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o IBS in charged particle beams causes small changes of the colliding particles momenta by addition of 
multiple random small-angle scattering events, leading to: 
1. A relaxation to a thermal (energy) equilibrium via reallocation of the whole beam phase volume 

between the 3 transverse and longitudinal beam phase volumes (emittances). 
2. A continuous diffusion growth of the global beam phase volume without equilibrium, and 

reduction of the beam lifetime when the particles hit the aperture.
o Touschek effect is the particle losses due to single collision events at large scattering angles where only 

the energy transfer from transverse to longitudinal planes is examined (no particle redistribution done).
o IBS simulation consists to iteratively compute the particle momentum variation by coulomb scattering 

with the other particles of the beam and find the growth rates for the 3 degrees of freedom.
o IBS theory was later extended to include:

• Amplitude & dispersion derivatives and lattice parameter variations around the lattice.
• Horizontal-vertical betatron linear coupling.
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Prologue
Intrabeam Scattering (IBS) is a multiple Coulomb scattering of charged particle beams

(alternatively IBS is a diffusion process in all 3 transverse & longitudinal beam dimensions) 
ref. [1,3,7,8,15] & ref. [C,I,J]
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IBS and Touschek effect are distinctive facets of 
Coulomb scattering event inside particle beams
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Prologue
IBS in week focusing or smooth ring lattices can be related with scattering of gas molecules in a 
closed box, where the walls mimic the quadrupole focusing forces and the RF voltage keep the 
particles together. The scattering of the molecules leads to the Maxwell-Boltzmann distribution of 
the 3 velocity components ௫ ௬ ௦ in which is the molecule mass, the temperature, the
Boltzmann's constant ( is normalized to unity):

The difference between IBS and gaz molecule scattering in a box is due to the ring orbit curvature: 
o Curvature yields a dispersion so that a sudden change of energy will change the betatron amplitudes 

and initiate a synchro-betatron oscillation coupling.
o Curvature also leads to the negative mass instability i.e. if a particle accelerates above transition it 

becomes slower and behaves as a particle with negative mass and thus an equilibrium of particles 
above transition energy can’t exist (transition energy ௧

ଶ is got once ଶ
௧
ଶ భ

ഀ೛

೏೛/೛

೏ೃ/ೃ
or ೏೑/೑

೏೛/೛

భ

ം೟
మି

భ

ം೟
మ ).

o Above transition the IBS effect is to increase the three bunch dimensions.
o Below transition an equilibrium particle distribution can exists (week focusing/smooth lattices).
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The Intrabeam scattering effect
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Lagrangian and Hamiltonian (briefly)
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o We restrict to systems of particles with degrees of freedom described via Cartesian 
coordinates ଵ ே , ௜ ௜, and ଵ ே , ௜ ௜

o Assume the system exists in a conservative force field ௖ with kinetic energy and 
potential such as ௖

௥ . The Lagrangian is defined as (ref. [A,B]):

From which Hamilton’s equations are derived:

Lagrange’s equations stem from the variational principle:

: conjugate momentum to r

if constant energy

௧ଶ

௧ଵ

0 is then recast in an 
Hamiltonian form 
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Lagrangian and Hamiltonian (briefly)
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If the total force acting on a system contains a conservative (Hamiltonian) part ௖ and a non-
conservative (i.e. non-strictly-Hamiltonian) part ௡௖ representing friction, inelastic processes…
( ௥

௡௖). The Lagrangian of the system is then written as: 

௡௖

From the (non-Hamiltonian) equations follow: 

since ௡௖ డ௏෩

డ𝒓 𝒓

௡௖ ௡௖
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Liouville equation
o −space  6N−dim phase space coordinates, a single point ( ) represents N particles 

labelled by 3N positions ଵ ே and momenta ଵ ே ௜ ௜ and ௜ ௫ ௬ ௭ ௜

o copies different 
representative point in −space

o number of microstates in the volume element ௜ ௜
ே
௜ୀଵ about any 

coordinate values at time
o : density of representative microstates (“coarse-graining” density ( , , ) is obtained by 

disregarding variation of below small resolution in -space) ref. [1] & ref. [B-D]
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𝒩→ஶ
Formal density definition

Coarse-graining density
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Liouville equation
o A microstate of N particles with coordinates ௜ ௜ ௜ୀଵ⋯ே at time will be found at 

with new coordinates ௜
ᇱ  ௜

ᇱ
௜ୀଵ⋯ே ௜ ௜ ௜ ௜

ଶ

o The microstate density at time will become ( ᇱ ᇱ ) at 
o The phase space volume at will change into at 
o ᇱ ᇱ because follow Hamilton’s equations for 

conservative forces and thus no trajectories cross dim surface
enclosing the microstates being itself a microstate !)
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( ᇱ ᇱ

୧୬ ஼(௧ାఋ௧)

(  
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The relation between ᇱ with border ᇱ and , border is

ᇱ

୧୬ ஼ᇲ ୧୬ ஼
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௜ ௜

௜ ௜

௜ ௫ ௬ ௭ ௜
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Liouville equation
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U ௜
ᇱ  ௜

ᇱ
௜ ௜ ௜ ௜ and the Hamilton’s equations the determinant of 

the Jacobian matrix writes (1st order)
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Liouville’s theorem stems from the conservation 
of the phase space volume in −୧୬ ஼(௧ାఋ௧) ୧୬ ஼(௧)

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering



௜
௜

௜
௜

ଷே

௜ୀଵ

௥ ௣

௜ ௜ ௜ ௜

ଷே

௜ୀଵ

10

Liouville equation
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( ᇱ  ᇱ  (  

Equivalently writes in differential form using the Hamilton’s equations and Poisson bracket:

Liouville’s
formula

Liouville’s theorem
The microstate density ( in behaves like an incompressible fluid
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( Liouville’s
theorem
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Liouville equation
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Consider the (non-strictly-Hamiltonian) equations of motion for non-conservative forces ௡௖: 

௜

௜

௜

௜

௜
௡௖

௜

୧୬ ஼(௧ାఋ௧)

௜
௡௖

௜
 

ே

௜ୀଵ ୧୬ ஼(௧)

Liouville’s theorem “violated” !?: incompressibility condition of ( not satisfied i.e.

( ᇱ  ᇱ  ௣
௡௖ (  

Written in differential form this lead to the equivalent results:

௣
௡௖

௜
௜

௜
௜

௜
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Liouville equation
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Microstate subset inside the 
6N−dim volume of border at in 

space will occupy a distorted volume 
of border at 

Liouville (also called collisionless Boltzmann) equation 

o Detailed account of the density ( would
require knowledge of particle trajectories with initial 
conditions for all microstates of the sub-ensemble 
( ଶଷ?!) in the ( −space) volume element .

o Practically it would be more suitable to place the phase 
trajectories of the N particles in the same 6−dim phase 
space −space a single point represents one particle 
labelled by 3 positions and 3 momenta 

௫ ௬ ௭ .
o To reach this objective the N−dim microstate density 

ଵ ே ଵ ே must be reduced a 6−dim particle
density ଵ in −space .

o This should be done via the BBGKY hierarchy framework 
to go from the N-particles (in space) to the N-times
1-particle −space description (ref. [1,2] & ref. [C]).

𝑑𝛤(𝑡 +𝛿𝑡)

𝑥௜

𝑦௜

𝑧௜

=𝒓௜ 𝑡

𝒑௜(𝑡) = 𝑝௫೔
, 𝑝௬೔

, 𝑝௭೔

C(𝑡 +𝛿𝑡)
C(𝑡)

𝑑𝛤(𝑡)

6N-dim space 

𝑑𝒩(𝑟,𝑝,𝑡) 
microstates
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Liouville equation
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o The full phase space density contains too much information than needed to describe the 
equilibrium properties of particles (e.g. 1-particle density is enough to compute a gas pressure).

o The N-particle density ଵ ଵ ே ே in N−dim −space is to be reduced to a single particle 
density ଵ in 6−dim −space the state of each particle being represented by a single point.

o ଵ refers to the expectancy of finding any one of the N particles at time with location 
and momentum , computed from ଵ ଵ ே ே by means of the formulae:

ଵ ௜ ௜

ே

௜ୀଶ

ଶ ଶ ே ே

 

 

ଵ is normalized to and to 1

ଵ

ே

௜ୀଵ
௜ ௜

ே

௜ୀଵ
௜ ௜

 

 

with for any function :  

 
. Using the first pair of delta 

functions to compute one set of integrals we get, assuming a symmetric density when 
permuting particles: 
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For many aims the reduced function 𝑓ଵ governed by the BBGKY hierarchy (Bogoliubov, 
Born, Green, Kirkwood, Yvon) is all it is really needed to know about a 𝑁-particles system 

in the 6𝑁-dim Γ−space because it describes its density function in the 6-dim 𝜇−space. 

e. g. N=2: 𝑓ଵ 𝒙 = ∬ 𝑑𝒙ଵ𝑑𝒙ଶ𝜌 𝒙ଵ, 𝒙ଶ 𝛿 𝒙 − 𝒙ଵ +𝛿(𝒙 − 𝒙ଶ)
 

 
=

∫ 𝑑𝒙ଶ𝜌 𝒙ଵ=𝒙, 𝒙ଶ + ∫ 𝑑𝒙ଵ𝜌 𝒙ଵ, 𝒙ଶ=𝒙
 

 

 

 
=2 ∫ 𝑑𝒙ଶ𝜌 𝒙, 𝒙ଶ

 

 



Liouville formula needs then to be adapted to Boltzmann 
collision equation when considering particle interactions 
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Boltzmann collision equation

06/11/2015 CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

Particle subset 𝑑𝑁 𝑟, 𝑝, 𝑡 inside space 
at t+𝛿𝑡 due to collisions in the time 𝛿𝑡

o As a result of collisions during the time interval particles 
that were inside the volume in the 6-dim space
may be removed from it and particles outside may end up 
inside it.

o The net gain or loss of particles as a result of collisions during 
inside is denoted:

ଵ ଵ ଵ  
ୡ୭୪୪

where 𝛿𝑓ଵ/𝛿𝑡 ୡ୭୪୪ means the rate of change of 𝑓ଵ. Hence the   
….’Liouville’equation turns into the collision Boltzmann equation

𝑥௜

𝑦௜

𝑧௜

=𝒓௜ 𝑡
6-dim space

𝒗(𝑡) = 𝑣௫, 𝑣௬, 𝑣௭

𝑥
𝑦
𝑧

=𝑟 𝑡

𝑑𝛤(𝑡)

𝑑𝛤(𝑡 +𝛿𝑡)

entering particle

leaving particle
𝑑𝑁(𝑟,𝑝,𝑡) particles

௥ ௣
ଵ

ୡ୭୪୪

௣
௡௖ ௡௖

non conservative force field
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Boltzmann collision equation
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Heuristic assumptions are made to «derive» the Boltzmann collision equation: 

o ଵ does not vary visibly over the distance of interparticle force range and over 
the time scale of the interaction.

o Disregard external force effects on the collision cross-section size.
o Consider only binary collisions.
o “Molecular chaos” assumption: the interacting particle momenta (velocities), 

before collision, are assumed to be uncorrelated, i.e. 
• the joint probability 𝑓ଶ 𝒓, 𝒑ଵ, 𝒓, 𝒑ଶ, 𝑡 of having, at position 𝒓 and time 𝑡, particles 1 

& 2 of momenta 𝒑ଵ and 𝒑ଶ is equal to 𝑓ଵ 𝒓, 𝒑ଵ, 𝑡 𝑓ଵ 𝒓, 𝒑ଶ, 𝑡 (supposing that 
collisions are local in space so that the 2 particles sit at the same point).

o Generally the joint probability density would be equal to ଵ ଵ ଵ ଶ ଶ ଵ ଶ

where ଶ ଵ ଶ is a correlation function. 
o To by-pass the molecular chaos approximation the alternative is to work with the equations of the 

BBGKY hierarchy (Bogoliubov, Born, Green, Kirkwood, Yvon) ref. [B,C,E,F].

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering
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Boltzmann collision equation
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Let’s start with an Hamiltonian with no interacting collision potential between particle pairs
(e.g. Coulomb scattering potential). This Hamiltonian will just contain: 
o Particle kinetic energy (for non relativistic charged particles)
o External potential (e.g. electromagnetic field for charged particle beam)

௜
ଶ

௜

ே

௜ୀଵ

From Liouville’s formula in terms of Poisson bracket and 
replacing the N−dim density in −space by the −dim
density ଵ in −space we get: 

ଵ
ଵ

ଵ

ଵ ଵ

ଵ

ଵ ଵ

ଵ

ଵ

ଵ ଵ

ଵ

ଵ
ଵ

The external force (e.g. in a plasma) includes the Lorentz force due to 
externally applied fields.

collisionless Boltzmann
equation 
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Boltzmann collision equation
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o For ି: particles are shared in 2 groups, the 1st of momenta in 
the interval about 𝟏 and the 2nd of all other momenta 
denoted 𝟐, the particles ejected from are the number of 
collisions that the 𝟏’s have with all other 𝟐’s (not in 1st group) in 

. To compute ି all collisions between pairs of particles that 
eject one of them out of the interval about 𝟏 are considered:
• One particle is in 𝜕𝒓𝜕𝒑 near (𝒓𝟏, 𝒑𝟏) the other in 𝜕𝒓𝟐𝜕𝒑𝟐 near 

(𝒓𝟐, 𝒑𝟐)
• The 𝒑𝟐’s in 𝜕𝒓𝟐 suffer a collision with the 𝒑𝟏’s in 𝜕𝒓 in time 𝛿𝑡.

Collision terms: 
The interaction result is characterized by the net rate at which collisions increase or decrease the particle 
number entering the 6-dim phase-space slice in time (named ) defined as:  ା ି

where ± are the particle number injected/ejected in by collisions in 

o For ା:  consider all pair-particle collisions that send one 
particle into the momentum interval about 𝟏 in time 
which is the inverse of the original collision 𝟏

ᇱ
𝟐
ᇱ

𝟏 𝟐

𝒑ଵ particle has momentum 
𝒑ଶ − 𝒑ଵ in 𝒑ଵ particle frame

3-dim volume element 
𝑑𝜙𝑏𝑑𝑏 𝒑ଶ − 𝒑ଵ

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering



18

Boltzmann collision equation
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The number of particles injected/ejected into by collisions in time are: 

ି ଵ ଵ ଵ ଶ
(𝒓మ, 𝒑మ)

ଵ ଶ ା ଵ
ᇱ

ଵ
ᇱ

ଵ
ᇱ

ଶ
ᇱ

(𝒓𝟐
ᇲ ,𝒓𝟐

ᇲ )

ᇱ
ଵ
ᇱ

ଶ
ᇱ

𝛿ℛି = න 𝑓ଵ𝑑𝒑ଶ
 

𝒑ଶ − 𝒑ଵ 𝑏𝑑𝑏𝑑𝜙 𝑑ଷ𝒓𝑑ଷ𝒑ଵ𝛿𝑡 𝛿ℛା = න 𝑓ଵ𝑑𝒑ଶ
 

𝒑ଶ − 𝒑ଵ 𝑏𝑑𝑏𝑑𝜙 𝑑ଷ𝒓𝑑ଷ𝒑ଵ𝛿𝑡

ଵ
ᇱ

ଵ
ᇱ

ଵ
ᇱ

ଶ
ᇱ

ଵ ଵ ଵ ଶ ଶ ଵ ଵ

 

 

All ଶ particles shown (see fig. above)  in the cylinder of height ଶ ଵ and base area 
suffer a collision with the ଵ particle in time ଶ ଵ (idem for ଵ

ᇱ
ଶ
ᇱ ). Also 

since ଷ ଷ ଷ ᇱ ଷ ᇱ

From Liouville equation the net number of particles that enter the 6-dim phase element keeping 
on a particle trajectory during is zero. Likewise the collisionless Boltzmann equation writes: 

୐୧୭୳୴୧୪୪ୣ
ଵ

ଵ

ଵ

ଵ

ଵ

ଵ



19

Boltzmann collision equation

06/11/2015

ଵ
ଵ ଵ

ᇱ
ଵ ଶ

ᇱ
ଵ ଵ ଵ ଶ ଶ ଵ ଶ

 

 

ଵ ଵ  
ୡ୭୪୪

Hence the above term can be cast into the form:

o The quantity having dimensions of area can be written as in which
is the differential cross-section (see below). 

o Replacing ଶ ଵ by the velocity ଶ ଵ (non relativistic particles) the collision term writes:

Putting ଵ ୡ୭୪୪ in the collisionless Boltzmann equation yields the Boltzmann collision equation: 
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ଵ
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ଵ ଶ

 

 

ଶ ଵ

 

 

ଵ ଵ
ᇱ

ଵ ଶ
ᇱ

ଵ ଵ ଵ ଶ

ଵ

ୡ୭୪୪
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ଶ ଵ

 

 

ଵ ଵ
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ᇱ

ଵ ଵ ଵ ଶ



20

Boltzmann collision equation
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Kinematics of collisions:  
o A cylindrical polar coordinates is taken to do the above integral: the scattering angle refers to the 

-axis parallel to ଶ ଵ (before ଵ), the perpendicular plane is parametrized by the -axis parallel 
to the impact parameter (unit vector) and by the angle , ௠ is the distance of closest approach.

o Non-relativistic collision of 2 particles of mass 
and momenta ଵ,ଶ ଵ,ଶ seen from a frame in 
which one particle is at rest at .

o The out-going momenta ଵ,ଶ
ᇱ are given from the 

conditions: 
1. Conserved momentum:  𝒑ଶ

ᇱ + 𝒑ଵ
ᇱ = 𝒑ଶ + 𝒑ଵ

2. Conserved energy: 
𝒑ଶ

ᇱ 𝟐 + 𝒑ଵ
ᇱ 𝟐 = 𝒑ଶ

𝟐 + 𝒑ଵ
𝟐

𝒑ଶ
ᇱ − 𝒑ଵ

ᇱ = 𝒑ଶ − 𝒑ଵ Ω෡ 𝜃, 𝜙

𝒑ଶ
ᇱ − 𝒑ଵ

ᇱ ≡ 𝒑ଶ − 𝒑ଵ (constant modulus)
where 𝛀෡(𝜃, 𝜙) is a solid angle unit vector
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Boltzmann collision equation
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𝑑𝜴෡

o Differential cross-section: mଶ (ref. [19] & ref. [B-D])

• This is the number of particles scattered per unit time, unit incident flux and oriented solid angle
the absolute value comes because  usually decreases when increases

• Geometrically the next figures show a scattering process with and  where
depends on the interparticle force law, the relative momentum ଶ ଵ and impact parameter

o Rutherford scattering:

• Small 𝜃 yield large 𝑏 (𝜃୫୧୬=0 → 𝑏୫ୟ୶=∞)
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ଶ
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Equilibrium particle density
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o At equilibrium the 1−particle density ଵ has no explicit time dependence:

o Maxwell-Boltzmann distribution: Similarly at equilibrium the collision integral vanishes: (ref. [C,D,F])

where the l.h.s. refers to momenta before collision the r.h.s. to the those after collision. 
The equality is satisfied by any additive invariant quantities during the collision, e.g.  

and are constants, from which the Maxwell-Boltzmann velocity density (for ) follows: 

ଵ ଵ ଵ ଵ ଵ ଵ with ଵ
ଶ

ଵ ଵ ଵ ଶ ଵ ଵ
ᇱ

ଵ ଶ
ᇱ

ଵ ଵ ଵ ଶ ଵ ଵ
ᇱ

ଵ ଶ
ᇱ

ଵ
ଶ

ଵ
ିఉ 𝒑మ/ଶ௠ା஍(𝒓)

For a gaz of particles in a box volume for , an overall drift, the Boltzmann constant 
(the integral of ଵ over the 3-dim box volume is equal to since ଵ must be normalized to ): 
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ଵ

ଷ/ଶ

ିఉ௠ 𝒗ି𝒖 మ/ଶ
   ఉୀଵ/௞்

ଵ ଷ/ଶ
ି௠ 𝒗ି𝒖 మ/(ଶ௞்)
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 Core IBS model
 IBS analytical model
 Original Piwinski model
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 Part 3: Applications
 IBS & LHC (7 TeV)
 IBS & ELENA (100 keV)
 Epilogue

 Appendices: Feynman rules
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o In conformity with Piwinski’s approach (refs. [3,5]), calculations of beam size growth/decrease rates
caused by IBS effect are sketched out to give a sound idea of the process. 

o The kinematics & dynamics of charged particle pair collisions is delineated over the following steps: 

7. Calculate the growth/fall rates of mean betatron oscillation amplitudes & momentum spread in a bunch.

1. Transform the momenta of the colliding particles from the LAB to the centre of mass (CM) frame

2. Calculate the changes in momenta due to an elastic collision.

3. Transform of the momenta back to the LAB frame.

4. Relate the changes in momenta to changes in transverse & longitudinal emittances.

6. Average over the particle momentum & position distributions in a bunch.

5. Average over the scattering angle distribution using the classical Rutherford cross-section.

Transverse & longitudinal beam growth rate estimate:  A strategy in 7 steps

Core IBS model Continuation… from Part 1
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Core IBS model
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According to Piwinski (ref. [3,5]) the relative longitudinal and transverse momentum changes after a two 
particles (labelled 1, 2) collision can be cast (after some hard-working task) into the form:

𝜃=
𝑝௫భ

− 𝑝௫మ

𝑝
≡𝑥ଵ

ᇱ − 𝑥ଶ
ᇱ 𝜁=

𝑝௭ଵ − 𝑝௭ଶ

𝑝
≡𝑧ଵ

ᇱ − 𝑧ଶ
ᇱ

𝛾𝜉=
𝑝ଵ − 𝑝ଶ

𝑝
2𝛼≡𝛼ଵ+𝛼ଶ= 𝜃ଶ+𝜍ଶ 

o 𝛿𝒑ଵ,ଶ are the back momenta Lorentz transform from momenta in ad-hoc CM frame (𝒖ෝ, 𝒗ෝ, 𝒘ෝ )-axes to the LAB
frame (𝒔ො, 𝒙ෝ, 𝒛ො)-axes ( ଵ,ଶ ଵ,ଶ , is the mean particle momentum, unit vector, the Lorentz factor, 𝜓ത & 𝜙ത
the axial & azimuthal collision angles in CM, 2𝛼 ≡ 𝛼ଵ+𝛼ଶ the angle between particle momenta in LAB) (ref. [K])

o 𝒑ଵ,ଶ
ᇱ are the rotated momenta after collision with angles 𝜓ത & 𝜙ത (expressed in LAB frame). 

o 𝒑ଵ,ଶ are the momenta before collision written as  𝒑ଵ,ଶ=𝑝௦భ,మ
(1, 𝑥ଵ,ଶ

ᇱ , 𝑧ଵ,ଶ
ᇱ ) via (𝒔ො, 𝒙ෝ, 𝒛ො)-coordinates in LAB frame 

and 𝒑ଵ,ଶ=𝑝௦భ,మ
(cos 𝛼ଵ,ଶ, 0, ±sin 𝛼ଵ,ଶ) via (𝒖ෝ, 𝒗ෝ, 𝒘ෝ )-coordinates in CM frame (see next Fig.)

𝛿𝒑ଵ,ଶ=𝒑ଵ,ଶ
ᇱ − 𝒑ଵ,ଶ=

de
fin

in
g

Strategy step 1-3: 
momenta kinematics
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𝛿𝑝௦

𝑝 
≈

𝛿𝑝

𝑝 
=

𝛾

2
2𝛼 cos 𝜙ത sin 𝜓ത + 𝜉 cos 𝜓ത − 1

2
𝛿𝑝௫

𝑝 
= 𝜁 1 +

𝜉ଶ

4𝛼ଶ

 

sin 𝜙ത −
𝜉𝜃

2𝛼
cos 𝜙ത sin 𝜓ത + 𝜃 cos 𝜓ത − 1

2
𝛿𝑝௭

𝑝 
= 𝜃 1 +

𝜉ଶ

4𝛼ଶ

 

sin 𝜙ത −
𝜉𝜁

2𝛼
cos 𝜙ത sin 𝜓ത + 𝜁 cos 𝜓ത − 1

2.1
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o Particle momenta before collision (𝒑ഥଵ, 𝒑ഥଶ) and after
(𝒑ഥଵ

ᇱ , 𝒑ഥଶ
ᇱ ) in the CM frame (𝒖ഥ෡, 𝒗ഥ෡, 𝒘ഥ෡ ) (𝒖ഥ෡ is the Lorentz-

transformed longitudinal axis from LAB to CM frame)

o Particle momenta 𝒑ଵ,ଶ before collision in LAB frames (𝒔ො, 𝒙ෝ, 𝒛ො)
o Relation between initial 𝒑ଵ,ଶ and final 𝒑ଵ,ଶ

ᇱ is quite complex
o The overlaid (𝒖ෝ, 𝒗ෝ, 𝒘ෝ ) frame is aligned on CM particle motion

The change of particle momentum after collision leads to a parallel change of the particle invariants
(i.e. longitudinal & transverse emittances) which result supposing that transverse particle positions 
are not altered during the interaction time (assumed to be short enough).

LAB
CM

CM

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

Strategy step 1-3: 
momenta kinematics Core IBS model
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o The radial particle movement from the closed orbit is the sum of betatron & momentum deviation.
o The invariants are the beam emittances ௫,௭ & (for bunched beams) in which ௫,௭ ௫,௭ ௫,௭ are the 

Twiss parameters, with ௫,௭ ௫,௭ ௫,௭
ଶ , ௫,௭ ௫,௭

ᇱ , is the synchrotron frequency:

The change ௫,௭ of ௫,௭ works out as (swap with for ௭):

Assuming there is no vertical dispersion i.e. ௭ ௭
ᇱ and that ଵ,ଶ & ଵ,ଶ stay constant during the short 

collision time so that only ଵ,ଶ
ᇱ & ଵ,ଶ

ᇱ vary with the momentum change. Since as the 
mean momentum is constant without acceleration, the variations ఉ, ఉ

ᇱ , ఉ
ᇱ can be written in 

term of betatron amplitudes as follows: 
(e.g.  ఉ ௫ ఉ ௫ ఉ ௫ ఉ ௫ )

Strategy step 4: 
emittance changes

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

ఉ ௫ ఉ ௫ ௫ ఉ
ଶ

௫ ఉ ఉ
ᇱ

௫ ఉ
ᇱଶ

ᇱ
௫ ఉ

ᇱ
௫
ᇱ ᇱ

௭ ఉ
ᇱ

ଶ ିଶ ௗ
ௗ௧

ଶ

௫ ௫ ఉ ఉ ఉ
ଶ

௫ ఉ
ᇱ

ఉ ఉ ఉ
ᇱ

ఉ ఉ
ᇱ

௫ ఉ
ᇱ

ఉ
ᇱ

ఉ
ᇱଶ

Core IBS model
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The changes ௫,௭ & of ௫,௭ & after collision can be rewritten (in which ௫ ௫ ௫ ௫ ௫
ᇱ and by 

disregarding the time variation of during the collision) as:

o For a scattering process, Piwinski introduced the derivatives ௫భ,௭మ
, i.e. the mean emittance 

change of a 1st particle by averaging with all betatron angles (or momentum spread) of a 2nd particle. 
o Further averages over positions, betatron angles (or momentum deviations) of the 1st particle must 

be done to get the total mean emittance change of all particles: i.e. integrate over the phase space 
with the probability density law ( ) in the LAB & CM frames. In formula this writes as follows:

Strategy step 5: 
scattering angle averages

The phase space volume variation is 
got by averaging the change of the 
particle invariant over the collisions.

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

௫

௫ ௫
ఉ ௫ ௫ ௫ ௫

ᇱ
ఉ
ᇱ

௫
௫
ଶ

௫
ଶ

௫
ଶ

ଶ

ఉ
ᇱ ௫

௫
ఉ

௫ ௫
ଶ

௫

௫

௫

ଶ
௭

௭
ఉ
ᇱ ௭

௭
ఉ

௭ ௭
ଶ

ఉ ௫ ఉ
ᇱ

௫ ௫
ᇱ

ఉ
ᇱ

௭
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The small bracket denotes an average over all particles, the outer bracket means an average round 
the ring circumference, is the Rutherford differential cross-section for the scattering into a 
solid angle element ) in the CM frame. The proper time intervals in CM & LAB frames are & 

with , is the relative velocity of two colliding particles with ଵ ଶ in CM frame. is 
defined as a probability density product using 12 variables and can be expressed in LAB into the form 
(defining for short ଵ,ଶ ଵ,ଶ ଵ,ଶ) (ref. [3,15]): 

Among the 12 variables 3 are dependent since during the short collision time the 2 particle positions 
are assumed not to change i.e.  ଵ ଶ  ଵ ఉభ ௫ ଵ ଶ ఉమ ௫ ଶ ଵ ఉభ ଶ ఉమ

, thus:

Strategy step 5: 
scattering angle averages
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௫భ

௫

 

 

గ

టഥ ౣ౟౤

ଶగ

଴

௫భ

௫

ଵଶ୴ୟ୰ ఎ௦ ଵ ଵ  ఎ௦ ଶ ଶ  ௫ഁ௫ഁ
ᇲ ఉభ ఉభ

ᇱ
௫ഁ௫ഁ

ᇲ ఉమ ఉమ

ᇱ
௭ ௭ᇲ ଵ ଵ

ᇱ
௭ ௭ᇲ ଶ ଶ

ᇱ

ଽ୴ୟ୰ ఎ ଵ ఎ ଶ ௦ ଵ ௫ഁ ఉభ ௫ഁ
ᇲ ఉభ

ᇱ
௫ഁ

ᇲ ఉమ

ᇱ
௭ ଵ ௭ᇲ ଵ

ᇱ
௭ᇲ ଶ

ᇱ
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The scattering angle distribution is now examined. The Rutherford differential cross-section Eq. 1.11 for 
non-relativistic Coulomb collisions in a CM frame (i.e. ) of 2 ions of charge and atomic mass is:

with ଶ ଵ
ଶ ଶ ଶ is the ion kinetic energy, is the relative momentum 

between the hitting ions, for which ଵ ଶ in CM, ଴
ଶ

଴
ଶ is the classical proton radius, 

୧ ଴
ଶ is the classical ion radius (ref. [19] & ref. [B-D]).

wherein is the average particle velocity in the LAB frame. 

To evaluate the above expression ଶ ଵ in the CM frame must be Lorentz transformed 
back to the LAB frame to link with . All calculations done we find, providing , (ref. [6,7]):

Strategy step 5: 
scattering angle averages
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ଶ ଶ

଴ ଶ ଵ
ଶ

ଶ

ସ

ଶ
଴

ଶ ଶ

ସ

ଶ
଴

ଶ

ଶ

ସ

ଵ ଶ
ଶ

ଵ
ᇱ

ଶ
ᇱ ଶ

ଵ
ᇱ

ଶ
ᇱ ଶ

 
ଶ ଶ ଶ 
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The smallest angle ୫୧୬ is defined by the maximum impact parameter ୫ୟ୶ as ( ௜ is the ion radius):

To get tractable results it was assumed that ୫୧୬ , 
thus ଶ

୫ୟ୶ ௜

Strategy step 5: 
scattering angle averages
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The integration required to work out Eq. 2.8 can be done as follows, where the integral ௫భ
aims to 

integrate the mean time-derivative of ௫భ ௫. To do this replace & ௫ (Eq. 2.5) with their 
expression in terms of , , , , , (Eq. 2.1). Then, integrate ௫భ ௫ over & (e.g. Mathematica)
with Eq.2.11 and expand the scattering integrals to first order in ୫୧୬ yields:

௫భ

௫భ

௫ஐഥ

గ

టഥ ౣ౟౤

ଶగ

଴

௫భ

௫

௜
ଶ

ସ
ଶ ଶ ଶ ௫

ଶ
௫

ଶ

௫
ଶ

ଶ ଶ ଶ ଶ ௫

௫

௜
ଶ

ସ

ఉభ

௫
௫ ௫ ௫ ௫

ᇱ

ఉభ

ᇱ ௫

௫

ଶ ଶ ௫
ଶ

௫
ଶ

௫
ଶ

ଶ ଶ ଶ ௫

௫
 

୫୧୬

୫୧୬ ௜

ଶ
୫ୟ୶

௜
଴

ଶ
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The integrals ௭భ
and ௦భ

for the vertical and longitudinal momenta can be worked out too (zero vertical 
dispersion is supposed). Then ( ௫భ

, ௭భ ௦భ
) will give the transverse and longitudinal scattering integrals 

( is now changed in ௦ ௦
ଶ since ௦, with ): 

Strategy step 5: 
scattering angle averages
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𝐶୪̅୭୥ or 𝐶୪୭୥ are the Coulomb logarithms in CM or LAB frames. The log 
dependence makes the Coulomb log slowly changing over a big range 
of the elements concerned in its definition (ref. [8,10] & ref. [G]).

The two brackets (Eq.2.13) have similar tiny values as the angles and ; but the first bracket is 
negligible compared to the second one since it is multiplied by the Coulomb logarithm (with usual 
values between 10 and 20). Hence, after rearranging the integral ௫భ

, it follows, with :

୪୭୥

ଶ
୫ୟ୶

௜ ୫୧୬

௫భ

గ

టഥ ౣ౟౤

ଶగ

଴

௫భ

௫

௜
ଶ

ସ

ఉభ

௫
௫ ௫ ௫ ௫

ᇱ
ఉభ

ᇱ ௫

௫

ଶ ଶ ௫
ଶ

௫
ଶ

௫
ଶ

ଶ ଶ ଶ ௫

௫

ଶ
୫ୟ୶

௜
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The computation of the mean change of the invariants ௫భ,௭భ
& of all particles due to the multiple 

particle collisions requires to average the above three integrals of the two colliding particles over 
the 12 variables, reduced to 9 as ( ଵ,ଶ ଵ,ଶ ଵ,ଶ) are dependent (cf. Eq. 2.10) via the probability ( ).

Strategy step 5: 
scattering angle averages
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௦భ

௫భ

௭భ

గ

టഥ ౣ౟౤

ଶగ

଴

ଵ
ଶ

௫భ ௫

௭భ ௭

௜
ଶ

ସ

ଶ
୫ୟ୶

௜

ଵ ଶ ଶ

ఉభ

௫
௫ ௫ ௫ ௫

ᇱ
ఉభ

ᇱ ௫

௫

ଶ ଶ ௫
ଶ

௫
ଶ
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ଶ

ଶ ଶ ଶ ௫

௫

௭ ଵ

௭
ଵ
ᇱ ଶ ଶ
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In the CM frame all derivatives are reduced by because of the Lorentz contraction along (e.g. 
, ௫ഁ

ᇲ ௫ഁ
ᇲ ), the transverse sizes & relative momentum spread stay unchanged (e.g. ௫ഁ ௫ഁ

, 

ఎ ఎ, ୫ୟ୶ ୫ୟ୶) and the bunch length turns into ௦ ௦.

Accelerator & storage ring moving coordinates
𝒓(𝑠) = 𝒓଴ 𝑠 + 𝑑𝒓(𝑠 𝑑𝒓(𝑠) = 𝑥 𝑠 𝒙ෝ + 𝑧 𝑠 𝒛ො

The relative velocity between 2 scattering particles in the CM
frame is . Let’s call ୱୡୟ୲ the likelihood (or plausibility) for 
a collision per unit time and solid angle in the CM frame. 
Suppose the probability is specified in LAB frame; hence 

plus an “underlying” time gap induce two 
factors for ୱୡୟ୲. So, through the Rutherford cross-section 
formula (Eq. 2.11) the scattering likelihood per unit time in a 
storage ring converts from ୱୡୟ୲ to ୱୡୟ୲ by way of:

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

ୱୡୟ୲ ୱୡୟ୲ ଶ

Strategy step 5: 
scattering angle averages Core IBS model
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Changing the 9 variables of the distribution into new ones , , , ఉ, ఉ
ᇱ , , , ᇱ gives a new via: 

The Jacobian of the transformation is . The relation between the new and initial phase 
volume elements is related to the transformation of multiple integrals by:

ଵ ଶ ଵ ఉభ ఉభ

ᇱ
ఉమ

ᇱ
ଵ ଵ

ᇱ
ଶ
ᇱ  

ఉ ఉ
ᇱ ᇱ

Strategy step 6: 
particle beam averages
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ఉభ,మ ఉ ௫ ఉభ,మ

ᇱ
ఉ
ᇱ

௫
ᇱ

ଵ,ଶ
ᇱ ᇱ

ଵ,ଶ

௏ 𝒱

ଶ

௫ ௫

௭ ௭

ଶ
𝒱

௦

௫

௭

 

ଵ ଶ ଵ ఉభ ఉభ

ᇱ
ఉమ

ᇱ
ଵ ଵ

ᇱ
ଶ
ᇱ

ఉ ఉ
ᇱ ᇱ

and thus:

The mean invariant change Eq. 2.8 can be rewritten as 
follows via Eq. 2.17, swapping the variables ଵ, ఉభ ఉభ

ᇱ

ଵ ଵ
ᇱ

ଵ with ఉ ఉ
ᇱ ᇱ (Eq. 2.19). This yields the 

formal result (integrals over , , are from to ):

ଵ,ଶ

ଵ,ଶ ଵ,ଶ

Core IBS model

No hypothesis regarding 
𝒫 were made up to here
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o Eq. 2.23 for the average change of the invariants ௫,௭ & makes no a priory assumption about the 
particle density distribution in the bunch. 

o To formulate IBS analytical models it is frequently assumed that the betatron amplitudes, angles, 
momentum deviations and synchrotron coordinates are Gaussian distributed for bunched beams 
since ‘Gaussian integration’ is rather easy to make.

Strategy step 6: 
particle beam averages
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ଶ

௫ ௫

௭ ௭

௜
ଶ

ଷ
𝒱

ఉ ఉ
ᇱ ᇱ

ଶ
୫ୟ୶

௜

ଶ ଶ ଶ

ଶ ଶ ଶ ௫
ଶ

௫
ଶ

௫
ଶ

ଶ ଶ ଶ ௫ ௫
ଶ

௫

ଶ ଶ ௫
ᇱ

௫
௫ ௫ ௫

ଶ ଶ ଶ

ଶ ଶ

By construction is symmetrical as regards to , , . Hence, the integrals over vanish for the 
linear terms in , , of the integrand. So, just keep the factors ଶ, ଶ, ଶ, ଶ and Eq. 2.22 reduces to:

Core IBS model
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Let us describe Gaussian distributions ௫ഁ௫ഁ
ᇲ & ௭ഁ௭ഁ

ᇲ in terms of the primary variables ଵ ଶ ଵ ଶ
ᇱ in 

LAB frame (with ఉభ,మ ଵ,ଶ & ఉభ,మ

ᇱ
ଵ,ଶ
ᇱ assuming ௭ ௭

ᇱ ) for the betatron amplitudes & angles and 

ఎ௦ for momentum and bunch length deviations (bunched beams) (ref. [9]):

IBS analytical model

constant is a tilted ellipse with correlation coefficient ௫ ௫ ௫
ଶ  . The density distribution 

must be well-matched to the Courant-Snyder invariant ௫ ௫ ఉ
ଶ

௫ ఉ ఉ
ᇱ

௫ ఉ
ᇱଶ (related to the 

phase space area used by the beam, i.e. ௫ area ).

Strategy step 6: 
particle beam averages

The same in vertical ௭ഁ௭ഁ
ᇲ . Here ௫ഁ

, ௫ഁ
ᇲ , ఎ are rms values of the related variables, ௦ the rms

bunch length, ଴ the synchrotron coordinate  (position relative to the synchronous particle).
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Consider a Gaussian beam with a rms value ௫ഁ
. For a phase area covering a fraction of this beam the

emittance at of particles in phase space is (the function ௫ being the cumulative probability):

E.g. ௫ ௫ഁ
ଶ

௫ picking . Unlike , “projected emittances”, whose beam sizes

cover a beam fraction ୮୰୭୨ projected onto the betatron amplitude axis, e.g. ௫
୮୰୭୨

௫ഁ
ଶ

௫ (the 
same as before) picking ୮୰୭୨ . Also, ఌೣ ௫ writes:

86%

= 6
 

𝜎௫ഁ

= 6
 

𝜎௫ഁ
ᇲ
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௫ഁ௫ഁ
ᇲ can be also rephrased (so ௭ഁ௭ഁ

ᇲ ):

௫ഁ௫ഁ
ᇲ

௫

௫ഁ
ଶ

௫

௫ഁ
ଶ ௫ ఉ

ଶ
௫ ఉ ఉ

ᇱ
௫ ఉ

ᇱଶ

ఌೣ ௫ ௫ ௫ ఌೣ

௫

௫ഁ
ଶ

௫ ௫

௫ഁ
ଶ

௫ ௫ഁ
ଶ

௫

Phase space elliptical contour enclosing 86% of the beam

Strategy step 6: 
particle beam averages IBS analytical model
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௫,௭
ᇱ

௫,௭
ᇱ

௫,௭ ௫,௭ ௫,௭ ௫,௭ ௫,௭ ௫,௭
ᇱ

௫,௭ ௫,௭
ିଵ

௫ഁ௫ഁ
ᇲ ఉ

௫
ఉ
ᇱ

௭௭ᇲ
ᇱ

ఎ ௦
ଶ

o Considering ௕ particles in a bunch; after integrating (with Mathematica) the 6 distributions ‘s over
ఉ ఉ

ᇱ ᇱ we get (the 3 lasting integrals over , , will be solved later):

o The next step is to convert the LAB frame distribution , stated in 9 variables ଵ,ଶ ଵ ఉభ ఉభ,మ

ᇱ
ଵ ଵ,ଶ

ᇱ , 
into , expressed in terms of the 9 variables ఉ ఉ

ᇱ ᇱ (cf. Eq. 2.20 and e.g. Eq. 2.24

To simplify we neglect the derivatives of the dispersion and betatron functions ( ௭ early premise): 

o In turn the density distribution is integrated over the 6 variables , , ఉ, ఉ
ᇱ , , ᇱ yielding 

in terms of the 3 left over variables . 

Using the change of variables Eq. 2.19, ఉభ,మ

ᇱ cuts to ఉ
ᇱ as ௫

ᇱ and Eq. 2.24 rewrites like:

Strategy step 6: 
particle beam averages IBS analytical model
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For example let’s compute the 2 terms ఎ in Eq. 2.26 (using Eq. 2.24 for ఎ and remembering that 2 
particle momenta are involved in each interaction). The result of Gaussian integration is: 
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௕ ௨
௨

௨
௨

ஶ

ିஶ

 ௫ഁ
ᇲ , ௭, ௭ᇲ

௨ୀఎ, ௦, ௫ഁ 

௕

ଶ ଶ

ఎ
ଶ

௫
ଶ

௫ഁ
ଶ

ଶ

௫ഁ
ᇲ

ଶ

ଶ

௭ᇲ
ଶ

ଷ
௫ഁ ௫ഁ

ᇲ ௭ ௭ᇲ ఎ ௦

In which ௨ stands for any , , ௫ , , . Now reduces to a function of , , .

𝑃ఎ(𝜂ଵ, 𝜂ଶ)=𝑃ఎ(𝜂ଵ)𝑃ఎ(𝜂ଶ) ⟼ 𝒫ఎ 𝑢±
𝛾𝜉

2
𝒫ఎ 𝑢∓

𝛾𝜉

2
න 𝒫ఎ 𝑢±

𝛾𝜉

2
𝒫ఎ 𝑢∓

𝛾𝜉

2
𝑑𝜂 =

1

2 𝜋  𝜎ఎ

exp −
𝛾ଶ𝜉ଶ

4𝜎ఎ
ଶ

ஶ

ିஶ

Strategy step 6: 
particle beam averages IBS analytical model
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with for bunched beams: 

The integrals over , , must still be solved to work out the mean change of the invariants.

IBS analytical model

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

ଶ

௫ ௫

௭ ௭
ଶ ଶ ଶ ଷ ଶ

ஶ

ିஶ

ଶ ଶ

ఎ
ଶ

௫
ଶ

௫ഁ
ଶ

ଶ

௫ഁ
ᇲ

ଶ

ଶ

௭ᇲ
ଶ

×  

𝜃ଶ + 𝜁ଶ − 2𝜉ଶ

𝜉ଶ + 𝜁ଶ − 2𝜃ଶ +
𝐷௫

ଶ

𝛽௫
ଶ 𝛾ଶ(𝜁ଶ + 𝜃ଶ − 2𝜉ଶ)

𝜉ଶ + 𝜃ଶ − 2𝜁ଶ

ln
𝑞ଶ

4
𝜉ଶ+𝜃ଶ+𝜁ଶ ං

௜
ଶ

௕

ଶ ଷ ସ
௫ഁ ௫ഁ

ᇲ ௭ ௭ᇲ ఎ ௦

௜
ଶ

௕

ଷ ସ
௫ ௭ ௦

௦ ఎ ௦

At that point we introduce into the mean invariant change ௫,௭ & Eq. 2.23, wherein all the 
variables are expressed in LAB frame except (since ୫ୟ୶ ୫ୟ୶). The Lorentz factor is so converted 
back to LAB frame with Eq. 2.12: ଶ ଶ ଶ  , yielding (with ୫ୟ୶ ௜

  ):

Strategy step 6: 
particle beam averages
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In his initial model (1974) Piwinski (ref. [3]) developed formulae for the IBS growth rates ఎ,௫,௭ as the 
change in the betatron oscillation amplitudes ௫ഁ௭ഁ

(equal to the square root of emittances ௫,௭) and 
momentum spread ఎ per unit time caused by scattering events (with ଶ

ఎ
ଶ):

௧
ଶ ௣

௫

௫
ଶ

௫ഁ,௭ഁ ௫,௭ ௫,௭
 

௫ഁ
ᇲ ,௭ഁ

ᇲ
௫,௭

௫,௭

 

௣
௫

 

 

௫
௧

௧
ଶ ଶ

Original Piwinski model 
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Strategy step 7: 
growth rates calculation

where a bracket means averaging, and , , ௫ ௣ , ௧, ௧ are the ring curvature and mean radius, the 
betatron tune, momentum compaction factor, transition energy and slip factor. Also: 

௫
௫

௫
௫

௫ ௫
ଶ

௫

௫
ଶ

To this end, besides cancelling ௫,௭, ௫,௭
ᇱ and ௭, he makes use of the smooth focusing approximation, in 

which only the mean values of the lattice functions are considered:

ఎ ఎ

ఎ

௫,௭ ௫ഁ,௭ഁ

𝒙ഁ,௭ഁ

௫,௭

௫,௭

௫,௭
ଵ/ଶ

௫,௭
ଵ/ଶ
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ଶ
ଶ ଶ ଶ ଶ ଶ ଶ

ଵ
ଶ ଶ

ଶ
ଶ ଶ

ଷ
ଶ

ఎ

௫

௭

ଶ

ଶ

ଶ

ଶ

ଶ

ଶ

௫ ௫

௭ ௭

ଶ

గ

଴

ଶగ

଴

ஶ

଴

ଶ
ଵ

ଶ
ଶ

ଶ
ଵ

ଶ
ଷ

Notice that the form of the 1st column in Eq. 2.27 ( ିଶ & ௫,௭
ିଵ

௫,௭ ) does not fit Eq. 2.29 
( ିଵ & ௫,௭

ିଵ/ଶ
௫,௭

ଵ/ଶ
) for ఎ,௫,௭. So, new quantities , , (cf. next slide) and 

(see 2.27), are added to the 1st column of Eq. 2.27 for good match with the IBS growth rates ఎ,௫,௭.
To this end we do a double change of variables to convert Eq. 2.27 to coordinates , , 
and next to spherical coordinates   . After some work we get:

Strategy step 7: 
growth rates calculation Original Piwinski model 
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௛
ଶ

ఎ
ଶ

௫
ଶ

௫ഁ
ଶ ௛

ఎ ௫ഁ

௫

௛

௫ഁ
ᇱ

௛ ௫

௫

  ௫ ఎ

௫

௛

௭ഁ
ᇱ

௛ ௭

௭

  ௭ ఎ

௭

௛
௛

ଶ
୫ୟ୶

௜

  ୪୭୥ ଶ ௛
ଶ

ఎ
ଶ

௫ ఎ

௫

The aim is to write Eq. 2.30 in a reduced form. To this end a scattering function is introduced 
instead of the functions ଵ,ଶ,ଷ, in which ଶ replaces and ଴ swaps with (Eq. 2.31): 

ଶ ଶ
଴

ஶ

଴

ଶగ

଴

గ

଴

଴
ଶ ଶ ଶ ଶ ଶ ଶ

The functions ଵ,ଶ,ଷ were introduced for convenience (keeping in mind that ఉ
ᇱ

ఉ
ᇱ Eq. 2.2):

is integrable over the variable . So, solving it by Mathematica reduces to the double integral:

Strategy step 7: 
growth rates calculation Original Piwinski model 
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Strategy step 7: 
IBS rise times

ଶ ୉୳୪ୣ୰ ଴

଴

ଶగ

଴

గ

଴
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In line with the Evans & Zotter approach (ref. [4]), is first converted by a change of variables to 
, using the periodicity of ଶ and ଶ with and the symmetry about , allowing to 

replace the limit of by and of by (providing one multiplies the integral by an additional 
factor ). Thus, after tricky working can be shrunk to the single integral: 

where ୉୳୪ୣ୰ is Euler’s constant. 

    ୉୳୪ୣ୰

ଶ

 

ଵ

଴

ଶ ଶ ଶ

ଶ ଶ ଶ

௛

௫ഁ
ᇲ

௛

௭ഁ
ᇲ

௛
௛

ଶ
୫ୟ୶

௜

ଵ/ଶ

ଶ
୉୳୪ୣ୰

with

Original Piwinski model 



4706/11/2015

Eq. 2.34 is now the “new scattering function” . It needs numerical integration but for a few 
cases (see ref. [4] for a clear and detailed derivation, and ref. [3,9,13,17] too).
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ఎ

௫

௭

௫ഁ
ଶ

௫
ଶ

௫
ଶ

ఎ
ଶ

௫ഁ
ଶ

After some more work the IBS growth rates for bunched beams Eq. 2.30 can be rewritten into the dense 
form below, that agrees with ref. [I], Eqs. 13.42-13.53, assuming none vertical dispersion function ௭ :

in which, together with Eq. 2.32 

௫ഁ
ଶ

௫
ଶ

௫
ଶ

ఎ
ଶ

௫
ଶ

ଶ ௛
ଶ

ఎ
ଶ

Strategy step 7: 
IBS rise times Original Piwinski model 
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o Above transition energy the particle property is often identify by a negative mass comportment.
o Association with a gas in a closed box is not valid and the overall oscillation energy can increase. 
o The beam behaviour can be described via a global invariant which can be cast into a form close to the 

sum of the mean invariant change 𝜀௫,௭ & 𝐻 over the collisions for all particles, i.e. multiplying 𝐻 /𝛾ଶ

by 1 − 𝛾ଶ𝐷௫
ଶ/𝛽௫

ଶ) in the summation yields a non invariant quantity because 𝐷௫/𝛽௫ varies.
o Smooth focusing approx. for the tune, momentum compaction factor and transition energy yields: 

Invariants

ଶ

௫
ଶ

௫
ଶ

௫

௫

௭

௭
constant

o Below transition ( ௧ ) the sum of the 3 (positive) invariants is bounded, and thus the 3 oscillation 
energies. So the “emittances” are redistributed in all 3 phase planes, holding the whole phase space 
invariant. The distribution is stable: equilibrium exists (like gaz molecules in a closed box).

o Above transition ( ௧ ) the overall oscillation energy can increase as ௧ : no equilibrium can exists.

௧
௧
ଶ ଶ (slip factor)

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

ଶ
௧
ଶ

௫

௫

௭

௭
constant

ଶ
௧
ଶ

௫

௫

௭

௭

Original Piwinski model 
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Bjorken-Mtingwa model 

is the 6-dim phase-space volume, ௕ the particle number per bunch, & ௫ ௭ ௦ the 
positions & momenta of the particles in the bunch, ௫ഁ ௭ഁ

, ௦ ఎ the rms bunch width, height, length, 
momentum spread, ௫,௭,௦ the rms transverse & longitudinal emittances. The beam Gaussian distribution

is ( ଴ is the synchronous particle position):

In line with Piwinski (ref. [3]), Gaussian beam phase-space densities are chosen, since they can be put in 
exponential canonical distributions for momentum product separability (refs. [20],[B]). So, from ref. [8]: 

Beam phase space density and emittance 𝒙, 𝒛, 𝒔

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

௕ ିௌ 𝒓,𝒑 ଷ ଷ ିௌ(𝒓,𝒑)

 

 

(୶) (୸)+ (ୱ)

𝑆(୰) =
𝛽௥

2𝜎௥ഁ
ଶ 𝛾௥𝑟ఉ

ଶ+2𝛼௥𝑟ఉ
 𝑟ఉ

ᇱ+𝛽௥𝑟ఉ
ᇱଶ 𝑆(ୱ)=

𝜂ଶ

2𝜎ఎ
ଶ +

𝑠−𝑠଴
ଶ

2𝜎௦
ଶ 𝜀௥=

𝜎௥ഁ
ଶ

𝛽௥
𝜀௦=𝜎ఎ𝜎௦

𝑟ᇱ=
∆𝑝௥

𝑝
𝜂=

∆𝑝௦

𝑝
𝜎ఎ=

𝜎௣

𝑝
   𝑟ఉ=𝑟−𝐷௥𝜂 𝑟ఉ

ᇱ=𝑟ᇱ−𝐷௥
ᇱ 𝜂

𝑟=𝑥, 𝑧
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Bjorken-Mtingwa model 

Bjorken & Mtingwa approach of IBS theory is based on the S-matrix, a time-evolution operator that 
relates the transition from an initial quantum state to a final state of a physical system facing to a 
collisional event. The matrix elements of S are the inner products , with characteristics:
• The squared modulus ଶ yields the probability for a transition from an initial to a final state.
• is linked to an amplitude stating the physical process: 𝑓 𝑆 𝑖 = 2𝜋 ସ𝛿ସ 𝑝ଵ௙+𝑝ଶ௙ −𝑝ଵ௙ −𝑝ଵ௙ iℳ.

Two-body scattering in the CM frame

2−body scattering process particles with energy-momentum 4-vectors ଵ,ଶ ଵ,ଶ
ఓ interact each 

other to give after collision two 4-momenta ଵ,ଶ
ᇱ

ଵ,ଶ
ᇱఓ (i.e. ଵ ଶ ଵ

ᇱ
ଶ
ᇱ ) whose transition rate is, 

expressed in the Heaviside-Lorentz (HL) units , (cf. ref. [8,11] and ref. [N,O]):
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where is the scattering amplitude to be computed and ଵ,ଶ ଵ,ଶ .

 

 

ଵ

ଵ

ଶ

ଶ
ଵ ଶ

ଶ ଵ
ᇱ

ଵ
ᇱ

ଶ
ᇱ

ଶ
ᇱ

ସ
ଵ
ᇱ

ଶ
ᇱ

ଵ ଶ

ଶ

𝑓 𝑆 𝑖 = 2𝜋 ସ𝛿ସ 𝑝ଵ௙+𝑝ଶ௙ −𝑝ଵ௙ −𝑝ଵ௙ ℳ

Eq. [2.40] stems from the electromagnetic scattering process of a spin-½ electron of mass 𝑚 off a free pointlike and 
structureless spin+½ proton of mass 𝑀, called “Dirac proton”, (in analogy with Eq. (7.42) and next ones in ref[O]). 

𝑒ି 𝒑ଵ

𝑒ି 𝒑ଶ

𝑒ି 𝒑ଶ
ᇱ

𝑒ି 𝒑ଵ
ᇱ

CM
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The metric is ଶ ଶ ଶ. E.g. in HL units with we get: 

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝑟≝𝑟ఓ≡ 𝑡, 𝒓 = 𝑡, 𝑥, 𝑧, 𝑠 𝑝≝𝑝ఓ≡ 𝐸, 𝒑 = 𝐸, 𝑝௫, 𝑝௭, 𝑝௦ 𝑟ఓ=𝑔ఓఔ𝑟ఓ= 𝑡, −𝑥, −𝑧, −𝑠 𝑝ఓ=𝑔ఓఔ𝑝ఓ= 𝐸, −𝑝௫, −𝑝௭, −𝑝௦

𝑝ଵ ȉ 𝑝ଶ≝ 𝑝ଵ
ఓ

𝑝ଶఓ=𝐸ଵ𝐸ଶ − 𝒑ଵ ȉ 𝒑ଶ 𝑟 ȉ 𝑝 ≝ 𝑟ఓ𝑝ఓ=𝑡𝐸 − 𝒓 ȉ 𝒑 with 𝑔ଵଵ=1, 𝑔ଶଶ=𝑔ଷଷ=𝑔ସସ=−1,  𝑔ఓஷఔ=0

o For ease the amplitude ଶ is computed for a Coulomb scattering  among 2 electrons (not ି ା!) 
via the exchange of a virtual photon with 4-momentum ఓ, using the Feynman diagram & rules. 

o To lessen the calculations in “real-life” collisions ି ି ି ି with ି of spin-భ

మ
and massless photon 

of spin 1, we use instead a “toy model“ which considers structureless particles and spinless bosons. 
• The coupling constant ୉ in quantum electrodynamic (QED) specifies the interaction strength 

between electrons and photons; ୉ is associated to the fine structure constant ୉ by: ୉ ୉
  .             

In HL units ( ଴ ) ୉
ଶ (with   , no charge unit), hence ୉ . In 

SI units ୉
ଶ

଴ , thus ୉ ଴
  .

• A boson propagator is associated to the wavy line in the Feynman diagram and represents  
the momentum transfer from one ି to the other ି through the virtual photon .  

.
cf. Appendix 1-2

Two-body scattering in the CM frame (for toy theory)

cf. K A Tomilin, Eur.J.Phys Vol 20 Nb 5 Sept 1999



ିି

ି ି

ଵ ଵ
ᇱ

ଶ
ᇱ

ଶ

ୱ୮
ୟ

ୡ

୲୧୫ୣ

ଵ
ᇱ

ଵ

ଵ
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ିି

ି ି

ଵ ଶ
ᇱ

ଵ
ᇱ

ଶ

ଶ

Bjorken-Mtingwa model 
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Two-body scattering in the CM frame (for toy theory)

The Feynman rules for spin-0 toy model allow to calculate more easily the propagator and scattering 
amplitude for elastic collisions (4-momenta are conserved) . 
o With rules 2-3 we write one coupling constant of ୉ for each vertex (whose product is ୉

ଶ) and 
one propagator ଶ for the single internal line. The overall product is ୉

ଶ ଶ (with ఓ).
o Then, with rules 4-5 we multiply this product by the -functions and integrate over  the 1st of the

୉
ଶ

ଶ
ఊ
ଶ

ସ ସ
ଵ ଵ

ᇱ ସ ସ
ଶ ଶ

ᇱ

diagram with ସ ସ, and insert ଵ
ᇱ

ଵ (Eq. 2.42) in 
the 2nd −function gives for ఊ :

ଵ ୉
ଶ 

୉
ଶ

ଶ

 

 

ସ ସ
ଵ ଵ

ᇱ ସ ସ
ଶ ଶ

ᇱ
ଵ
ᇱ

ଵ

ସ

ସ
୉
ଶ

ଵ
ᇱ

ଵ
ଶ

ଶ
ᇱ

ଵ

which conserved the 4-momenta 
at the top & bottom vertex 

o With Rules 6 the last -function is removed and the result 
is multiply by . So the left Feynman diagram ଵ follows:

The 2 Feynman diagrams contribute to the particles scattering process 

cf. Appendix 1-2-3
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ସ

ଶ

 

 

ସ
ଵ
ᇱ

ଵ ଵ
ᇱ

ଵ
ିଶ

Two-body scattering in the CM frame (for toy theory)
Eq. 2.41 holds because

To see the link of ଵ with a collisional process let’s rewrites ఓ
ଶ

ଵ
ᇱ

ଵ
ଶ (HL units):

ఓ
ଶ

ଵ
ᇱ

ଵ
ଶ

ଵ
ᇱଶ

ଵ
ଶ

ଵ ଵ
ᇱ

ଵ
ଶ

ଵ
ᇱଶ

ଵ
ଶ

ଵ
ᇱଶ

ଵ ଵ
ᇱ

ଵ ଶ
ᇱ

ଵ ଵ
ᇱ ଶ

ଵ
ଶ

ଵ
ᇱଶ

ଵ ଵ
ᇱ ଶ ଶ ଶ

Elastic collisions: ଵ ଵ
ᇱ

ଶ ଶ
ᇱ

ଵ ଵ
ᇱ

ଶ ଶ
ᇱ

ଵ ଵ
ᇱ ଶ

ଵ ଶ
ᇱ ଶ

ଵ is the incident momentum particle 1 and is the CM frame scattering angle between ଵ & ଵ
ᇱ

after collision ( is the scattering angle between ଵ & ଶ
ᇱ , so: ଶ - ଶ ଶ ). 

with ఓ= ଵ
ᇱ

ଵ
ఓ

ఓ
ଶ= ఓ

ఓ= ଵ
ᇱ

ଵ
ଶ

ଵ
୉
ଶ

ଵ
ᇱ

ଵ
ଶ

୉
ଶ

ଶ ଶ

Finally, since ୉ in HL units Eq. [2.41] writes:
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Two-body scattering in the CM frame (for toy theory)

o Thus, the full amplitude ଵ+ ଶ for the process ି ି ି ି is, with ୉
ଶ

୉
ଶ, HL units: 

o For two-body scattering in the CM frame with all 4 particle masses even, the Rutherford differential 
cross section is given by Eq. A.1, derived using the “Fermi’s Golden rule”, cf. ref. [M,P,Q]                         .

o At that stage, Eq. 2.40 can be rewritten introducing ଶ and the beam distribution 
Eq. 2.39 into it, yielding ( ଵ ଶ ):

o The scattering amplitude ଶ for the right Feynman diagram
above is derived by exchanging ଵ

ᇱ with ଶ
ᇱ in Eq. 2.42 giving: ଶ

୉
ଶ

ଶ
ᇱ

ଵ
ଶ

୉
ଶ

ଶ ଶ

୉
ଶ

ଶ ଶ ଶ

ଶ

ଶ ଶ
ଶ

ଶ

ଶ ଶ

ଶ

௕

ଶ

 

 

ଵ

ଵ

ଶ

ଶ

ିௌ(𝒓,𝒑భ)ିௌ(𝒓,𝒑మ)
ଶ

𝟐 ଶ

ଶ
ଵ
ᇱ

ଵ
ᇱ

ଶ
ᇱ

ଶ
ᇱ

ସ
ଵ
ᇱ

ଶ
ᇱ

ଵ ଶ

ଶ

see Appendix 3
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where the bracket denotes an average around the ring circumference, and with 𝑥 𝑧 𝑠:
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Final steps of IBS theory providing quantifiable growth rates

୳ ୶,୸,஗ ୶,୸,஗

୶,୸,஗
୶,୸

ିଵ/ଶ ୶,୸
ଵ/ଶ

஗

஗

୶,୸

୶,୸

஗
ଶ

஗
ଶ

୳

୧
ଶ

ୠ ୪୭୥

ଷ ସ
୶ ୸ ୱ ஗

 

ஶ

଴
୳

ିଵ
୳

ିଵ

𝑥
௫

௫

௫

௫
ଶ

௫ ௫ 𝑧
௭

௭

ଶ
௭ ௭ ௭

௭

𝑠

ଶ

ఎ
ଶ

Bjorken & Mtingwa took on a vertical dispersion function ௭ to develop their equation (3.4) in ref. [8].
Its proof needs arduous work. The IBS growth rates ୳

ିଵ below (with ) for bunched beams (Eq. 
2.29) including the non-zero vertical dispersion ௭ refs. [14,21] are derived from B & M Eq. (3.4): 
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Bjorken-Mtingwa model 

After the bracket expansion in Eq. 2.45 the growth rates are simplified throughout right approximations 
(ref. [8]) and some work in the next form, cf. ref. [14] too:

Here the emittance 𝜀௫,௭ is the projected r.m.s. emittances on the betatron amplitude -axes, also 
written 𝜀௫,௭

୮୰୭୨
≝ 𝜎௫ഁ,௭ഁ

ଶ /𝛽௫,௭ whose beam profile covers of the beam. This is not the r.m.s. phase 
plane emittance whose phase ellipse encloses only beam fraction!

௕ is the number of particles per bunch, is the speed of light, ௜ the classical ion radius, , the 
Lorentz factors & ௨ ௨ ௨ ௨

ᇱ the optics parameters. The longitudinal emittance ௦ is defined either 
by the product ௦ ௦ ఎ m or the momentum such that ௦ ௦ ఎ

ିଵ ିଵ eVs (bunched beam) 
and ௦, ఎ are the bunch length and momentum spread. ୪୭୥ in Eq. 2.45 is the Coulomb log factor.

Final steps of IBS theory providing quantifiable growth rates

w
௫,௭

௫,௭ ௫,௭ ௫,௭
ᇱ

௫,௭
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ଶ

௫,௭
ଶ

௫,௭
ଶ

௫,௭
௫

ଶ
௫

௫
௭

ଶ
௭

௭
௦

ଶ

ఎ
ଶ

As well high energy IBS approximations to Bjorken-Mtingwa
theory were made by Bane & Mtingwa: refs. [12,16]
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Bjorken-Mtingwa model 

The 9 coefficients ௫, ௫ ௭, ௭ ௦, ௦ (not reproduced here) depend on the optics parameters 
of the storage ring lattice (cf. ref. [21]).
For illustration, the following figure displays the evolution of the Coulomb log for the ELENA 100 keV
low-energy antiproton decelerator ring calculated with Eq. 2.48.

୪୭୥
୫ୟ୶

୫୧୬
୫ୟ୶ ௫ ஽ ୫୧୬ ୫୧୬

஼
୫୧୬
ொெ

In ୪୭୥ the impact parameter ୫୧୬ is the larger of the classical distance of closest approach ୫୧୬
஼ and 

the quantum diffraction limit from the nuclear radius ୫୧୬
ொெ, and ୫ୟ୶ is the smaller of the mean rms

beam size ௫ ௫ ௫
  and the Debye length ஽. All these variables are explicitly defined as follows:

Final steps of IBS theory providing quantifiable growth rates

௨

௕ ଴
ଶ

୪୭୥

ଷ ଷ
௫ ௬ ௦ ఎ

ସ

ଶ ௨

ஶ

଴

௨ ௨
 

ଷ ଶ ଷ/ଶ
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Bjorken-Mtingwa model

in which is the particle volume density [ ିଷ] and ୄ is the 
transverse beam kinetic energy [eV] in the centre-of-mass 
frame.

஽
ୄ  𝑏

ି଺

ଷ
௫ ௫ ௬ ௬ ௭

ଶ 
ୄ

ଶ
଴ ௫

௫

୫୧୬
஼

ିଽ ଶ

ୄ
୫୧୬
ொெ

ିଵଷ

ୄ ଴
 

(see ref. [10])

Fig. caption: Evolution of the calculated Coulomb logarithm during 1 
s on a 100 keV plateau for the nominal ELENA beam and the first two 
variants (see table slide 73).

Final steps of IBS theory providing quantifiable growth rates
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 Part 3:  Applications
 IBS & LHC (7 TeV)
 IBS & ELENA (100 keV)
 Epilogue

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

 Appendices: Feynman rules



IBS Calculations

Steady State 
emittances

The IBS growth rates  in 
one turn (or one time step)

Complicate integrals 
averaged around the ring

Horizontal, vertical and 
longitudinal equilibrium states
and damping times due to SR 

damping

If ≠0 

If = 0 

 Steady state exists if we are below transition or in the 
presence of SR damping 

 𝑑𝑡 should be much smaller than the IBS growth times
 Good scanning of optics is important in order not to 

skip large IBS kick points
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Continuation… from Part 2
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LHC and SLHC beam parameter with improved variants
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IBS & LHC (7 TeV)

Nୠ (10ଵଵ) 1.15 1.15 1.70 2.36
𝜀ு,௏

௡ = 𝜀௡ = 𝛾𝜀 rms 𝜇m 3.75 2.54 2.65 2.60
𝛽∗ m 0.55 0.30 0.25 0.15
𝜎ு,௏

∗ = 𝜎∗ 𝜇m 16.58 10.11 9.40 7.21
𝜎஻௅ mm 75.50 75.50 75.50 75.50
𝜎୼௣/௣ (10ିସ) 1.13 1.13 1.13 1.13
𝜀௅ rms eVs 0.62 0.62 0.62 0.62
Crossing angle 𝜃 𝜇rad 285 337 355 454
Δ𝑄௕௕ head-on** 1.00 1.09 1.43 1.37
𝓛uminosity (10ଷସ) cmିଶsିଵ 1.00 2.00 4.65 10.29

LHC Luminosity with nominal beam intensity SLHC Luminosity 
Case 1 Case 2 Case 3 Case 4
Initial IR
triplet

IR phase 1 triplet: 𝛽∗ = 0.30 m
reduced emittance

Ultimate N𝑏: 𝛽∗ = 0.25 m
reduced emittance

>Ultimate N𝑏: 𝛽∗ = 0.15 m
reduced emittance

o 1st case: nominal  beam and LHC parameters at top energy give the nominal luminosity of 10ଷସcmିଶsିଵ

o 2nd case: new optics will rise the crossing angle to 337 𝜇rad and the luminosity to 2 × 10ଷସcmିଶsିଵ

o 3rd case: will raise the head-on beam-beam tune shift to 1.43 and the luminosity to 4.65 × 10ଷସcmିଶsିଵ

o 4th case: with an intensity of 2.36 × 10ଵଵ protons/bunch a top luminosity of ~10ଷହcmିଶsିଵ can be got.  

** Δ𝑄௕௕ normalized to the value of the nominal beam

ℒ =
𝑓௥௘௩𝑛௕𝑁௕γ

2𝑟௣𝛽∗
∆𝑄௕௕
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IBS effects in the SLHC
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IBS & LHC (7 TeV)

∆𝜀௅/𝜀௅ ∆𝜀ு/𝜀ு ∆𝜀௏/𝜀௏

1st case Initial IR triplet 16% 9% -0.0001%

2nd case IR phase 1 triplet  (𝛽∗ = 0.30 m)
reduced emittance 24% 21% -0.001%

3rd case Ultimate N𝑏 (𝛽∗ = 0.25 m)
reduced emittance 32% 27% -0.001%

4th case >Ultimate N𝑏 (𝛽∗ = 0.15 m)
reduced emittance 44% 37% -0.001%

IBS (Bjorken-Mtingwa model) and synchrotron radiation calculation to
estimate the LHC & SLHC beam emittances evolution during 7 TeV physics
coasts are done for the 4 nominal & reduced emittance beam cases

IBS emittance growth after a 10 hours beam coast

LHC: above transition ring 
𝛾 = 7461 ≫ 𝛾௧~53.8

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

o IBS growth rates:
1

𝜏௅,ு,௏
=

𝑁௕𝑐𝑟଴
ଶ𝐶୪୭୥

8𝜋𝛽ଷ𝛾ସ𝜀ு𝜀௏𝜎஻௅𝜎∆௣/௣
𝐻௅,ு,௏ 3.1

o Longitudinal emittance: 𝜀௅ = 𝜋𝑝𝜎஻௅𝜎∆௣/௣ 𝛽𝑐 ିଵ eVs

𝑝 is the momentum in eV/c



IBS effects in the SLHC
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IBS & LHC (7 TeV)

o A constant beam intensity for the duration of the beam storage period is assumed in the computations.
o The next 2 figures show the evolution of the longitudinal & horizontal emittances over a 10 hours beam coast.
o IBS growth-rates 𝜏௅,ு,௏

ିଵ were calculated iteratively by step ∆𝑡 of 5 minutes updating the emittances at each iteration 𝑖:

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝑖 = 𝑖 + 1 𝜏௅,ு,௏
ିଵ 𝑖 + 1 = 𝑑 ln 𝜀௅,ு,௏ 𝑖 /𝑑𝑡𝜀௅,ு,௏ 𝑖 + 1 = 𝜀௅,ு,௏ 𝑖 𝑒∆௧/ఛಽ,ಹ,ೇ(௜)



IBS & synchrotron radiation damping effects in the SLHC
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IBS & LHC (7 TeV)

o The synchrotron radiation turns into a visible effect for the LHC/SLHC proton beams at 7 TeV collision energy. Emittances shrink
with damping times of: 𝟏𝟐. 𝟗 h in the longitudinal and 𝟐𝟔. 𝟎 h in the 2 transverse planes.

o Synchrotron radiation damping (SRD) is modelled substituting in the previous formula 𝜏௅,ு,௏ 𝑖 by 𝜏௅,ு,௏
ିଵ 𝑖 − 𝜏ୱ୰ୢಽ,ಹ,ೇ

ିଵ
ିଵ

o The next 3 figures show the evolution of the longitudinal & transverse emittances over a 10 hours beam coast.
o SRD dominates the IBS growth in the longitudinal & vertical planes for the 4 cases, in horizontal the emittance damps over the all

coast only for case 1 while, for cases 2-4 it grows at some point in time during the coast.

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

𝜏௅,ு,௏
ିଵ 𝑖 − 𝜏ୱ୰ୢಽ,ಹ,ೇ

ିଵ
ିଵ

𝜏௅,ு,௏ 𝑖



IBS & synchrotron radiation damping effects in the SLHC
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IBS & LHC (7 TeV)

Table: Emittance changes after a 10 hours beam coast resulting from the effects of IBS and synchrotron radiation damping

 ∆𝜀௅/𝜀௅ ∆𝜀ு/𝜀ு ∆𝜀௏/𝜀௏

1st case Initial IR triplet -36% -20% -32%

2nd case IR phase 1 triplet  (𝛽∗ = 0.30 m)
reduced emittance -27% -5% -32%

3rd case Ultimate N𝑏 (𝛽∗ = 0.25 m)
reduced emittance -19% 3% -32%

4th case >Ultimate N𝑏 (𝛽∗ = 0.15 m)
reduced emittance -8% 14% -32%

IBS emittance changes after a 10 hours beam coast

o Longitudinal & vertical: cases 1-2-3-4: emittances of all the luminosity scenarios are kept within target specifications.
o Horizontal: emittances stay in requirements cases 1-2: (nominal 10ଷସ & first IR upgrade 2 × 10ଷସ cmିଶsିଵ luminosities,

case 3: ~3% blow-up expected (ultimate intensity 𝑁௕ = 2.36 × 10ଵଵ) & case 4: ~14% (~10ଷହ cmିଶsିଵpeak luminosity).
Globally for most scenarios the evolution of emittances during the 10 hours coast is kept inside the design values

Conclusion
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ELENA deceleration cycle
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o 1st plateau: 4 bunches injection at 100 MeV/c from AD followed by beam cooling.

o 2nd plateau: Deceleration down to 35 MeV/c and cooling again. 
o 3rd plateau: Last deceleration down to 13.7 MeV/c, beam cooled down to emittances needed for ELENA experiments.

End of bunch 
rotation

End of cooling

300 ms where 
IBS is active 

Momentum
Beam intensity
Physical H,V (95%) 
∆p/p (95%)
Bunch length (95%)

 13.7 MeV/c
2.5 107 (1 bunch)
5 mm.mrad
3 10-4

10.1 m (circumf/3)

Momentum (energy)
Bunch intensity
Physical H,V (95%) 
∆p/p (95%)
Bunch length (95%)

13.7 MeV/c (100 keV)
6.25 106 (4 bunches)
4 mm.mrad
3 10-4

1.3 m

IBS & ELENA (100 keV)

ELENA ring

ELENA (Extra Low Energy Antiproton) 
is a compact ring for cooling and more 
deceleration of 𝟓. 𝟑 MeV antiprotons
sent by the Antiproton Decelerator to 
give dense beams at 𝟏𝟎𝟎 keV energies
cf. ref. [22,23] 

30 m circumference

ELENA:  below transition ring  
𝜸 = 𝟏. 𝟎𝟎𝟎𝟏 < 𝜸𝒕~𝟏. 𝟗
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Ejection momentum/energy 13.7MeV/c 100 keV

Injected/ejected beam intensity 3 107 2.5 107

Number of extracted bunches 4

Extracted bunch intensity 6.25 106

Nominal beam parameter and variant study 
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𝜀ு,௏
௥௠௦ =

 
1

 
𝑚, 𝜎∆௣/௣ = 0.325 𝑚 (75 𝑛𝑠), 𝜎∆௣/௣ = 0.075

 
‰ (7.510ିହ) 𝜀ு,௏

௥௠௦ = 𝜋𝑝𝜎௅𝜎∆௣/௣ 𝛽𝑐 ିଵ 

Initial nominal beam emittances with variants on the 100 keV plateau 

𝑩𝑳

m
𝑩𝑳𝟗𝟓%

m
𝝈∆𝒑/𝒑

‰ 
𝒑/𝒑𝟗𝟓%

‰
𝑳

𝒓𝒎𝒔

eVs
𝑳

𝟗𝟓%

eVs
𝜺𝑯,𝑽

𝒓𝒎𝒔

𝝁𝒎
𝜺𝑯,𝑽

𝟗𝟓%

𝝁𝒎

Nominal  beam 0.325 1.3 0.075 0.3 2.4 10-

4 9.6 10-4 1.0 4.0

Variant 1 0.325 1.3 0.025 0.1 0.8 10-

4 3.2 10-4 0.5 2.0

Variant 2 0.325 1.3 0.125 0.5 4.0 10-

4 16 10-4 2.5 10.0

IBS & ELENA (100 keV)
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Growth-rate 1/L vs (p/p, H ) 
for H = V & BL= 0.325 m

Growth-rate 1/H vs (H, V ) for 
p/p =0.075 ‰ & BL=0.325 m
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Longitudinal IBS 

IBS & ELENA (100 keV)

Growth-rate 1/V vs (H, V ) for 
p/p =0.075 ‰ & BL= 0.325 m

Horizontal IBS

Vertical IBS

Bjorken-Mtingwa
IBS calculation model
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IBS growth times evolution

ELENA initial rms beam emittances and IBS growth times at 100 keV ejection 

BL m p/p ‰ L eVs H m V m L ms H s V s

Nominal beam 0.325 0.075 2.4 10-4 1.0 1.0 2.40 0.67 -0.27

Variant 1 0.325 0.025 0.8 10-4 0.5 0.5 0.09 0.13 -0.04

Variant 2 0.325 0.125 4.0 10-4 2.5 2.5 24.0 5.92 -2.44

IBS & ELENA (100 keV)
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IBS growth-times L,H,V evolution (𝜺𝑳 = 𝝅𝒑𝝈𝑩𝑳𝝈∆𝒑/𝒑 𝜷𝒄 ି𝟏)
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IBS & ELENA (100 keV)
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Comments on variant performance & study extra variants

𝑩𝑳

m
𝑩𝑳𝟗𝟓%

m
𝝈∆𝒑/𝒑

  ‰
𝒑/𝒑𝟗𝟓%

‰
𝑳

𝒓𝒎𝒔

eVs
𝑳

𝟗𝟓%

eVs
𝜺𝑯,𝑽

𝒓𝒎𝒔

𝝁𝒎
𝜺𝑯,𝑽

𝟗𝟓%

𝝁𝒎

variant 3 0.325 1.3 0.250 1 8 10-4 32 10-4 1.0 4.0

variant 4 0.325 1.3 0.375 1.5 12 10-4 48 10-4 1.0 4.0

variant 5 0.325 1.3 0.500 2 16 10-4 60 10-4 1.0 4.0

Three more variant scenarios with higher relative momentum spreads  

Assuming one or several bunches circulate for ~1 s on the 100 keV plateau: the above plots show that none of the 3 
scenarios are fully satisfactory because the bunch length and momentum spread will suffer too much blow-up due to IBS: 

Nominal: bunch length and momentum spread growth after 1 s on the 100 keV plateau is Big !

BL(1s) =1.9 m , p/p(1s) =0.4 ‰ (95% bunch length=7.4 m instead of 1.3 m !)

Variant 1: bunch length and momentum spread increases after 1 s on the 100 keV plateau  is Huge !                     
BL(1s) =4.7 m, p/p(1s) =0.4 ‰ (95% bunch length=18.8 m !)

Variant 2:      bunch length and momentum spread increases after 1 s on the 100 keV plateau  is still too Large !        
BL(1s) =1.1 m, p/p(1s) =0.4 ‰ (95% bunch length=4.3 m !)

IBS & ELENA (100 keV)
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Additional IBS variant beam study

Plots of the beam parameter evolution for the three new variant scenarios

Evolution of the momentum spread and bunch length (left) and transverse emittances (right)

IBS & ELENA (100 keV)
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BL(0)=0.325 mp/p BLvariant 5

p/p BL variant 3
p/p BL

variant 4

H,V variant 4

H,V variant 3

H,V variant 5

IBS rms bunch length and momentum spread growth IBS rms physical transverse emittance growth
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Summary of the IBS variant beam performance

BL(t)/BL(0) p/p(t)/p/p(0) L(t)/L (0) H(t)/H (0) V(t)/V (0)

Growth factor at t= 1 s 0.3 s 1 s 0.3 s 1 s 0.3 s 1s 0.3 s 1 s 0.3 s

Nominal beam 5.7 4.4 5.7 4.4 32.5 19.0 1.31 1.13 0.94 0.91

variant 1 14.5 11.3 14.5 11.3 205.0 125.3 1.25 1.54 1.05 0.92

variant 2 3.3 2.4 3.3 2.4 11.0 5.9 1.07 1.03 0.93 0.96

variant 3 2.19 1.75 2.19 1.75 4.78 3.04 1.65 1.29 1.15 0.98

variant 4 1.59 1.32 1.59 1.32 2.54 1.75 1.81 1.36 1.27 1.05

variant 5 1.30 1.13 1.30 1.13 1.69 1.29 1.92 1.40 1.38 1.12

IBS beam growth factor:  beam parameter at time 𝒕 over the initial one at 𝒕=𝟎 along the 100 keV plateau

The table shows that among the 3 new scenarios investigated the variant 5 is the best because the bunch length and 
momentum spread will suffer only 30% blow-up due to IBS after 1s on the 100 keV plateau (13% blow-up after 0.3s)

Nominal: the bunch length and momentum spread growth after 1 [s] on the 100 keV plateau is Big !

BL(1s) =1.9 m , p/p(1s) =0.4 ‰ (95% bunch length=7.4 m instead of 1.3 m at t=0 !)
Variant 5: the bunch length and momentum spread growth after 1 [s] looks Fine

BL(1s) =0.4 m, p/p(1s) =0.6 ‰ (95% bunch length=1.7m !)

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering



06/11/2015 74

Epilogue

CAS 2015 Intensity Limitations in Particle Beams: M. Martini, Intrabeam Scattering

o Exchange of energies between horizontal & vertical -oscillations & synchrotron oscillations due to IBS was first 
studied by Piwinski (1974) for weak-focussing storage rings ref. [3].

o The derivatives of the amplitude function & dispersion ௫
ᇱ & ௫

ᇱ were implemented into a CERN code by Piwinski
& Sacherer (1977) and used for rise-time calculations in diverse proton storage rings ref. [4].

o Likewise strong-focussing IBS rise-times were afterward derived by Bjorken-Mtingwa (1983) using a quantum 
electrodynamic theory approach, giving a new, broad and smart description of IBS theory ref. [8,11].

o Next IBS theory was extended by Piwinski (1990) to include a linear coupling (skew quads or solenoids) between 
horizontal & vertical -oscillations (mixing the derivatives of vertical ௭

ᇱ -function & dispersion ௭
ᇱ in his theory).

o Between 2005 & 2012 the vertical lattice functions ௭
ᇱ and ௭

ᇱ were incorporated in the Bjorken-Mtingwa theory
by Zimmermann ref. [14]. Mathematica Notebooks were written accordingly by diverse persons.

o Besides, Bane (2002) & Kubo, Mtingwa, Wolski (2005) adapted the Piwinski IBS theory to get growth times at high 
energies comparable to those of Bjorken-Mtingwa: yielding the Completely Integrated Modified Piwinski (CIMP) 
ref. [12,13]. Also, Mtingwa (2008) developed a fast computation estimate of the emittance growth rates for flat 

ା & ି beams at high energy ref. [16], (e.g. aimed at damping rings and synchrotron light sources).
o The IBS growth times with linear coupling was applied to the generalized emittances specified by way of the -

oscillation eigenvectors (e.g. as calculated by MADX). The process was fully implemented into a Mathematica 
Notebook in 2012 ref. [18] and used for ELENA antiproton deceleration studies at 100 keV energy. 
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 Appendices: Feynman rules



ିି

ି ି

ଵ ଵ
ᇱ

ଶ
ᇱ

ଶ

ୱ୮
ୟ

ୡ
ୣ

୲୧୫ୣ

ଵ
ᇱ

ଵ

ଵ
ᇱ

ଵ

ଶ

ଶ
ᇱ
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o Feynman diagrams: symbolic & qualitative description of elementary particle interactions (also show 
graphically the approximations of the S-matrix elements got by perturbative series expansion).

o Particles: are lines with arrows in space-time, time flows from left to right (or bottom to top), space
direction is at right angles to the time direction (antiparticles travel backwards in time).

o Arrows: show the charge flux relative to time, where wavy lines represent virtual particles are bosons
that mediate the interaction between the particles, and which are created (emitted) and annihilated 
soon after (e.g. photons). Virtual particles do not have mass of real particles: ଶ ଶ ଶ ( for ).

o Loops: are closed patterns of virtual particles (in diagrams with high-order terms of the perturbative
S-matrix’s expansion power series).
Fig. caption: Feynman diagram for electron–electron (𝑒ି) scattering; the left-hand side of the 
diagram shows the initial state, the right-hand side the final one. The wavy line linking the 2 vertices 
belongs to neither the initial nor the final state, it illustrates “how the interaction occurs”. The 
intermediate photon 𝛾 is virtual. Dashed lines show the diagram for exchange 𝑒ି𝑒ି scattering.

Case: 2-body scattering in CM frame

Appendix 1: Feynman diagrams for QED

Actually there are 2 Feynman diagrams as the 2 emerging 𝑒ି are undifferentiated, but the 2 incident 𝑒ି stay 
the same. So the 2 diagrams for direct and exchange 𝑒ି𝑒ି scattering mirror the full process (cf. Eq. 2.41-2.43)
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1. Label: draw a line for each inward/outward external particle momenta ଵ,ଶ ଵ,ଶ
ఓ & ଵ,ଶ

ᇱ ᇱ
ଵ,ଶ
ఓ and the 

internal momentum ఓ, with ଵ
ᇱ

ଵ (i.e. momentum transfer carried by an exchanged boson).
2. Vertex: for each one give a factor ୉(   ), their products is ୉

ଶ, ୉ is the coupling constant.
3. Propagator: give to the single internal wavy line a factor ଶ for boson with spin-0 and zero 

mass (mimicked a photon ). acts for the momentum propagation among the 2 electrons in the 
interaction time, via a virtual photon. The global product is ୉

ଶ
୉
ଶ ଶ.

4. 4-momenta conservation: write a -function at each vertex (put a / sign on the ଵ,ଶ, ଵ,ଶ
ᇱ , if the 

arrow points in/out a vertex). The above diagram gives: ସ ସ
ଵ ଵ

ᇱ & ସ ସ
ଶ ଶ

ᇱ .
5. Momenta integration: multiply the -functions together. Fix ଵ

ᇱ
ଵ in the 2nd -function and 

integrate the 1st -function over the internal 4-momentum with ସ ସ. 
6. Cancel: the left over -function is cut off, the result is multiply by , the product is . 

Note: the 4-energy-momentum formula 𝑝ଵ,ଶ
ଶ = 𝐸ଵ,ଶ

ଶ − 𝒑ଵ,ଶ
ଶ ≡ 𝑚ଵ,ଶ

ଶ is valid for real particles but is violated for the transitional states bosons, 
called virtual particles, i.e. 𝑞ଶ = 𝐸ଶ − 𝒒ଶ ≠ 𝑚ଶ (𝑚=0 for physical photons). This is by virtue of the Heisenberg uncertainty principle ∆𝐸∆𝑡≈ℏ, 
as long as the virtual particle of energy 𝐸 last only for a tiny time ∆𝑡 ≲ ℏ/𝐸. So, the calculations of scattering processes are based on real and 
virtual particles to yield true results. 

Case: 2-electrons elastic scattering in CM frame

ref. L,M,O,P,R

Basic rules for a toy model used for the easiest 
diagrams with a single internal momentum (no 

loop which denotes perturbation terms) 

Appendix 2: Feynman rules for spinless particles & bosons 
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Case: 2-electrons elastic scattering in CM frame (ref. L,M,N,O,P,Q,R,S)

o For two-body scattering in the CM frame with all 4 particle masses 
even, the differential cross section can be cast as Eq. A.1 (obtained  
via the Fermi’s Golden rule, ref. [M,O,Q]). େ୑

ଶ

ଶ
ଵ ଶ

ଶ

o Fig. caption: kinematics of electron-electron scattering. The QED process amplitude ଵ- ଶ (not ) 
writes as follows, with ୉

ସ
୉

ଶ ସ in HL units. The 1st & 3rd terms in the brace are the amplitudes 
ଵ & ଶ of the single Feynman diagrams (cf. Eq. 2.41), the 2nd (mid) term gives the coupling strength:

o As ଵ ଶ & ଵ
ᇱ

ଶ
ᇱ for elastic collision of 2 electrons (of mass ), the next expressions hold:

𝑒ି 𝒑ଵ

𝑒ି 𝒑ଶ

𝑒ି 𝒑ଶ
ᇱ

𝑒ି 𝒑ଵ
ᇱ

𝜓തCM ଶ
ସ

ଵ ଶ
ଶ

ଵ ଶ
ᇱ ଶ ଶ ଶ

ଵ ଵ
ᇱ

ଵ ଶ
ᇱ ଶ ଶ

ଵ ଶ
ଶ ଶ

ଵ ଶ

ଵ ଵ
ᇱ ଶ

ଵ ଶ
ᇱ ଶ

ଵ ଶ
ଶ

ଵ ଵ
ᇱ ଶ ଶ ଶ

ଵ ଶ
ᇱ

ଵ ଶ
ᇱ ଶ ଶ

𝐸ଵ=𝐸ଵ
ᇱ=𝐸ଶ=𝐸ଶ

ᇱ ≝𝐸 𝒑ଵ = 𝒑ଵ
ᇱ = 𝒑ଶ = 𝒑ଶ

ᇱ ≝ 𝒑      with 𝒑ଶ=𝐸ଶ−𝑚ଶ    and for ultrarelativistic limit 𝐸 ≫ 𝑚: 𝒑ଶ ≈ 𝐸ଶ

𝑝ଵȉ𝑝ଶ = 𝑝ଵ
ᇱ ȉ𝑝ଶ

ᇱ = 𝐸ଶ+𝒑ଶ≈2𝐸ଶ 𝑝ଵȉ𝑝ଵ,ଶ
ᇱ =𝐸ଶ∓ 𝒑ଶcos 𝜓ത≈ 𝐸ଶ 1 ∓ cos 𝜓ത 𝑝ଵ − 𝑝ଵ,ଶ

ᇱ ଶ
= − 2𝒑ଶ 1∓ cos 𝜓ത ≈ − 4𝐸ଶ൝

ୱ୧୬మ టഥ /ଶ

ୡ୭ୱమ టഥ /ଶ

Appendix 3: Feynman rules for QED



𝑒ି 𝑝ଵ

𝛾 𝑞=𝑝ଵ
ᇱ −𝑝ଵ

𝑒ି 𝑝ଶ

𝑒ି 𝑝ଵ
ᇱ

𝑒ି 𝑝ଶ
ᇱ

ℳଵ
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ℳ ଶ=
2𝑒ସ

𝒑ସ
ቊ

𝐸ଶ + 𝒑ଶ ଶ + 𝐸ଶ + 𝒑ଶcos 𝜓ത ଶ − 2𝑚ଶ𝒑ଶ 1− cos 𝜓ത

1− cos 𝜓ത ଶ
+ 2

𝐸ଶ + 𝒑ଶ ଶ − 2𝑚ଶ 𝐸ଶ + 𝒑ଶ

sinଶ𝜓ത
  

+
𝐸ଶ + 𝒑ଶ ଶ + 𝐸ଶ − 𝒑ଶcos 𝜓ത ଶ − 2𝑚ଶ𝒑ଶ 1 + 𝜓ത

1 + cos 𝜓ത ଶ
ቋ

Ultra relativistic limit: ℳ୙ୖ
ଶ ≈ 4𝑒ସ

1

cosଶ 𝜓ത/2
+

1

sinଶ 𝜓ത/2
  + 1

o The 4-momenta scalar products and square differences Eq. A.2 are changed with those of Eq. A.3 giving:

𝑑𝜎ത

𝑑Ωഥ
େ୑ ୙ୖ

=
ℳ୙ୖ

ଶ

64𝜋ଶ 2𝐸 ଶ
=

𝑒ସ

64𝜋ଶ𝐸ଶ

1

cosଶ 𝜓ത/2
+

1

sinଶ 𝜓ത/2
  + 1

≡
𝑒ସ

64𝜋ଶ𝐸ଶ

3 + cosଶ𝜓ത ଶ

sinସ𝜓ത

𝑒ି 𝑝ଵ

𝛾 𝑞=𝑝ଶ
ᇱ −𝑝ଵ

𝑒ି 𝑝ଶ

𝑒ି 𝑝ଶ
ᇱ

𝑒ି 𝑝ଵ
ᇱ

ℳଶ−

o The differential cross section for unpolarised initial states & ultrarelativistic limit follows placing 
Eq. A.4 ୙ୖ

ଶ in Eq. A.2 yielding the M ller scattering formula for ୙ୖ:

Compare the QED Eq. A.5 with the toy model Eq. 2.43

ℳ ଶ=
𝑒ସ

𝒑ସ sinସ 𝜓ത

𝑑𝜎ത

𝑑Ωഥ
=

ℳ ଶ

64𝜋ଶ𝐸ଶ

𝐸ଶ≈𝒑ଶ

=
  

𝑒ସ

64𝜋ଶ𝐸ଶ

1

sinସ 𝜓ത

ℳଶ is due to the identity 
of the two scattered 𝑒ି

Appendix 3: Feynman rules for QED
Case: 2-electrons elastic scattering in CM frame (ref. L,M,N,O,P,Q,R,S)
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