - \frac{1}{4\pi} \frac{h\eta\omega_{rs}}{R_s p_s} W^2$$

Stationnary Bucket - Separatrix

This is the case $\sin\phi_s=0$ (no acceleration) which means $\phi_s=0$ or π . The equation of the separatrix for $\phi_s=\pi$ (above transition) becomes:

$$\frac{\dot{\phi}^2}{2} + \Omega_s^2 \cos\phi = \Omega_s^2 \qquad \qquad \frac{\dot{\phi}^2}{2} = 2\Omega_s^2 \sin^2\frac{\phi}{2}$$

Replacing the phase derivative by the canonical variable W:

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

57

Stationnary Bucket (2)

Setting $\phi = \pi$ in the previous equation gives the height of the bucket:

$$W_{bk} = 2\frac{C}{c}\sqrt{\frac{-e\hat{V}E_s}{2\pi h\eta}}$$

This results in the maximum energy acceptance:

$$\Delta E_{\max} = \frac{\omega_{rs}}{2\pi} W_{bk} = \beta_s \sqrt{2 \frac{-e\hat{V}_{RF}E_s}{\pi\eta h}}$$

The area of the bucket is:

$$A_{bk} = 2 \int_0^{2\pi} W d\phi$$

Since:

$$\int_0^{2\pi} \sin \frac{\varphi}{2} d\phi = 4$$

1

one gets:

$$A_{bk} = 8W_{bk} = 16 \frac{C}{c} \sqrt{\frac{-e\hat{V}E_s}{2\pi h\eta}} \longrightarrow W_{bk} = \frac{A_{bk}}{8}$$

Bunch Matching into a Stationnary Bucket

A particle trajectory inside the separatrix is described by the equation:

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

Bunch Matching into a Stationnary Bucket (2)

Setting $\phi = \pi$ in the previous formula allows to calculate the bunch height:

$$W_{b} = W_{bk} \cos \frac{\phi_{m}}{2} = W_{bk} \sin \frac{\phi}{2} \qquad \text{or:} \qquad W_{b} = \frac{A_{bk}}{8} \cos \frac{\phi_{m}}{2}$$
$$\longrightarrow \qquad \left(\frac{\Delta E}{E_{s}}\right)_{b} = \left(\frac{\Delta E}{E_{s}}\right)_{RF} \cos \frac{\phi_{m}}{2} = \left(\frac{\Delta E}{E_{s}}\right)_{RF} \sin \frac{\phi}{2}$$

This formula shows that for a given bunch energy spread the proper matching of a shorter bunch (ϕ_m close to π , $\hat{\phi}$ small) will require a bigger RF acceptance, hence a higher voltage

For small oscillation amplitudes the equation of the ellipse reduces to:

$$W = \frac{A_{bk}}{16} \sqrt{\hat{\phi}^2 - (\Delta \phi)^2} \qquad \longrightarrow \qquad \left(\frac{16W}{A_{bk}\hat{\phi}}\right)^2 + \left(\frac{\Delta \phi}{\hat{\phi}}\right)^2 = 1$$

Ellipse area is called longitudinal emittance

$$A_b = \frac{\pi}{16} A_{bk} \hat{\phi}^2$$

For larger amplitudes, the angular phase space motion is slower (1/8 period shown below) => can lead to filamentation and emittance growth

Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012

61

Capture of a Debunched Beam with Adiabatic Turn-On

