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Gradient is normal to
surface ϕ = constant.

For a scalar function ϕ(x, y, z, t),

gradient: ∇ϕ =

�
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

�

For a vector �F =
�
F1, F2, F3

�
:

divergence: ∇ · �F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

curl: ∇∧ �F =

�
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

�
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Vector Calculus
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∇ · �F ∧ �G = �G ·∇∧ �F − �F ·∇∧ �G

∇∧∇φ = 0, ∇ ·∇∧ �F = 0

∇∧ (∇∧ �F ) = ∇(∇ · �F )−∇2 �F

Stokes’ Theorem

Basic Vector Calculus

5

Divergence or Gauss’ 
Theorem

Closed surface S, volume V, 
outward pointing normal

��

S

∇∧ �F · d�S =

�

C

�F · d�r ���

V

∇ · �F dV =

��

S

�F · d�S
�nd�S = �n dS

Oriented

boundary C

as we have in Green’s Theorem. The line integral
∮

C

!F · !T ds

computes the circulation around the path C while
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dx dy

provides the accumulative effect of the curl of !F over the entire region D or S .

EXAMPLE 2 Suppose we are given the curl of !F , ∇ × !F = 〈2y, −2z, 3〉 , but not the function !F itself.
Our surface is the upper hemisphere of radius 3. That is, S = {(x, y, z) : x2 + y2 + z2 = 9, z ≥ 0} . Our
objective is to evaluate the surface integral

∫∫

S(∇ × !F ) · !n dσ .

(a) Use spherical coordinates to parametrize S

g(θ, ϕ) =





3 sinϕ cos θ
3 sinϕ sin θ

3 cos ϕ





0 ≤ θ ≤ 2π

0 ≤ ϕ ≤ π/2

We have

!n = −
(

∂g

∂θ
× ∂g

∂ϕ

)

=
∂g

∂ϕ
× ∂g

∂θ
= 〈9 sin2 ϕ cos θ, 9 sin2 ϕ sin θ, 9 sinϕ cos ϕ〉

(∇ × !F )
(

g(θ, ϕ)
)

= 〈6 sinϕ sin θ, −6 cos ϕ, 3〉
(∇ × !F ) · !n = 54 sin3 ϕ sin θ cos θ − 54 sin2 ϕ cos ϕ sin θ + 27 sinϕ cos ϕ

Evaluating
∫∫

S
(∇ × !F ) · !n dσ we have

∫ π/2

0

∫ 2π

0
54 sin3 ϕ sin θ cos θ − 54 sin2 ϕ cos ϕ sin θ + 27 sinϕ cos ϕ dθ dϕ = 27π

(b) Now we observe that the boundary of S is the circle
C = {(x, y, 0) : x2 + y2 = 9} , which just happens to be the boundary of the disk
D = {(x, y, z) : x2 + y2 ≤ 9, z = 0} . So we apply Stoke’s theorem twice.

∫∫

S
(∇ × !F ) · !n dσ =

∮

C

!F · d!r =
∫∫

D
(∇ × !F ) · !n dσ

But on D , !n = !k = 〈0, 0, 1〉 which means that ∇ × !F ) · !n = 〈2y, 0, 3〉 · 〈0, 0, 1〉 = 3 And we have
∫∫

D
3 dσ = (3) (area(D)) = (3)(9π) = 27π

Note that we were able to avoid needing to know !F .

Example 3, Maple Verify Stoke’s Theorem for !F (x, y, z) = 〈y2, x,−xz〉 on the paraboloid z = 25−x2 −
y2 , z ≥ 0.
> with(student): with(plots): with(linalg):
> F:=[yˆ2,x,-x*z];

F := [y2, x,−xz]
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What is Electromagnetism?

• The study of Maxwell’s equations, devised in 1863 to 
represent the relationships between electric and magnetic 
fields in the presence of electric charges and currents, 
whether steady or rapidly fluctuating, in a vacuum or in 
matter.

• The equations represent one of the most elegant and 
concise way to describe the fundamentals of electricity and 
magnetism. They pull together in a consistent way earlier 
results known from the work of Gauss, Faraday, Ampère, 
Biot, Savart and others.

• Remarkably, Maxwell’s equations are perfectly consistent 
with the transformations of special relativity.

6
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Maxwell’s Equations
Relate Electric and Magnetic fields generated by 
charge and current distributions.

7

�E = electric field

�D = electric displacement

�H = magnetic field

�B = magnetic flux density

ρ = electric charge density

�j = current density

µ0 = permeability of free space, 4π 10−7

�0 = permittivity of free space, 8.854 10−12

c = speed of light, 2.99792458 108

In vacuum: �D = �0
�E, �B = µ0

�H, �0µ0c
2 = 1

∇ · �D = ρ

∇ · �B = 0

∇∧ �E = −∂ �B

∂t

∇∧ �H = �j +
∂ �D

∂t
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�E =
q

4π�0

�r

r3

=⇒
��

sphere

�E · d�S =
q

4π�0

��

sphere

dS

r2
=

q

�0

Equivalent to Gauss’ Flux Theorem:

The flux of electric field out of a closed region is proportional to the total 
electric charge Q enclosed within the surface.

A point charge q generates an electric field:

Maxwell’s 1st Equation ∇ · �E =
ρ

�0

∇ · �E =
ρ

�0
⇐⇒

���

V

∇ · �E dV =

��

S

�E · d�S =
1

�0

���

V

ρ dV =
Q

�0

Area integral gives a measure of the net charge enclosed; divergence of 
the electric field gives the density of the sources.

8
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Gauss’ law for magnetism:  

 

The net magnetic flux out of any 
closed surface is zero. Surround a 
magnetic dipole with a closed surface. 
The magnetic flux directed inward 
towards the south pole will equal the 
flux outward from the north pole. 

If there were a magnetic monopole 
source, this would give a non-zero 
integral. 

Maxwell’s 2nd Equation 

Gauss’ law for magnetism is then a 
statement that

There are no magnetic monopoles 9

∇ · �B = 0 ⇐⇒
��

�B · d�S = 0

∇ · �B = 0
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Equivalent to Faraday’s Law of Induction:

(for a fixed circuit C)

The electromotive force round a circuit                                          

       is proportional to the rate of change of flux of 

magnetic field                        through the circuit. 

Maxwell’s 3rd Equation 

! "= ldE
!!

#

!! "=# SdB
!!

10

��

S

∇∧ �E · d�S = −
��

S

∂ �B

∂t
· d�S

⇐⇒
�

C

�E · d�l = − d

dt

��

S

�B · d�S = −dΦ

dt

∇∧ �E = −∂ �B

∂t

Faraday’s Law is the basis for electric generators. It also 
forms the basis for inductors and transformers.

Michael Faraday
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�B =
µ0I

4π

�
d�l ∧ �r

r3

Maxwell’s 4th Equation

Ampère

11

Biot

∇∧ �B = µ0
�j +

1
c2

∂ �E

∂t

Originates from Ampère’s (Circuital) Law :

Satisfied by the field for a steady line current 
(Biot-Savart Law, 1820):

∇∧ �B = µ0
�j

�

C

�B · d�l =
��

S

∇∧ �B · d�S = µ0

��

S

�j · d�S = µ0I

�B =
µ0I

2πr
For a straight line current
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• Apply Ampère to surface 1 (a flat
disk): the line integral of B =
µ0I.

• Applied to surface 2, line integral
is zero since no current penetrates
the deformed surface.

• In a capacitor,

E =
Q

�0A
and I =

dQ

dt
= �0A

dE

dt
,

so there is a current density �jd = �0
∂ �E

∂t
.

12

Displacement Current

Surface 1 Surface 2

Closed loop

Current I

• Faraday: vary B-field, generate E-field
• Maxwell: varying E-field should then produce a B-field, but not covered by 

Ampère’s Law.

∇∧ �B = µ0(�j +�jd) = µ0
�j + �0µ0

∂ �E

∂t
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Consistency with Charge Conservation

Charge conservation:
Total current flowing out of a region 
equals the rate of decrease of charge 
within the volume. 

Charge conservation is implicit in Maxwell’s Equations

��
�j · d�S = − d

dt

���
ρ dV

⇐⇒
���

∇ ·�j dV = −
���

∂ρ

∂t
dV

⇐⇒ ∇ ·�j + ∂ρ

∂t
= 0

From Maxwell’s equations: 
Take divergence of (modified) Ampère’s 
equation

∇∧ �B = µ0
�j +

1

c2
∂ �E

∂t

=⇒ ∇ ·∇∧ �B = µ0∇ ·�j + 1

c2
∂

∂t

�
∇ · �E

�

=⇒ 0 = ∇ ·�j + �0µ0
∂

∂t

�
ρ

�0

�

=⇒ 0 = ∇ ·�j + ∂ρ

∂t

Thursday, 25 October 2012



In vacuum:

�D = �0
�E, �B = µ0

�H, �0µ0c
2 = 1

Source-free equations:

∇ · �B = 0

∇∧ �E +
∂ �B

∂t
= 0

Source equations:

∇ · �E =
ρ

�0

∇∧ �B − 1

c2

∂ �B

∂t
= µ0

�j

Equivalent integral form (useful for
simple geometries):

��
�E · d�S =

1

�0

���
ρ dV

��
�B · d�S = 0

�
�E · d�l = − d

dt

��
�B · d�S = −dΦ

dt�
�B · d�l = µ0

��
�j d�S +

1

c2
d

dt

��
�E · d�S

Maxwell’s Equations in Vacuum

14
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Also from ∇∧ �E = −∂ �B

∂t

∇∧ �B = µ0
�j +

1

c2
∂ �E

∂t
then gives current density necessary to
sustain the fields

Example: Calculate E from B
�

�E · d�l = − d
dt

��
�B · d�S

!
"
#

>
<

=
0

00

0
sin

rr
rrtB

Bz
$

r

z

15

2πrEθ = − d

dt
πr2B0 sinωt = −πr2B0ω cosωt

=⇒ Eθ = −1

2
B0ωr cosωt

r < r0

2πrEθ = − d

dt
πr20B0 sinωt = −πr20B0ω cosωt

=⇒ Eθ = −ωr20B0

2r
cosωt

r > r0
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�
�E · d�l = − d

dt

��
�B · d�S

=⇒ 2πrEθ = −dΦ
dt

The Betatron
Magnetic 
flux, !

Generated 
E-field

r

Particles accelerated by the rotational electric 
field generated by a time-varying magnetic field

16

−mv2

r
= evB =⇒ B = − p

er

=⇒ ∂

∂t
B(r, t) = − 1

er

dp

dt
= −E

r
=

1
2πr2

dΦ
dt

=⇒ B(r, t) =
1
2

1
πr2

��
B dS

B-field on orbit needs to be one half the average B over the circle. This imposes a limit on the energy 
that can be achieved. Nevertheless the constant radius principle is attractive for high energy circular 
accelerators.

For circular motion at a  constant radius:
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Lorentz Force Law

• Thought of as a supplement to Maxwell’s equations but actually 
implicit in relativistic formulation, gives force on a charged particle 
moving in an electromagnetic field:

• For continuous distributions, use force density:

• Relativistic equation of motion

– 4-vector form:

– 3-vector component:       Energy component:

F =
dP

dτ
=⇒ γ

�
�v · �f

c
, �f

�
= γ

�
1
c

dE

dt
,
d�p

dt

�

d

dt

�
m0γ�v

�
= �f = q

�
�E + �v ∧ �B

�
�v · �f =

dE

dt
= m0c

2 dγ

dt

17

�f = q
�
�E + �v ∧ �B

�

�fd = ρ �E +�j ∧ �B
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d

dt

�
m0γ�v

�
= �f = q

�
�E + �v ∧ �B

�
= q�v ∧ �B

d

dt

�
m0γc

2
�
= �v · �f = q�v · �v ∧ �B = 0

Motion in Constant Magnetic Fields

• From energy equation, ! is constant

• From momentum equation,

18

No acceleration with a magnetic field

|�v| constant and |�v�| constant
=⇒ |�v⊥| also constant

=⇒ |�v| is constant
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Motion in Constant Magnetic Field

Constant magnetic field gives 
uniform spiral about B with 

constant energy.

19

d

dt
(m0γ�v) = q�v ∧ �B

=⇒ d�v

dt
=

q

m0γ
�v ∧ �B

=⇒ v2⊥
ρ

=
q

m0γ
v⊥B

=⇒ circular motion with radius ρ =
m0γv⊥
qB

at an angular frequency ω =
v⊥
ρ

=
qB

m0γ
=

qB

m

Magnetic Rigidity

Bρ =
m0γv

q
=

p

q
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d

dt

�
m0γ�v

�
= �f = q

�
�E + �v ∧ �B

�
=⇒ d

dt

�
m0γ�v

�
= q �E

20

Motion in Constant Electric Field

Constant E-field gives uniform acceleration in 
straight line

Solution is γ�v =
q �E

m0
t

Then γ2 = 1 +

�
γ�v

c

�2

=⇒ γ =

����1 +

�
q �Et

m0c

�2

If �E = (E, 0, 0),
dx

dt
=

(γv)

γ
=⇒ x = x0 +

m0c2

qE




�

1 +

�
qEt

m0c

�2

− 1





≈ x0 +
1

2

�
qE

m0

�
t2 for qE � m0c

Energy gain is m0c
2(γ − 1) = qE(x− x0)
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• According to observer O in frame F, particle has velocity   , fields are     and 
and Lorentz force is 

• In Frame F’, particle is at rest and force is 

• Assume measurements give same charge and force, so

• Point charge q at rest in F:

• See a current in F’, giving a field

• Suggests

�E =
q

4π�0

�r

r3
, �B = 0

�v �E �B

Relativistic Transformations of E and B

�f � = q� �E�

q� = q and �E� = �E + �v × �B

�B� = −µ0q

4π

�v × �r

r3
= − 1

c2
�v × �E

�B� = �B − 1
c2

�v × �E

21

�f = q
�
�E + �v ∧ �B

�

Rou
gh

 id
ea
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Review of Waves

• 1D wave equation is                         with general 
solution

• Simple plane wave: 

  

 

1D : sin ! t " k x( ) 3D : sin ! t "
! 
k #
! 
x ( )

∂2u

∂x2
=

1
v2

∂2u

∂t2

u(x, t) = f(vt− x) + g(vt + x)

Wavelength is λ =
2π

|�k|

Frequency is ν =
ω

2π

22
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ω∆t− k∆x = 0

⇐⇒ vp =
∆x

∆t
=

ω

k

Superposition of plane waves. While 
shape is relatively undistorted, pulse 
travels with the Group Velocity

Phase and Group Velocities

[ ]!
"

"#

# dkekA kxtki )()( $

Plane wave                      has constant 
phase                        at peaks

sin(ωt− kx)
ωt− kx = 1

2π

vg =
dω

dk

23

Thursday, 25 October 2012



24

Wave Packet Structure

• Phase velocities of individual plane waves making 
up the wave packet are different, 

• The wave packet will then disperse with time  

Thursday, 25 October 2012



3D wave equation:

∇2 �E =
∂2 �E

∂x2
+

∂2 �E

∂y2
+

∂2 �E

∂z2
= µ�

∂2 �E

∂t2

Electromagnetic waves
• Maxwell’s equations predict the existence of electromagnetic waves, later 

discovered by Hertz.
• No charges, no currents:

∇∧
�
∇∧ �E

�
= −∇ ∧ ∂ �B

∂t

= − ∂

∂t

�
∇∧ �B

�

= −µ
∂2 �D

∂t2
= −µ�

∂2 �E

∂t2

∇∧
�
∇∧ �E

�
=∇

�
∇ · �E

�
−∇2 �E

= −∇2 �E

25

Similarly for �H.

Electromagnetic waves travelling with

speed
1

√
�µ

∇∧ �H =
∂ �D

∂t
, ∇∧ �E = −∂ �B

∂t

∇ · �D = 0, ∇ · �B = 0
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Nature of Electromagnetic Waves
• A general plane wave with angular frequency ! travelling in the 

direction of the wave vector     has the form

• Phase                                 number of waves and so is a Lorentz 
invariant.

• Apply Maxwell’s equations:

• Waves are transverse to the direction of propagation;          and     are 
mutually perpendicular

�k

�E = �E0e
i(ωt−�k·�x), �B = �B0e

i(ωt−�k·�x)

∇ ↔ −i�k
∂

∂t
↔ iω

26

ωt− �k · �x = 2π×

�E, �B �k

∇ · �E = 0 = ∇ · �B ←→ �k · �E = 0 = �k · �B

∇∧ �E = −∂ �B

∂t
←→ �k ∧ �E = ω �B
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Plane Electromagnetic Wave

27
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=⇒ speed of electromagnetic waves in vacuum is
ω

k
= c

Plane Electromagnetic Waves

!
"#

!$

2
Frequency

k
2Wavelength

=

= !
Reminder: The fact that                        is an 
invariant tells us that

                 

is a Lorentz 4-vector, the 4-Frequency vector. 
Deduce frequency transforms as

Λ =
�ω

c
,�k

�
ωt− �k · �x

ω� = γ(ω − �v · �k) = ω

�
c− v

c + v

∇∧ �B =
1
c2

∂ �E

∂t
⇐⇒ �k ∧ �B = − ω

c2
�E

Combined with �k ∧ �E = ω �B =⇒ | �E|
| �B|

=
ω

k
=

kc2

ω

28
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Waves in a Conducting Medium

• (Ohm’s Law) For a medium of conductivity !,                                      

• Modified Maxwell:                                   

• Put
conduction 

current
displacement 

currentDissipation 
factor 

�j = σ �E

∇∧ �H = �j + �
∂ �E

∂t
= σ �E + �

∂ �E

∂t

−i�k ∧ �H = σ �E + iω� �E

D =
σ

ω�

�E = �E0e
i(ωt−�k·�x), �B = �B0e

i(ωt−�k·�x)

29
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−i�k ∧ �H = σ �E + iω� �E ⇐⇒ �k ∧ �H = iσ �E − ω� �E = (iσ − ω�) �E

Combine with ∇∧ �E = −∂ �B

∂t
=⇒ �k ∧ �E = ωµ �H

=⇒ �k ∧ (�k ∧ �E) = ωµ�k ∧ �H = ωµ(iσ − ω�) �E

=⇒ (�k · �E)�k − k2 �E = ωµ(iσ − ω�) �E

=⇒ k2 = ωµ(−iσ + ω�) since �k · �E = 0

Attenuation in a Good Conductor

For a good conductor, D � 1, σ � ω�, k2 ≈ −iωµσ

=⇒ k ≈
�

ωµσ

2
(1− i) =

1

δ
(1− i) where δ =

�
2

ωµσ
is the skin-depth

Wave-form is: ei(ωt−kx) = ei(ωt−(1−i)x/δ) = e−x/δei(ωt−x/δ)

30
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• Inside a conductor (Ohm’s law)

• Continuity equation is

• Solution is

• Charge density decays exponentially with time. For a very 
good conductor, charge flows instantly to the surface to 
form a surface current density and (for time varying fields) 
a surface current. Inside a perfect conductor:

Charge Density in a Conducting Material

�j = σ �E

ρ = ρ0 e−σt/�

32

∂ρ

∂t
+∇ ·�j = 0 ⇐⇒ ∂ρ

∂t
+ σ∇ · �E = 0

⇐⇒ ∂ρ

∂t
+

σ

�
ρ = 0.

(σ → ∞) �E = �H = 0
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∇∧ �E = −∂ �B

∂t
= −iωµ �H

∇∧ �H =
∂ �D

∂t
= iω� �E






=⇒

∇2 �E = ∇(∇ · �E)−∇ ∧∇ ∧ �E

= iωµ∇∧ �H

= −ω
2
�µ �E

� �� �
�
∇2 + ω

2
�µ

�� �E

�H

�
= 0

A Uniform Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary 
surfaces
Maxwell’s equations with time dependence ei!t are:

Assume 
)(

)(

),(),,,(

),(),,,(
zti

zti

eyxHtzyxH

eyxEtzyxE
!"

!"

#

#

=

=
!!

!!

! is the propagation constant

Can solve for the fields completely 
in terms of Ez and Hz

z
x

y
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Then
�
∇2

t +
�
ω
2
�µ+ γ

2
��� �E

�H

�
= 0

Helmholtz Equation
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To satisfy boundary conditions: E = 0 on x = 0 and x = a.

=⇒ E = A sinKx, with K = Kn ≡ nπ

a
, n integer

�E = (0, 1, 0)E(x)eiωt−γz where E satisfies

∇2
tE =

d2E

dx2
= −K2E, K2 = ω2�µ+ γ2.

with solution E = A cosKx or A sinKx

Propagation constant is

γ =
�
K2

n − ω2�µ =
nπ

a

�

1−
�

ω

ωc

�2

, ωc =
Kn√
�µ
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A simple model: “Parallel Plate Waveguide”

Transport between two infinite conducting plates (TE01 mode):

z

x

y

x=0 x=a
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γ =
nπ

a

�

1−
�

ω

ωc

�2

, E = sin
nπx

a
eiωt−γz, ωc =

nπ

a
√
�µ

35

Cut-off Frequency, "c

! "<"c gives real solution for #, so attenuation 
only. No wave propagates: cut-off modes.

! ">"c gives purely imaginary solution for #, 
and a wave propagates without attenuation.

! For a given frequency " only a finite number of 
modes can propagate.

For given frequency, convenient to 
choose a s.t. only n=1 mode 
occurs.

γ = ik, k =
√
�µ

�
ω2 − ω2

c

� 1
2 = ω

√
�µ

�
1− ω2

c

ω2

� 1
2

ω > ωc =
nπ

a
√
�µ

=⇒ n <
aω

π

√
�µ
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k =
√
�µ

�
ω2 − ω2

c

� 1
2 < ω

√
�µ

λ =
2π

k
>

2π

ω
√
�µ

,

k2 = �µ
�
ω2 − ω2

c

�
=⇒ vg =

dω

dk
=

k

ω�µ
<

1
√
�µ
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Phase and Group Velocities

vp =
ω

k
>

1
√
�µ

‣ free-space wavelength 

‣ larger than free-space 
velocity

‣ smaller than free-
space velocity 

• Wave number

• Wavelength                                    

• Phase velocity                                

• Group velocity
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Calculation of Wave Properties
• If           cm, cut-off frequency of lowest order mode is

• At 7 GHz, only the n=1 mode propagates and

a = 3

fc =
ωc

2π
=

1

2a
√
�µ

≈ 3× 10
8

2× 0.03
≈ 5GHz

�
ωc =

nπ

a
√
�µ

�

c
38

k =
√
�µ

�
ω2 − ω2

c

� 1
2 ≈ 2π(72 − 52)

1
2 × 109/3× 108 = 103m−1

λ =
2π

k
≈ 6 cm

vp =
ω

k
= 4.3× 108 ms−1 > c

vg =
k

ω�µ
= 2.1× 108 ms−1 < c
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