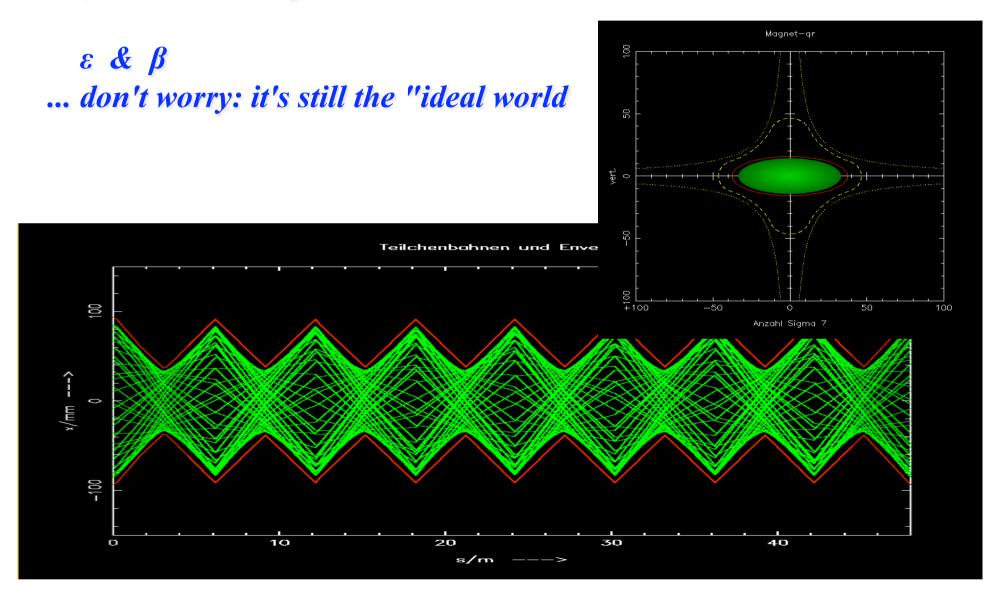
Introduction to Transverse Beam Optics

II.) Particle Trajectories, Beams & Bunch



4.) Solution of Trajectory Equations

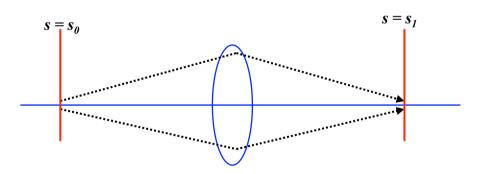
$$x'' + K x = 0$$

Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x_0' \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x_0' \cdot \cos(\sqrt{|K|}s)$$

For convenience expressed in matrix formalism:

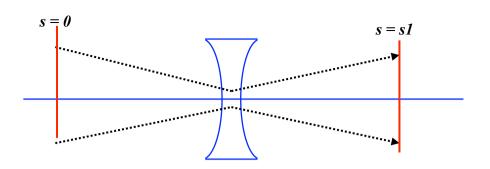
$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$



$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}_{0}$$

hor. defocusing quadrupole:

$$x'' - K x = 0$$



Remember from school:

$$f(s) = \cosh(s)$$
 , $f'(s) = \sinh(s)$

Ansatz:
$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

$$K = 0$$

$$M_{drif\ t} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent " ... the particle motion in x & y is uncoupled"

Combining the two planes:

Clear enough (hopefully ...?): a quadrupole magnet that is focussing o-in one plane acts as defocusing lens in the other plane ... et vice versa.

hor foc. quadrupole lens

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}$$

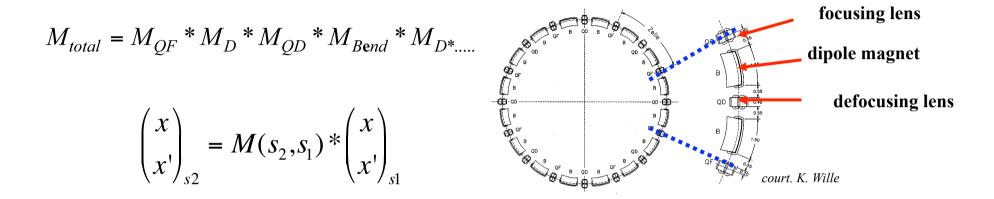
matrix of the same magnet in the vert. plane:

$$M_{defoc} = \begin{pmatrix} \cosh\sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sinh\sqrt{|K|}l \\ \sqrt{|K|}\sinh\sqrt{|K|}l & \cosh\sqrt{|K|}l \end{pmatrix}$$

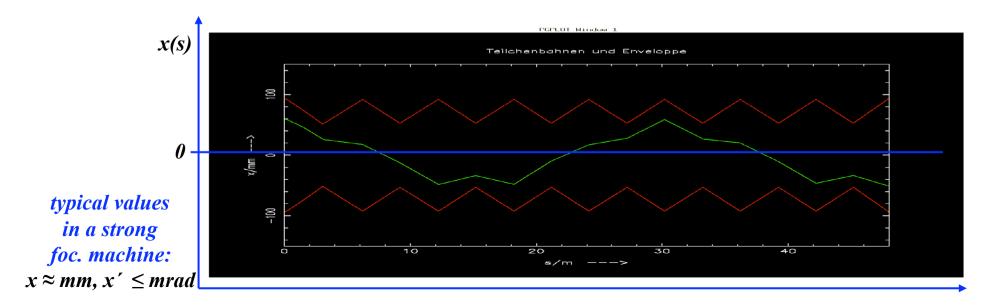
$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{f} = \begin{pmatrix} \cos(\sqrt{|k|}s) & \frac{1}{\sqrt{|k|}}\sin(\sqrt{|k|}s) & 0 & 0 \\ -\sqrt{|k|}\sin(\sqrt{|k|}s) & \cos(\sqrt{|k|}s) & 0 & 0 \\ 0 & 0 & \cosh(\sqrt{|k|}s) & \frac{1}{\sqrt{|k|}}\sinh(\sqrt{|k|}s) \\ 0 & 0 & \sqrt{|k|}\sinh(\sqrt{|k|}s) & \cosh(\sqrt{|k|}s) \end{pmatrix} * \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}_{i}$$

Transformation through a system of lattice elements

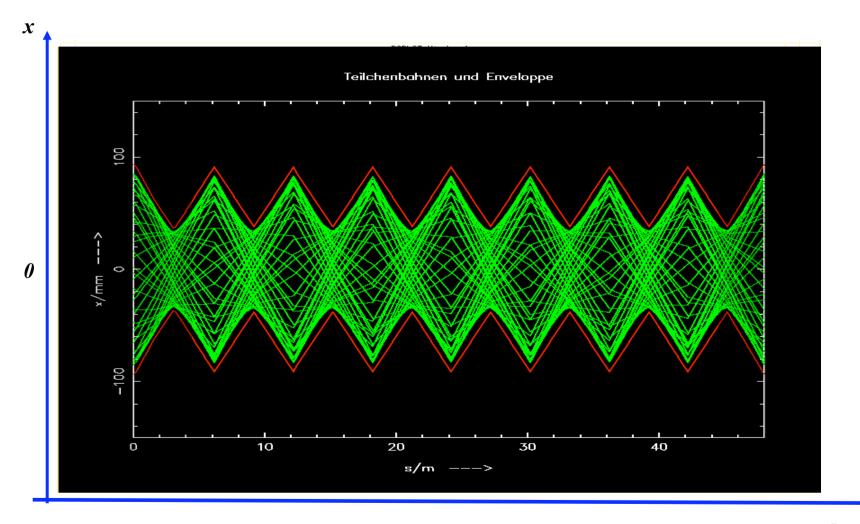
combine the single element solutions by multiplication of the matrices



in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator,



... or a third one or ... 10¹⁰ turns



6.) The Beta Function

General solution of Hill's equation:

(i)
$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$$

 ε , Φ = integration constants determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$\beta(s+L) = \beta(s)$$

Inserting (i) into the equation of motion ...

$$\psi(s) = \int_0^s \frac{ds}{\beta(s)}$$

 $\Psi(s) = \text{",phase advance"}$ of the oscillation between point ",0" and ",s" in the lattice. For one complete revolution: number of oscillations per turn ",Tune"

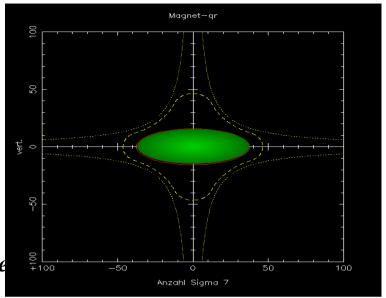
$$Q_{y} = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

The Beta Function

Amplitude of a particle trajectory:

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \varphi)$$

Maximum size of a particle amplitude

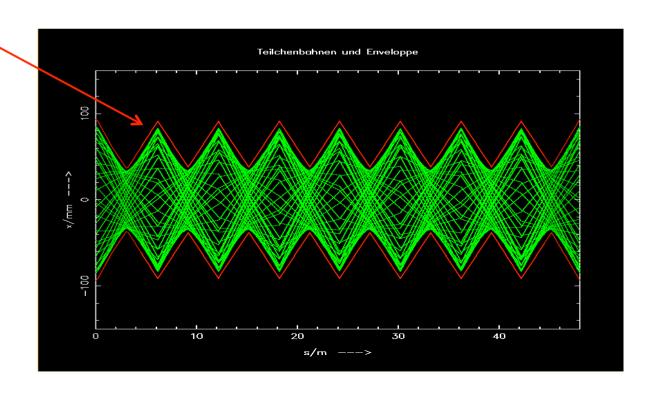


$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$

β determines the beam size

(... the envelope of all particle trajectories at a given position "s" in the storage ring.

It reflects the periodicity of the magnet structure.



7.) Beam Emittance and Phase Space Ellipse

general solution of Hill equation
$$\begin{cases} (1) & x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi) \\ (2) & x'(s) = -\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi) \right\} \end{cases}$$

from (1) we get

$$\cos(\psi(s) + \phi) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\beta(s)}}$$

$$\gamma(s) = \frac{1 + \alpha(s)}{\beta(s)}$$

Insert into (2) and solve for ε

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

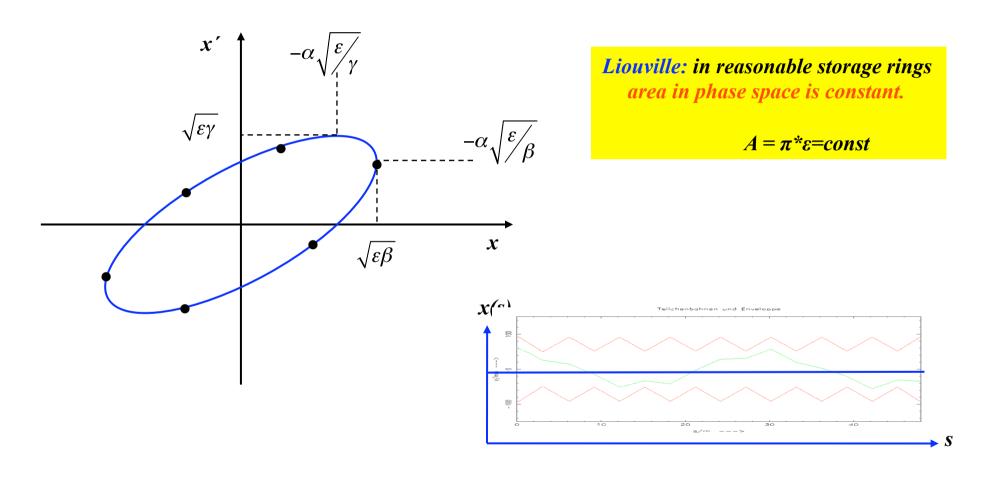
* & is a constant of the motion ... it is independent of ,,s"

* parametric representation of an ellipse in the x x 'space

* shape and orientation of ellipse are given by α , β , γ

Beam Emittance and Phase Space Ellipse

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$



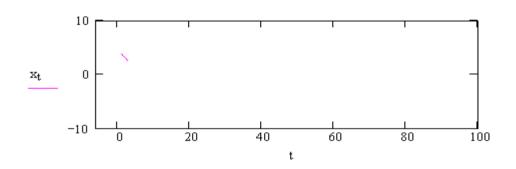
ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

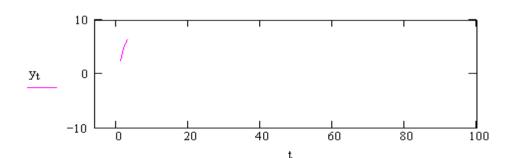
Scientifiquely speaking: area covered in transverse x, x' phase space ... and it is constant !!!

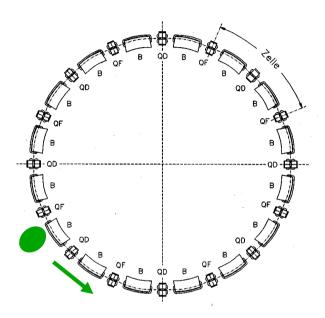
Particle Tracking in a Storage Ring

Calculate x, x' for each linear accelerator element according to matrix formalism

plot x, x'as a function of "s"

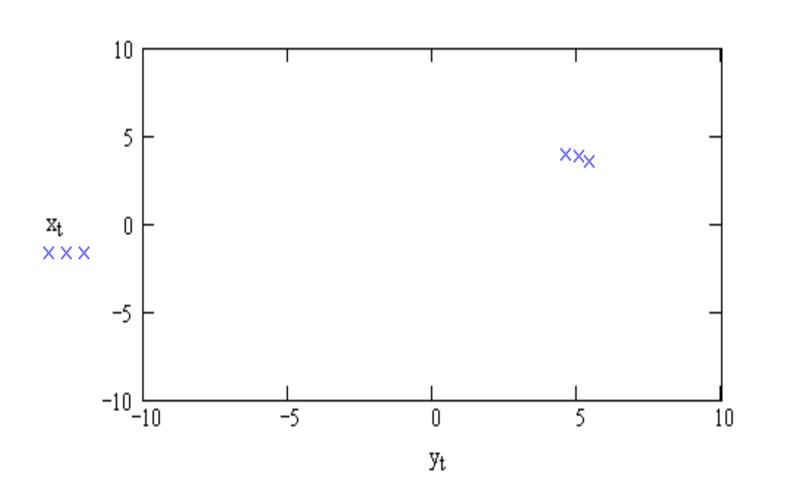






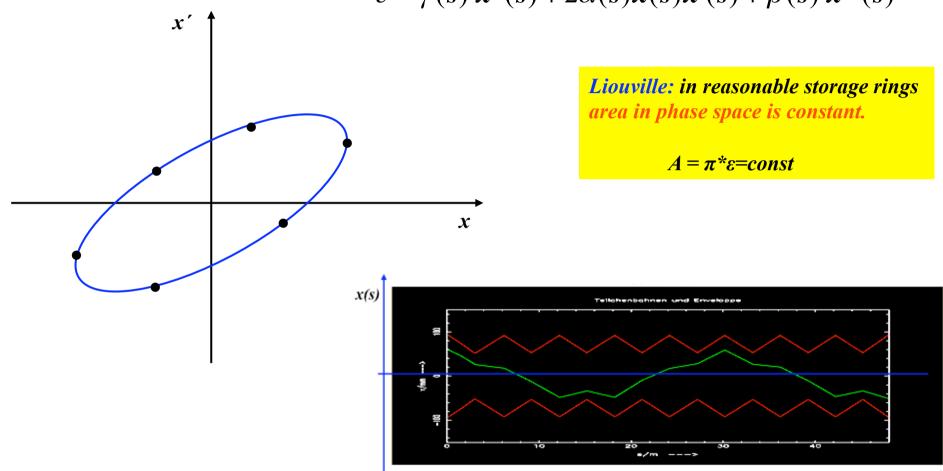
... and now the ellipse:

note for each turn x, x at a given position " s_1 " and plot in the phase space diagram



8.) Beam Emittance and Phase Space Ellipse

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$



ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.

Scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

Phase Space Ellipse

particel trajectory:
$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\}$$

max. Amplitude:
$$\hat{x}(s) = \sqrt{\varepsilon \beta}$$
 \longrightarrow x' at that position ...?

... put
$$\hat{x}(s)$$
 into $\varepsilon = \gamma(s) x^2(s) + 2\alpha(s) x(s) x'(s) + \beta(s) x'^2(s)$ and solve for x'

$$\varepsilon = \gamma \cdot \varepsilon \beta + 2\alpha \sqrt{\varepsilon \beta} \cdot x' + \beta x'^2$$

$$x' = -\alpha \cdot \sqrt{\varepsilon / \beta}$$

- * A high β-function means a large beam size and a small beam divergence.
 ... et vice versa!!!
- * In the middle of a quadrupole $\beta = \max mum$, $\alpha = zero$ x' = 0 ... and the ellipse is flat

Phase Space Ellipse

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

$$\alpha(s) = \frac{-1}{2}\beta'(s)$$

$$\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)}$$

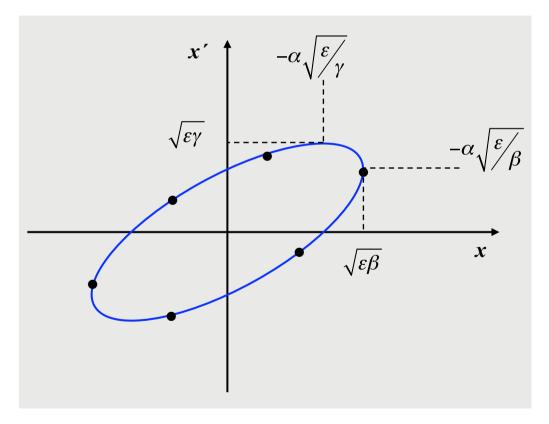
$$\varepsilon = \frac{x^2}{\beta} + \frac{\alpha^2 x^2}{\beta} + 2\alpha \cdot xx' + \beta \cdot x'^2$$

... solve for
$$x'$$
 $x'_{1,2} = \frac{-\alpha \cdot x \pm \sqrt{\varepsilon \beta - x^2}}{\beta}$

... and determine \hat{x}' via: $\frac{dx'}{dx} = 0$

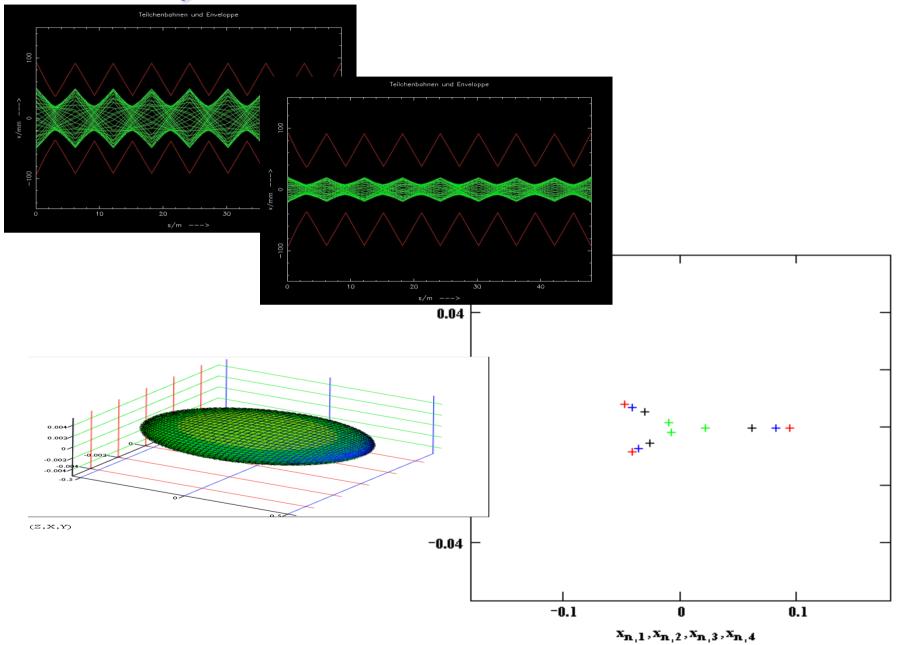
$$\hat{x}' = \sqrt{\varepsilon \gamma}$$

$$\hat{x} = \pm \alpha \sqrt{\frac{\varepsilon}{\gamma}}$$



shape and orientation of the phase space ellipse depend on the Twiss parameters β α γ

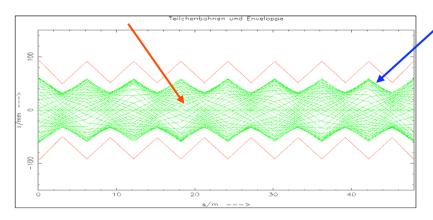
Emittance of the Particle Ensemble:



Emittance of the Particle Ensemble:

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\Psi(s) + \phi)$$
 $\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$$

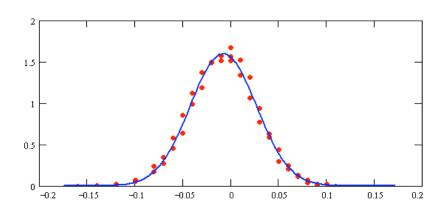


single particle trajectories, $N \approx 10^{-11}$ per bunch

LHC:
$$\beta = 180 m$$

$$\varepsilon = 5 * 10^{-10} m rad$$

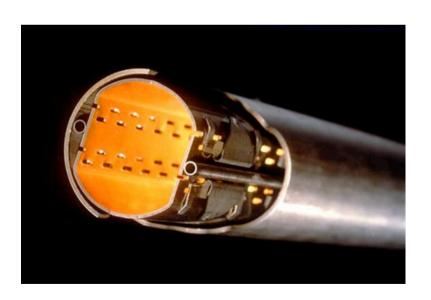
$$\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5*10^{-10} m*180 m} = 0.3 mm$$



Gauß Particle Distribution:

$$\rho(\mathbf{x}) = \frac{N \cdot \mathbf{e}}{\sqrt{2\pi}\sigma_{\mathbf{x}}} \cdot \mathbf{e}^{-\frac{1}{2}\frac{x^2}{\sigma_{\mathbf{x}}^2}}$$

particle at distance 1σ from centre \leftrightarrow 68.3 % of all beam particles



aperture requirements: $r_0 = 12 * \sigma$

9.) Transfer Matrix M ... yes we had the topic already

general solution of Hill's equation
$$\begin{cases} x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\} \\ x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left[\alpha(s) \cos \{\psi(s) + \phi\} + \sin \{\psi(s) + \phi\}\right] \end{cases}$$

remember the trigonometrical gymnastics: sin(a + b) = ... etc

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta_s} \left(\cos \psi_s \cos \phi - \sin \psi_s \sin \phi \right)$$

$$x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta_s}} \left[\alpha_s \cos \psi_s \cos \phi - \alpha_s \sin \psi_s \sin \phi + \sin \psi_s \cos \phi + \cos \psi_s \sin \phi \right]$$

starting at point $s(0) = s_0$, where we put $\Psi(0) = 0$

$$\cos \phi = \frac{x_0}{\sqrt{\varepsilon \beta_0}} ,$$

$$\sin \phi = -\frac{1}{\sqrt{\varepsilon}} (x_0' \sqrt{\beta_0} + \frac{\alpha_0 x_0}{\sqrt{\beta_0}})$$
inserting above ...

$$\underline{x(s)} = \sqrt{\frac{\beta_s}{\beta_0}} \left\{ \cos \psi_s + \alpha_0 \sin \psi_s \right\} x_0 + \left\{ \sqrt{\beta_s \beta_0} \sin \psi_s \right\} x_0'$$

$$\underline{x'(s)} = \frac{1}{\sqrt{\beta_s \beta_0}} \left\{ (\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s \right\} x_0 + \sqrt{\frac{\beta_0}{\beta_s}} \left\{ \cos \psi_s - \alpha_s \sin \psi_s \right\} x_0'$$

which can be expressed ... for convenience ... in matrix form

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$$

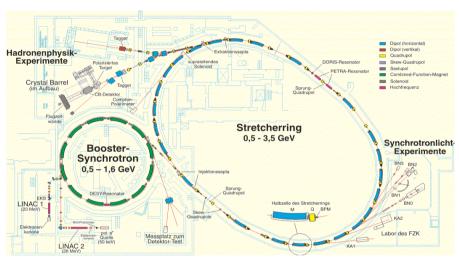
$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$

* and nothing but the $\alpha \beta \gamma$ at these positions.

^{*} we can calculate the single particle trajectories between two locations in the ring, if we know the α β γ at these positions.

10.) Periodic Lattices

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$



ELSA Electron Storage Ring

$$M(s) = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_{turn} & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix} \qquad \psi_{turn} = \int_{s}^{s+L} \frac{ds}{\beta(s)} \qquad \psi_{turn} = phase \ advance \ per \ period$$

$$\psi_{turn} = \int_{-\infty}^{s+L} \frac{ds}{\beta(s)}$$
 $\psi_{turn} = phase \ advance \ per \ period$

Tune: Phase advance per turn in units of 2π

$$Q = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

Stability Criterion:

Question: what will happen, if we do not make too many mistakes and your particle performs one complete turn?



Matrix for 1 turn:

$$M = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_{turn} & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix} = \cos\psi \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin\psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

Matrix for N turns:

$$M^{N} = (1 \cdot \cos \psi + J \cdot \sin \psi)^{N} = 1 \cdot \cos N\psi + J \cdot \sin N\psi$$

The motion for N turns remains bounded, if the elements of M^N remain bounded

$$\psi = real \qquad \Leftrightarrow \qquad \left| \cos \psi \right| \le 1 \qquad \Leftrightarrow \qquad Tr(M) \le 2$$

stability criterion proof for the disbelieving collegues!!

Matrix for 1 turn:
$$M = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_{turn} & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix} = \cos\psi \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin\psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

Matrix for 2 turns:

$$\begin{aligned} \boldsymbol{M}^2 &= (\boldsymbol{I} \cos \psi_1 + \boldsymbol{J} \sin \psi_1) (\boldsymbol{I} \cos \psi_2 + \boldsymbol{J} \sin \psi_2) \\ &= \boldsymbol{I}^2 \cos \psi_1 \cos \psi_2 + \boldsymbol{I} \boldsymbol{J} \cos \psi_1 \sin \psi_2 + \boldsymbol{J} \boldsymbol{I} \sin \psi_1 \cos \psi_2 + \boldsymbol{J}^2 \sin \psi_1 \sin \psi_2 \end{aligned}$$

now ...

$$I^{2} = I$$

$$IJ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

$$JI = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

$$IJ = JI$$

$$J^{2} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha^{2} - \gamma\beta & \alpha\beta - \beta\alpha \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$$

$$M^2 = I \cos(\psi_1 + \psi_2) + J \sin(\psi_1 + \psi_2)$$

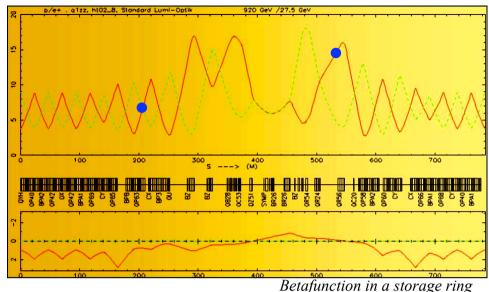
$$\boldsymbol{M}^2 = \boldsymbol{I} \cos(2\psi) + \boldsymbol{J} \sin(2\psi)$$

11.) Transformation of α , β , γ

consider two positions in the storage ring: s_0 , s

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$

$$M = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix}$$



Betafunction in a storage ring

since $\varepsilon = const$ (Liouville):

$$\varepsilon = \beta_s x'^2 + 2\alpha_s x x' + \gamma_s x^2$$

$$\varepsilon = \beta_0 x_0'^2 + 2\alpha_0 x_0 x_0' + \gamma_0 x_0^2$$

... remember W = CS'-SC' = 1

$$\begin{pmatrix} x \\ x' \end{pmatrix}_0 = M^{-1} * \begin{pmatrix} x \\ x' \end{pmatrix}_s$$

$$M^{-1} = \begin{pmatrix} S' & -S \\ -C' & C \end{pmatrix}$$

$$x_0 = S'x - Sx'$$

$$x_0' = -C'x + Cx'$$
... inserting into ε

$$\varepsilon = \beta_0 (\mathbf{C}\mathbf{x}' - \mathbf{C}'\mathbf{x})^2 + 2\alpha_0 (\mathbf{S}'\mathbf{x} - \mathbf{S}\mathbf{x}')(\mathbf{C}\mathbf{x}' - \mathbf{C}'\mathbf{x}) + \gamma_0 (\mathbf{S}'\mathbf{x} - \mathbf{S}\mathbf{x}')^2$$

sort via x, x'and compare the coefficients to get

$$\beta(s) = C^2 \beta_0 - 2SC\alpha_0 + S^2 \gamma_0$$

$$\alpha(s) = -CC' \beta_0 + (SC' + S'C)\alpha_0 - SS' \gamma_0$$

$$\gamma(s) = C'^2 \beta_0 - 2S'C'\alpha_0 + S'^2 \gamma_0$$

in matrix notation:

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s} = \begin{pmatrix} C^{2} & -2SC & S^{2} \\ -CC' & SC' + CS' & -SS' \\ C'^{2} & -2S'C' & S'^{2} \end{pmatrix} \cdot \begin{pmatrix} \beta_{0} \\ \alpha_{0} \\ \gamma_{0} \end{pmatrix}$$

- 1.) this expression is important
- 2.) given the twiss parameters α , β , γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.
- 3.) the transfer matrix is given by the focusing properties of the lattice elements, the elements of M are just those that we used to calculate single particle trajectories.
- 4.) go back to point 1.)

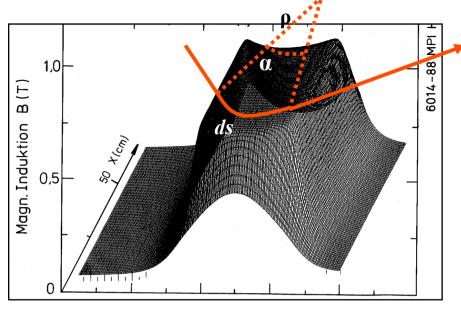
12.) Lattice Design:

"... how to build a storage ring"

$$\boldsymbol{B} \rho = \boldsymbol{p}/\boldsymbol{q}$$

Circular Orbit: dipole magnets to define the geometry

$$\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} = \frac{Bdl}{B\rho}$$



field map of a storage ring dipole magnet

The angle run out in one revolution must be 2π , so

... for a full circle
$$\alpha = \frac{\int Bdl}{B\rho} = 2\pi \quad \Rightarrow \quad \int Bdl = 2\pi \frac{p}{q}$$

... defines the integrated dipole field around the machine.

Nota bene:
$$\Rightarrow \frac{\Delta B}{B} \approx 10^{-4}$$
 is usually required!!

7000 GeV Proton storage ring dipole magnets N = 1232 l = 15 m q = +1 e

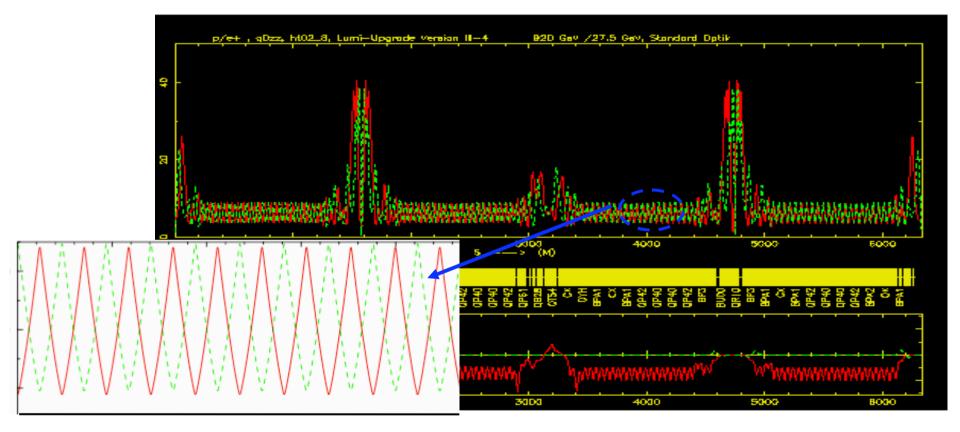
$$\int B \, dl \approx N \, l \, B = 2\pi \, p / e$$

$$B \approx \frac{2\pi \ 7000 \ 10^9 eV}{1232 \ 15 \ m \ 3 \ 10^8 \frac{m}{s} \ e} = 8.3 \ Tesla$$

The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between.

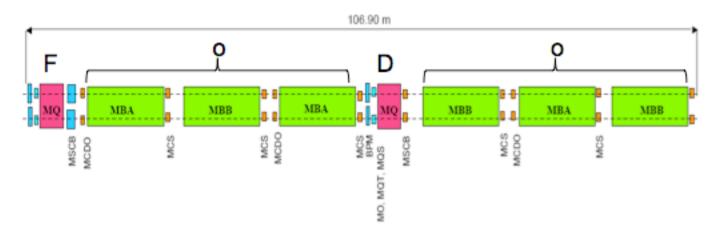
(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)



Starting point for the calculation: in the middle of a focusing quadrupole Phase advance per cell $\mu = 45^{\circ}$,

→ calculate the twiss parameters for a periodic solution

LHC: Lattice Design the ARC 90° FoDo in both planes



equipped with additional corrector coils

MB: main MB:lmain dipole

MQ: main MQ: lmqin quadrupole

MQT: Trim quadrupole
MQS: Skew trim quadrupole

MO: Lattice octupole (Landau damping)

MSCB: Skew sextupole

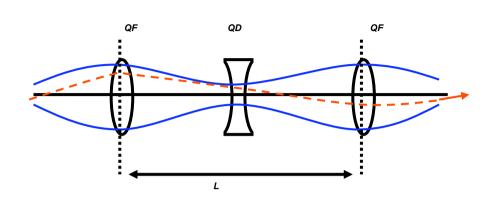
Orbit corrector dipoles

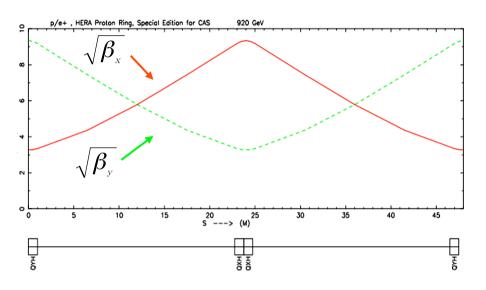
MCS: Spool piece sextupole

MCDO: Spool piece 8 / 10 pole

BPM: Beam position monitor + diagnostics

Periodic solution of a FoDo Cell





Output of the optics program:

Nr	Туре	Length	Strength	β_x	$\alpha_{_{X}}$	ψ_x	β_{y}	a_y	ψ_y
		m	1/m2	m		$1/2\pi$	m		$1/2\pi$
0	IP	0,000	0,000	11,611	0,000	0,000	5,295	0,000	0,000
1	QFH	0,250	-0,541	11,228	1,514	0,004	5,488	-0,781	0,007
2	QD	3,251	0,541	5,488	-0,781	0,070	11,228	1,514	0,066
3	QFH	6,002	-0,541	11,611	0,000	0,125	5,295	0,000	0,125
4	IP	6,002	0,000	11,611	0,000	0,125	5,295	0,000	0,125

 $Q_X =$

0,125

 $Q_{Y} =$

0,125

Can we understand, what the optics code is doing?

$$matrices \qquad \boldsymbol{M}_{foc} = \begin{pmatrix} \cos(\sqrt{|\boldsymbol{K}|}\boldsymbol{l}_q) & \frac{1}{\sqrt{|\boldsymbol{K}|}}\sin(\sqrt{|\boldsymbol{K}|}\boldsymbol{l}_q) \\ -\sqrt{|\boldsymbol{K}|}\sin(\sqrt{|\boldsymbol{K}|}\boldsymbol{l}_q) & \cos(\sqrt{|\boldsymbol{K}|}\boldsymbol{l}_q) \end{pmatrix} \qquad \qquad \boldsymbol{M}_{drift} = \begin{pmatrix} 1 & \boldsymbol{l}_d \\ 0 & 1 \end{pmatrix}$$

$$K = +/- 0.54102 \text{ m}^{-2}$$

 $lq = 0.5 \text{ m}$
 $ld = 2.5 \text{ m}$

The matrix for the complete cell is obtained by multiplication of the element matrices

$$M_{FoDo} = M_{qfh} * M_{ld} * M_{qd} * M_{ld} * M_{qf}$$

Putting the numbers in and multiplying out ...

$$M_{FoDo} = \begin{pmatrix} 0.707 & 8.206 \\ -0.061 & 0.707 \end{pmatrix}$$

The transfer matrix for one period gives us all the information that we need!

Phase advance per cell

$$M(s) = \begin{pmatrix} \cos \psi + \alpha \sin \psi & \beta \sin \psi \\ -\gamma \sin \psi & \cos \psi - \alpha \sin \psi \end{pmatrix} \rightarrow \begin{pmatrix} \cos(\psi) = \frac{1}{2} Trace(M) = 0.707 \\ \psi = arc \cos(\frac{1}{2} Trace(M)) = 45^{\circ} \end{pmatrix}$$

$$\cos(\psi) = \frac{1}{2} Trace(M) = 0.707$$

$$\psi = arc \cos(\frac{1}{2} Trace(M)) = 45^{\circ}$$

hor β-function

$$\beta = \frac{M_{1,2}}{\sin \psi} = 11.611 \, \boldsymbol{m}$$

hor α-function >

$$\alpha = \frac{M_{1,1} - \cos\psi}{\sin\psi} = 0$$

Resume':

transfer matrix in Twiss form

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$$

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$

... and for the periodic case

$$M(s) = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_{turn} & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix}$$

beam emittance during acceleration

$$\varepsilon \propto \frac{1}{\beta \gamma}$$

dispersion

$$D(s) = \frac{x_i(s)}{\frac{\Delta p}{p}}$$