

Vacuum Gauges I

Karl Jousten, Section Vacuum Metrology, PTB, Berlin

- 1. Measurement of vacuum pressures and the calibration chain
- 2. Overview of measurement principles and gauge types
- 3. Crossed field gauges ("cold cathode" gauges)
- 4. Accuracy of vacuum gauges

PTB, Siemens-Building, Berlin-Charlottenburg

References

WILEY-VCH

+

Edited by Karl Jousten

Handbook of Vacuum Technology

Second Edition

CERN Accelerator School 2006 "Vacuum in Accelerators" CERN-2007-003 Chapters "Gauges for fine and high vacuum" pp. 65 and "UHV gauges" pp.145

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
CERN accelerator school June 6-15, 2017
Vacuum Gauges I, K. Jousten

Nationales Metrologieinstitut

Any physical quantity is a product of a **number and** a **unit**

$$Q = \{Q\} x [Q]$$
 e.g.: $D = 39.8$ mm or $p = 4.7x10^{-5}$ Pa

Each measurement process is a comparison between the physical quantity and the unit.

The unit is provided by a calibration.

SI Unit for pressure : 1 [Pa] = [N] $[m]^{-2} = [kg] [m]^{-1} [s]^{-2}$

 $1 [Pa] = 10^{-2} [mbar]$

"Torr" and "micron" were related to the height of the mercury column and are obsolete.

Nationales Metrologieinstitut

Traceability and primary standards

Fully developed primary standards partly developed standards

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Error: A wrong reading of a gauge. A deviation from a true value defined by the SI units.

Uncertainty: The possible *range* by which a reading *may* not reflect the true value defined by the SI units.

Measurement uncertainty of a type

of gauge: Must include error of reading and uncertainty!

Measurement uncertainty of a specific gauge: Error of reading is known from calibration certificate and can be corrected!

International Vocabulary of Metology (VIM)

Uncertainty: The possible *range* by which a reading *may* not reflect the true value defined by the SI units.

Accuracy: closeness of agreement between a measured quantity value and a true quantity value of a measurand NOTE 1 The concept 'measurement accuracy' is not a quantity and is not given a numerical quantity value. A measurement is said to be more accurate when it offers a smaller measurement error or uncertainty.

Resvessing IV. Pag: +0

Wide spread definition of pressure *p*:

 $p = \frac{F}{A}$

Length

More suitable for vacuum (at 10^{-7} Pa and A=10 cm², it is $F=10^{-9}$ N, range of AF microscopes):

p = nkT

Access to optical methods (absorption, refractive index)

Primary standards under development!

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Vacuum Gauges I, K. Jousten

Piston gauge or pressure balance:

 $p = \frac{F}{A}$

This is a traceable instrument usable as primary standard

Physikalisch-Technische BundesanstaltBraunschweig und BerlinCERN accelerator school June 6-15, 2017Vacuum Gauges I, K. Jousten

Nationales Metrologieinstitut

Relative uncertainties of pressures in primary standards

11

Vacuum Gauges I, K. Jousten

Capacitance diaphragm gauge

Membrane (INVAR, Ceramic): as low as 25 $\mu m.$

Two improve zero stability: 2 capacitors plus thermostated housing

Sensitivity of deflection: 0.4 nm!

Measurtement range with different types of fullscale: 1 mPa ... 100 kPa

Electrical block diagram of a type of capacitance diaphragm gauge (MKS)

Bridge amplitude: proportional to pressure

Phase: Direction

Thermal transpiration effect

Thermal transpiration effect

Calibration curve by PTB for two gases

Heat conductivity through a gas: Pirani gauge

Nationales Metrologieinstitut

Pirani gauge

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Electrical circuit for Pirani gauge

Constant temperature

Measure the power needed

Mikro Pirani (MEMS manufactured)

Heated sheet 60°C

MEMS: higher Knudsen number, no convection

Physikalisch-Technische BundesanstaltBraunschweig und BerlinCERN accelerator school June 6-15, 2017Vacuum Gauges I, K. Jousten

Nationales Metrologieinstitut

Experimental standard deviations of repeat calibrations for 4 different Pirani gauges at various pressures

#	Gauge		s in %	
		0,05 mbar	3 mbar	30 mbar
1	Pfeiffer TPR 280	0,19	0,13	0,09
2	Thyracont VSP52	0,06	0,35	3,30
3	MKS 925C	0,10	0,12	0,19
4	Leybold TTR91	0,03	0,09	0,12

This partly excellent repeatability must not fake that this is an accurate instrument (gas dependence, non-linearity, temperature dependence, ...)

Viscosity: The spinning rotor gauge

$$p = \sqrt{\frac{8kT}{\pi m}} \cdot \frac{\pi d\rho}{20\sigma} \left(\left(\frac{\mathrm{d}\omega / \mathrm{d}t}{\omega} \right) - RD(\omega) \right)$$

Nationales Metrologieinstitut

Spinning rotor gauge

1 rotor

2 thimble

3 magnet

4 coils (vertical stabilization)

5 driving coils

6 pick-up coils

8 coils (horizontal stabilization)

Spinning rotor gauge

Residual drag vs. frequency of rotor

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Sprinning rotor gauge

No gas consumption (e.g. by ionization)

No dissociation (hot cathode)

Low outgassing rate

Predictable reading

High accuracy

High long-term stability

Physikalisch-Technische BundesanstaltBraunschweig und BerlinCERN accelerator school June 6-15, 2017Vacuum Gauges I, K. Jousten

Nationales Metrologieinstitut

Measurement principles

Ionisation probability of different gas species for electrons between 10 eV and 10 keV

The Penning gauge 2nd generation 1949

Trajectories and fields in th Penning gauge

Electrode arrangement, fields, and trajectories in the Penning gauge.

Scheme of Penning gauge

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
CERN accelerator school June 6-15, 2017
Vacuum Gauges I, K. Jousten

Directions of electrical field in Penning gauge

Field strength, potential, electron densities (left) and electron trajectories (right) in typical Penning gauge

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
CERN accelerator school June 6-15, 2017
Vacuum Gauges I, K. Jousten

Calibration curve of typical Penning gauge

Commercial Penning gauge

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
CERN accelerator school June 6-15, 2017
Vacuum Gauges I, K. Jousten

$$I^+ = K \cdot p^m$$

Penning gauge: *I* vs *p*.

$$I^+ = K \cdot p^m$$

Up to 8!

Stability of *K* rather good

Ignition of inverted magnetrons

Comparison ionization gauge types

Criterion	Crossed fields ("cold cathode")	Emitting ("hot") cathode	
Pumping speed	high	low	
Accuracy, stability	moderate	good	
Size, mechanical stability	good	moderate	
Sensitivity towards outside magnetic field	low	high	
Outside magnetic field	yes	no	
Susceptibility to contamination	high	moderate	
Start-up problems	occur	none	
X-ray limit	none	10 ⁻¹⁰ Pa to 10 ⁻⁶ Pa	
Electron stimulated desorption	negligible	Dependent on gas species	
Price	low	high	

Reasons for inaccuracies of vacuum gauges

General	Example		
Uncertainties due to calibration chain	Has the vacuum gauge been ever calibrated? Against what standard?		
Uncertainties due to installation	Pressure at gauge position may not reflect the pressure where the experiment takes place.		
Uncertainties due to operation	Outgassing of an ion gauge may falsify an outgassing rate measurement.		
Inaccuracies caused by the physical principle of measurement	Thermal conductivity or ion gauge is used, but gas mixture is not (accurately) known.		
Uncertainties caused by the device itself	See Table 2.		

Reasons for inaccuracies

Gas species dependence:

Real total pressure only for force/area measuring gauges and > 100 Pa (1 mbar)! Below 100 Pa consider the thermal transpiration effect.

Spinning rotor gauges: Use a weighted mean mass, if approximate relative composition is known. $(n - 1)^2 = n$

$$m_{eff} = \left(\sum_{i=1}^{n} a_i \sqrt{m_i}\right)^2 \qquad \sum_{i=1}^{n} a_i = 1$$

Thermal conductivity gauges and ionisation gauges : Scaling factors are available, but do have high uncertainties.

$$CF_{eff} = \sum_{i=1}^{n} a_i CF_i$$

Uncertainties due to the vacuum gauge itself

General	Examples		
Offset measurement	residual drag in SRG, zeroing of Pirani gauge, X- ray- and ESD-effect for ion gauges		
Offset instability (drift)	Offset drifts with environmental temperature (Piroutte effect in SRG), bridge is no more balanced with time		
Resolution	Number of digits shown		
Influences of environment (mainly temperature)	Enclosure temperature of Pirani changes varies, thermal transpiration effect changes in CDG, amplifier changes amplification		
Non-Linearity	Ion gauge (sensitivity changes with pressure)		
Integration time (scatter of data), repeatibility	Same signal at repeat measurements? Integration time in SRG, in picoammeter with ion gauge.		
Reproducibility (stability of calibration constant)	Calibration constants change with time.		
Hysteresis	Mechanical gauges (up, down measurement)		
Prior usage, cleanliness	Surfaces change, accommodation coefficients change, secondary yield changes		

How accurate are vacuum gauges ?

Table: Relative measurement uncertainty of commercially available vacuum gauges.

Gauge type	Measurement	Normal	Optimum range	Lowest
	range in Pa	uncertainty	in Pa	uncertainty
Piston gauges	1010 ⁵		10^210^5	10 ⁻⁴ 10 ⁻⁵
Quartz-Bourdon-manometer	10^310^5		10^310^5	$3x10^{-4}$ $2x10^{-4}$
Resonance silicon gauges	$10 \dots 10^5$	0.003 0.0005	$100 \dots 10^5$	$2x10^{-4}$ $5x10^{-5}$
Mechanical vacuum gauge	$10^2 \dots 10^5$	0.10.01		
Membrane vacuum gauge	$10^2 \dots 10^5$	0.10.01		
Piezo	$10^2 \dots 10^5$	10.003		
Thermocouple gauge	$10^{-1} \dots 10^2$	1 0.3		
Pirani gauges	$10^{-1}10^4$	1 0.1	1 100	0.02 0.01
Capacitance diaphragm gauges	$10^{-4} \dots 10^{5}$	0.1 0.003	$10^{-1} \dots 10^{5}$	0.006 0.001
Spinning rotor gauges	10 ⁻⁵ 10	0.1 0.007	10 ⁻³ 10 ⁻¹	0.0060.004
Penning gauges	10 ⁻⁷ 1	0.5 0.2	10 ⁻⁵ 1	0.30.1
Magnetron gauges	10 ⁻⁸ 1	10.1	10-6 1	0.10.02
Ionisation gauges (Emission cathodes)	$10^{-10} \dots 10^{-2}$	10.05	10 ⁻⁸ 10 ⁻²	0.20.02

How accurate are vacuum gauges ?

Errors > 100 % are possible.

Todays commercial gauges

Disclaimer: Just example, no recommendation of these products

Vacuum Gauges I

We have discussed:

- Metrological system primary standardscalibration chain
- Measurement principles and gauges
- Crossed field gauges
- Sources of uncertainties with values from 0.001% up to 100% or factor