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The Gauss law
Collective instabilities in accelerators mostly come from an intense charged-

particle beam electromagnetically interacting with its vacuum chamber envi-
ronment. As the beam interacts with its environment, it generates an electro-
magnetic field called the wakefield, and the wakefield acts back on the beam,
disturbing its motion, and if the perturbation is strong enough, the beam be-
comes unstable.

To discuss the wakefields, we must start with its ultimate origin, the Gauss
law, which states that each charged particle always is attached with it a definite
amount of electric field lines. We can distort these field lines but we can never
cut them loose from the charge under any circumstances. Furthermore, the
amount of field lines attached to each charge can never be changed, neither
increased nor decreased.

Gauss law is an amazing law. Mathematically, it reads

∇ · ~E = 4πρ

Physically it reads: Electric field lines are absolutely attached to the charges.
Integral form of the Gauss law:∮

S

~E · ~dS = 4πQ

where Q is the total charge inside the volume enclosed by the surface S. It is
amazing that this law holds no matter how the charges are moving – nonrel-
ativistic, relativistic, or under acceleration, or whether they are embedded in
any type of material. It also does not matter how close the charges might be
immediately next to the surface S. The field integral will make a sudden change
when a charge crosses the surface even infinitesimally.

A moving charge
If the charge is stationary and if it is in a free space, its field lines are as

shown in fig.(a) below. For a moving charge, we see fig.(b). When v approaches
c, we have fig.(c), when all the electric fields stay in an infinitely thin sheet as
result of theory of relativity. For most accelerators, case (c) is closest to the
case under consideration.

1



When the particle is moving, it also generates a magnetic field. This mag-
netic field also contracts to a thin pancake when v = c. Direction of the electric
field is radial; direction of the magnetic field is azimuthal (right-hand rule).

Er =
2q

r
δ(z − ct)

Bθ =
2q

r
δ(z − ct)

One observes that
Bθ = Er when v = c

However, when v = 0, there is no magnetic field. When v increases, Bθ increases,
but still weaker than Er. Only when v = c, we have Bθ = Er. The fact that
Bθ = Er when v = c has important consequences, as explained next.

The vacuum chamber
We now add the vacuum chamber. Consider a very smooth vacuum chamber

beam pipe.1 Consider the smooth pipe wall to be perfectly conducting.
The ultrarelativistic beam going down the axis of the pipe, together with its

electromagnetic field and the vacuum chamber looks like this:

1How smooth does the chamber have to be? A 1-mm discontinuity on the pipe is considered
a potential problem. In some circumstances, a 1-µm roughness on the wall surface can have
a significant effect
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The electromagnetic fields are perfectly and cleanly terminated on the pipe
wall. No fields penetrate into the wall because it is perfect conductor. The
image charge on the wall is exactly equal and opposite to that of the beam, and
it moves also with v = c (except that this is phase velocity). The entire field
pattern moves with the beam. There is no wakefield.

Is this beam stable? Consider a particular particle in the beam, the blue
“test particle” e in the above figure. This test particle will see an electric force
e ~E due to the electric field carried by the beam. This force is easily seen to push
e towards the vacuum chamber wall because the test charge e has the same sign
as the charges of the beam.

But there is also a magnetic force. The magnetic field is in the azimuthal
direction (right hand rule). The magnetic force is (e/c)~v × ~B. It is easily seen
that this magnetic force is pointing towards the pipe axis.

We mentioned that when v = c, we have Er = Bθ. In the ultrarelativistic
limit, therefore, the electric and the magnetic forces exactly cancel. The parti-
cles in the ultraralativistic beam see electric force and magnetic force, but they
do not see a net force. The collective electromagnetic fields carried by the beam
do not influence particle motion. There is no collective instabilities.

This cancellation between the electric and magnetic forces due to the beam’s
self fields is very fortunate and very important. Without this cancellation, no
modern accelerators would have worked.

We conclude that there are three possible ways for a collective instability to
occur:

1. the beam is not relativistic enough

2. the vacuum chamber is too resistive

3. the vacuum chamber is not smooth enough

If all these conditions hold, the beam is stable as just illustrated. If any one
of these conditions occurs, the exact cancellation of the electric and magnetic
forces is disrupted, and the beam can encounter an instability.
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We construct accelerators to be as close to the cancelation condition as
possible. The electric and magnetic forces generally cancel to high accuracy by
design. However, the cancellation is never perfect. The vacuum chambers made
of copper or aluminum are not perfectly conducting. There will be many small
necessary discontinuities along the vacuum chamber pipe, such as beam position
monitors, vacuum pumping ports, etc. There are also big discontinuities known
as rf cavities. As to the condition of v = c, it is never satisfied completely.
So the cancellation of electric and magnetic forces are not perfect. And that
residual non-cancelation leads to collective instabilities.

Wakefields due to discontinuities
When a beam traverses a discontinuity, an electromagnetic wakefield is gen-

erated. An intense beam will generate a strong wakefield. When the wakefield
becomes too strong, the beam becomes unstable.

A wakefield is generated because the beam’s image charges now have to move
around a corner. Wakefields are the radiation fields of the image charges when
their apparent trajectories are bent.2

Once accepting that wakefields are a result of radiation, then just like the
case of any other radiation, it is natural to ask about the frequency content of
these wakefields. The answer is that it depends on the details of the beam and
the detailed geometry of the discontinuity. In general, it covers a wide range,
with wavelengths covering from microns to meters. To describe the frequency
content of the wakefields, we introduce a quantity called impedance. Impedance
is essentially the Fourier transform of wakefield.

Wakefield due to resistive wall
To discuss the resistive wall wakefield, let us first review the structure of

electromagnetism by the following chart,

2These are apparent trajectories. Image charges do not physically move along the wall
surface.
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Definition of metal: ρ = 0, ~J = σ ~E
Definition of insulator: ~J = ~0, ρ = ε∇ · ~E

We then note a clear symmetry between the electric family and the magnetic
family in the above chart. This symmetry, however, holds only in vacuum. It
is lost when we consider a metal or an insulator. Metals break the symmetry
by making a preference to the magnetic family ( ~B, ~J), while insulators make a

preference in favor of the electric family ( ~E, ρ). No charges are allowed inside a
metal while currents are allowed to penetrate. Inside a metal, therefore, there
is more magnetic field than electric field. On the other hand, currents are not
allowed inside an insulator, and there is more electric field than magnetic field.

In case of resistive wall, the wakefield is generated by the following physical
process:

1. When the beam’s image charges flow on the vacuum chamber wall, the
electric field carried by the point charge will be terminated immediately
by the image charges on the wall surface, while the magnetic field car-
ried by the point charge is mostly cancelled by the image current on the
wall surface, but this cancellation is not exact because the current has
penetrated into the wall by a skin depth.

2. As the image current slowly re-surfaces after the point charge has past
by, this re-surfacing image current drives new magnetic fields. These new
magnetic fields occur after the point charge has left.

3. The resurfacing current and magnetic field will execute some transient
behavior, and appear to oscillate a few times. After the initial transient,
the resurfacing current and magnetic field decays away but at a very slow
rate.

4. The re-surfacing changing magnetic field now drives an electric field by
Maxwell equation. This yields some electric field inside the resistive wall
after all, but this electric field is very weak.

In the case of a resistive wall pipe with circular cross section, an ultrarela-
tivistic point charge q going down its axis will deposit a wakefield. The following
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figure shows the electric component of the wakefield inside the vacuum chamber
(outside of the wall material). Note that there is a matching magnetic field pat-
tern following the leading point charge just like the electric field pattern does,
and that both the electric and magnetic field patterns follow the leading point
charge as a frozen pattern, indicating a phase velocity of c, but it is important
to know that the Poynting vector does not indicate the field energy flows in the
z-direction with the speed of light. The field energy does not propagate down
the pipe. New field energy is deposited by the point charge as it moves down
the pipe, while old energy gets transformed to heat by the resistivity on the
pipe wall.

[The field line density is increased by a
factor of 40 to the left of the dotted line.]

where χ is a small dimensionless parameter defined by

χ =
c

4πσb

with b the vacuum pipe radiua, σ the conductivity of the pipe material. For ex-
ample, if b = 5 cm and the wall is made of aluminum, we have
χ = 1.5× 10−9.

As seen by the above figure, there is no wakefield ahead of the point charge,
as causality would dictate. The wakefield pattern following the point charge
is measured in distance z in units of (2χ)1/3b. Since χ � 1, the resistive wall
wakefield decays very quickly following the passage of the point charge.

On the other hand, after the quick initial decay, at long distances, the re-
sistive wall wake starts to decay very slowly. This means the resistive wall
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wakefield has a long tail. An intense beam bunch, for example, can leave a
wakefield that lasts long enough to affect its motion when the bunch returns
after making one complete circulation around a circular accelerator.

As will be shown later, the fact that the resistive wall generates both short-
range and long-range wakefields is reflected by the fact that its corresponding
impedance has an exceptionally wide spectrum, covering from very short to very
long wavelengths.

What happens to particle motion when there are wakefields?
Consider a beam with distribution ψ in phase space (~q, ~p). The dynamics of

the evolution of ψ is described by the Vlasov equation (see later),

∂ψ

∂t
+

~p

m
· ∂ψ
∂~q

+ ~f · ∂ψ
∂~p

= 0

where

~f = e

(
~E +

~v

c
× ~B

)
~E = ~Eext + ~Ewake

~B = ~Bext + ~Bwake

The wakefields are determined by the Maxwell equations where the source
terms ρ and ~j are determined by the beam distribution ψ,

ρ =

∫
d3p ψ, ~j =

∫
d3p ~vψ

We therefore have the situation when the beam distribution is described
by the Vlasov equation whose force terms are given by the electromagnetic
fields, while the electromagnetic fields are described by the Maxwell equations
whose source terms are given by the beam distribution. It is clear that a full
treatment of the beam-wakefield system requires solving a coupled “Vlasov-
Maxwell equation”.

Beam-structure interaction is a difficult problem in general. Its solution
often involves numerical solution using particle-in-cell codes with demanding
boundary conditions. Applying PIC codes is reasonable for small devices such
as electron guns and klystrons, but becomes impractical for large accelerators.

So, can we simplify the problem for our purpose while maintaining suffi-
ciently accurate results? The answer is yes. For high energy accelerators, this
complication can be avoided due to two simplifying approximations. These
simplifications lead to the concepts of “wake function” and “impedance”.

Rigid beam approximation The first simplification is the rigid beam ap-
proximation. At high energies, beam motion is little affected during the passage
of a structure. This means one can calculate the wakefields assuming the beam
shape is rigid and its motion is ultrarelativistic with v = c. In fact, we only need
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to calculate the wakefields generated by a “rigid cosmθ ring beam”. Wakefield
of a general beam can be obtained by superposition.

a

ρ∝ cosmθ

ν=c

6–97

8322A19

Impulse approximation The second simplification is the impulse approxi-
mation. We don’t need to know ~E or ~B separately. We need only to know ~f .
For high energies, we don’t even need the instantaneous ~f . We only need the
integrated impulse ∆~p =

∫∞
−∞ dt ~f .

The following figure shows the configuration of a ring beam and a test charge
that follows it. The ring beam generates a wakefield. The test charge receives
a wake-induced impulse in the impulse approximation.

D

e ν=c

6–97

8322A20

ν=c

Panofsky-Wenzel Theorem
The instantaneous wakefields are complicated, but fortunately, ∆~p is much

simpler and, at high energies, it is ∆~p that we need. The Panofsky-Wenzel theo-
rem applies to ∆~p. It is the basis of all beam instability analyses in high energy
accelerators. In comparison, the PIC codes aim to calculate the instantaneous
wakefields in all their details so in this regard is inefficient in their efforts.
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Maxwell equations read

∇ · ~E = 4πρ

∇× ~B − 1

c

∂ ~E

∂t
= 4πβρẑ

∇ · ~B = 0

∇× ~E +
1

c

∂ ~B

∂t
= 0

where we have made the important rigid beam approximation ~j = ρv̂ and ~v =
βcẑ.

The Lorentz force as seen by the rigid test charge e is given by

~f = e( ~E + βẑ × ~B)

Both the beam and the test charge move with ~v = βcẑ. The impulse is

∆~p(x, y,D) =

∫ ∞
−∞

dt ~f(x, y,D + βct, t)

Several important conditions can be found using the above Maxwell equa-
tions. One of them is the P-W theorem:

∇×∆~p = ~0

One can decompose the P-W theorem into a component parallel to ẑ and a
component perpendicular to ẑ to obtain

∇ · (ẑ ×∆~p) = 0 (1)

∂

∂D
∆~p⊥ = ∇⊥∆pz (2)

The upper equation says something about the transverse components of ∆~p.
The lower equation says that the transverse gradient of the longitudinal wake
impulse is equal to the longitudinal gradient of the transverse wake impulse.

Another important condition valid when β = 1 is

∇⊥ ·∆~p⊥ = 0 (3)

It is clear that the Panofky-Wenzel theorem imposes strong constraints on the
impulse received by a test charge from a relativistic beam.

Cylindrically symmetric pipe
In cylindrical coordinates, Eq.(1) gives

∇ · [ẑ × (∆pr r̂ + ∆pθ θ̂)] = 0

=⇒ ∂

∂r
(r∆pθ) =

∂

∂θ
∆pr
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Eq.(2) gives

∂

∂D
(∆pr r̂ + ∆pθ θ̂) =

(
r̂
∂

∂r
+
θ̂

r

∂

∂θ

)
∆pz

=⇒
{

∂
∂D

∆pr = ∂
∂r

∆pz
∂
∂D

∆pθ = 1
r
∂
∂θ

∆pz

Eq.(3) gives

1

r

∂

∂r
(r∆pr) +

1

r

∂

∂θ
∆pθ = 0

=⇒ ∂

∂r
(r∆pr) = − ∂

∂θ
∆pθ (β = 1)

These results are surprisingly simple. They do not contain any beam source
terms. Exact shape or distribution of the beam does not matter. Neither
do they depend on the boundary conditions. The boundary can be perfectly
conducting or resistive metal, or it can be dielectric. It does not have to be a
sharply defined surface; it can for example be a gradually fading plasma surface.
The only inputs needed are the Maxwell equations and the rigid-beam and the
impulse approximations.

We are now ready to consider a cosmθ ring beam with ~v = cẑ as we set out
to do by solving the three equations above. The solution can be expressed in
terms of a function Wm(D) such that

c∆~p⊥ = −eImWm(D)mrm−1(r̂ cosmθ − θ̂ sinmθ)

c∆pz = −eImW ′m(D)rm cosmθ (4)

where Im is the m-th multipole moment of the ring beam. Wm(D) is the
transverse wake function and W ′m(D) the longitudinal wake function. The lon-
gitudinal wake function is simply derivative of the transverse wake function.

The solution (4) contains explicit dependences of r and θ. The fact that we
can go so far without any specific details is surprising and shows the power of
this line of analysis. The dependence on D is through Wm(D) which can be
obtained only if boundary conditions are invoked.

When the beam pipe is cylindrically symmetric, each m-multipole compo-
nent of the beam excites a wake pattern according to (4). Different m’s do not
mix.

Decomposing wakefields into modes
Armed with the Panofsky-Wenzel theorem, to analyze the instability prob-

lem, we proceed as follows. We first consider the beam to be a δ-function in z.
If the beam has a finite length, the result can be obtained by superposition.

We next decompose the transverse distribution into “modes” and consider
a single transverse mode m. A general transverse distribution can be obtained
by superposition with a summation over m.
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So the problem is now reduced to finding the impulse integrated by a test
charge that is trailing behind a beam slice with a transverse m-th moment Im
moving along the pipe axis. In this configuration, as shown below, Im is the
driving beam, e is the test charge, z is the longitudinal distance that e is trailing
behind Im, and (r, θ) is the transverse displacement of the test charge relative
to the pipe axis.

For a cylindrical pipe, the m-th multipole wakefield is driven when and only
when the driving beam has an m-th moment.

Distribution
Moments of Longitudinal Transverse

m Beam Wake Impulse Wake Impulse
0 q −eq W ′0(z) 0

1

{
q〈x〉
q〈y〉

−eq〈x〉xW ′1(z)

−eq〈y〉yW ′1(z)

−eq〈x〉W1(z)x̂

−eq〈y〉W1(z)ŷ

2

{
q〈x2−y2〉
q〈2xy〉

−eq〈x2−y2〉(x2−y2)W ′2(z)

−eq〈2xy〉2xy W ′2(z)

−2eq〈x2−y2〉W2(z)(xx̂−yŷ)

−2eq〈2xy〉W2(z)(yx̂+ xŷ)

3

q〈x
3−3xy2〉

q〈3x2y−y3〉

−eq〈x3−3xy2〉
×(x3−3xy2)W ′3(z)

−eq〈3x2y−y3〉
×(3x2y−y3)W ′3(z)

−3eq〈x3−3xy2〉W3(z)

×[(x2−y2)x̂−2xyŷ]

−3eq〈3x2y−y3〉W3(z)

×[2xyx̂+ (x2−y2)ŷ]

In most applications, we care mostly about the m = 0 monopole mode
when discussing longitudinal collective instabilities, and mostly about m = 1
when discussing transverse collective instabilities. Therefore, we mostly ask for
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W0(z) and W1(z). The reason W0(z) is not relevant for transverse instabilities
is because the transverse impulse vanishes when m = 0.

The wakefield impulses have simple patterns — the instantaneous wakefields
do not share this simplicity. The m = 0 and m = 1 patterns are illustrated
below:

Impedances
We mentioned that the wakefield wavelengths cover a wide range from ∼1

µm to ∼1 m. What characterize the frequency content of the wakefields are the
impedances, the Fourier transforms of the wake functions,

Z‖m(ω) =

∞∫
−∞

dz

c
e−iωz/c W ′m(z)

Z⊥m(ω) = i

∞∫
−∞

dz

c
e−iωz/c Wm(z)

Since we have already discussed the wake functions, we consider this the defini-
tion of impedances.

Instead of wake functions, an accelerator designer therefore could alterna-
tively ask about the impedance of the accelerator. The impedance is the quan-
tity most directly related to the maximum beam current allowed by the accel-
erator. Inverting the Fourier transforms,

W ′m(z) =
1

2π

∞∫
−∞

dω eiωz/c Z‖m(ω)

Wm(z) =
−i
2π

∞∫
−∞

dω eiωz/c Z⊥m(ω)

The Panofsky-Wenzel theorem, which relates the longitudinal wake func-
tion to the derivative of the transverse wake function, also gives a relationship
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between the longitudinal and transverse impedances for a given m,

Z‖m(ω) =
ω

c
Z⊥m(ω)

Some analytical examples of impedances and wake functions
We mentioned earlier that there are three ways when wakefields are gener-

ated.

1. the beam is not relativistic

2. the vacuum chamber is resistive

3. the vacuum chamber is not smooth

Three cases, each representing one of these three ways, that permit analytical
expressions are given below.

Direct space charge This wakefield and impedance come about when the
beam is not sufficiently relativistic. The following figure shows the space charge
wakefields in the x-y plane driven by a ring-shaped, infinitely thin, cosmθ beam.

The z-dependence is a δ-function. With a beam of radius a in a perfectly
conducting round pipe of radius b and length L, we have
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Impedances Wake functions

Z
‖
0 = i

Z0Lω

4πcγ2

(
1 + 2 ln

b

a

)
W ′0 =

Z0cL

4πγ2

(
1 + 2 ln

b

a

)
δ′(z)

Z⊥m6=0 = i
Z0L

2πγ2m

(
1

a2m
− 1

b2m

)
Wm 6=0 =

Z0cL

2πγ2m

(
1

a2m
− 1

b2m

)
δ(z)

where Z0 =
√
µ0/ε0 ≈ 377 Ω.3 Due to the factor 1/γ2, space charge effects are

most significant for low-to-medium energy proton or heavy ion accelerators.
The space charge impedance is purely imaginary, and is ∝ iω as if it is a

pure inductance. However, its sign is as if it is a capacitance. By convention,
we call it “capacitive”.

Resistive wall Another case solvable analytically is for a round resistive pipe
with radius b, conductivity σc, and length L. Defining the skin depth (change
0.066 to 0.086 for aluminum, and to 0.43 for stainless steel)

δskin =

√
2c

|ω|Z0σc
, δskin [mm] =

0.066√
f [MHz]

for copper

one finds

Impedances Wake functions

Z
‖
m =

ω

c
Z⊥m Wm = − c

πbm+1(1 + δm0)

√
Z0

πσc

L

|z|1/2

Z
‖
m =

1− sgn(ω)i

1 + δ0m

L

πσcδskinb2m+1
W ′m = − c

2πbm+1(1 + δm0)

√
Z0

πσc

L

|z|3/2

The impedance is proportional to (1−i), i.e. it is half resistive and half inductive.
The |z|−1/2 dependence of Wm(z) indicates that the resistive wall wakefield

(especially its transverse component) decays slowly and typically lasts long after
the beam passage, sometimes long enough for the beam to see its own wakefiled
at its next revolution.

Slowly varying wall boundaries The third way to generate impedances
is by discontinuities. Consider a case when the vacuum chamber (perfectly
conducting) wall varies along the accelerator slowly, a perturbation technique
can be applied. Specify the wall variation by h(z) (cylindrically symmetric
bump). At low frequencies k = ω/c < 1/(bump length or width), the impedance
is purely inductive — opposite in sign to space charge impedance,

Z
‖
0 = −2ikZ0

b

∫ ∞
0

κ|h̃(κ)|2dκ

3Z0 is the impedance of the vacuum. Yes, vacuum has impedance. An oscillating electro-
magnetic source will readily radiate into the vacuum. In fact, vacuum impedance is very large.
A well designed accelerator will have impedance only a fraction of the vacuum impedance.
Accelerators are poor radiators by design.
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where

h̃(k) =
1

2π

∫ ∞
−∞

h(z)e−ikzdz

When the boundary varies rapidly, this formula breaks down. Numerical calcu-
lation has to be applied.

Homework Find the impedances of the following vacuum chamber geometries:

Beam energy spread in a linac
Consider a beam bunch traveling down the accelerator along the axis of the

vacuum chamber pipe. The m = 0 wakefield excited by the beam produces a
longitudinal force on particles in the beam. The main effect of this longitudinal
force is a retarding voltage, causing energy changes of individual particles. As
a result, there is a net energy loss of the beam to the wakefields. Furthermore,
since not all particles in the bunch lose the same amount of energy, the wakefield
also causes the beam to acquire an energy spread.

Consider first a one-particle model in which the beam bunch is a macropar-
ticle of charge Ne. Traveling down the linac, it experiences the self-generated
retarding longitudinal field and loses energy

∆E = −1

2
Ne2W ′0(0−)

where the factor 1
2 is due to the fundamental thoerem of beam loading.

Take the SLAC linac for example: W ′0(0−) = 7 cm−1 ×L0/L, where L0 = 3
km and L = 3.5 cm. We find ∆E = 2.2 GeV for N = 5× 1010.

This estimate can be improved by a two-particle model. The beam bunch is
represented by two macroparticles, one leading and another trailing at a distance
|z| behind. The parasitic loss per particle in the leading macroparticle is 1.1
GeV due to its self-field. The trailing macroparticle loses, in addition to the 1.1
GeV due to self-field,

∆E = −1

2
Ne2W ′0(z)

due to the wakefield left behind by the leading macroparticle.
Take z = −σz = −1 mm, N = 5×1010, and W ′0(−1 mm) = 4.5 cm−1×L0/L,

each particle in the trailing macroparticle loses an additional 1.4 GeV. The net
loss of a trailing particle is 2.5 GeV.
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The one-particle model estimates a parasitic loss per particle of 2.2 GeV.
The two-particle model estimates an average loss of (1.1 + 2.5)/2 = 1.8 GeV.
The two-particle model has introduced an energy split of 1.4 GeV, or a 2.8%
energy spread if the beam energy at the end of the linac is 50 GeV.

For linear colliders, this energy spread makes it difficult to focus the beam to
a small spot at the collision point in a final focus system, and is to be avoided.
Most of this spread can be removed by properly phasing the accelerating rf
voltage relative to the beam.

One concern for a high-intensity linear collider can be described as follows.
The energy spread at the end of the linac scales as

∆E

E
≈

1
2Ne

2W ′0
GL0

≈
1
2Ne

2

Gb2

where G is the acceleration gradient, and W ′0 ≈ L0/b
2 is the longitudinal wake

function, where b is the vacuum chamber radius characterizing the size of the
accelerating cavities. On the other hand, the efficiency of energy extraction
by the beam from the field energy U stored in the accelerating cavities [U ≈
1

8π (G/e)2 × πb2L0] is given by

extraction efficiency ≈ NE

U
≈ 8Ne2

Gb2

which is equal to 16 times the energy spread. In other words, to improve the
energy spread of the beam at the end of the linac necessarily requires sacrific-
ing the energy extraction efficiency. One way to ameliorate this problem is to
compensate ∆E/E by phasing the rf voltage. Another way is to send a train of
M bunches per filling of the rf cavities. This will increase the energy extraction
efficiency by a factor of M , although at the cost of having to deal with the
multibunch interactions due to the long range wakefields.

We now depart from the simplified models and consider a bunch with a
general longitudinal distribution ρ(z). The energy change for a test charge e at
longitudinal position z can be written as eV (z), where

V (z) = −
∞∫
z

dz′ρ(z′)W ′0(z − z′)

or equivalently

V (z) = − 1

2π

∞∫
−∞

dωeiωz/cZ
‖
0 (ω)ρ̃(ω)

A negative V (z) means the test charge loses energy from the wakefield. An
additional integration of V (z) over the bunch then gives the total parasitic loss,

∆E =

∞∫
−∞

ρ(z)V (z)dz
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For a bunch with Gaussian longitudinal distribution and uniform disk trans-
verse distribution, for example, the energy spread due to space charge effect
is

V (z)

L
=

√
2

π

q

γ2σ2
z

(
ln
b

a
+

1

2

)
f

(
z

σz

)
f(u) = ue−u

2/2

Generally, particles in the front of the bunch (z > 0) lose energy due to wake
fields, while particles in the back of the bunch (z < 0) may gain or lose energy,
depending on the length of the bunch. This is not true for the special case of
the space charge effect, for which particles in the front of the bunch gain energy,
and particles in the back of the bunch lose energy. For the space charge effect,
the energy gained by the bunch head is necessarily given up by the bunch tail
so that the net energy of the bunch is unchanged.

Consider a numerical example of a 50 MeV proton transport line. If we take
q = 1010e, σz = 3 cm, a = 2 cm, and b = 5 cm, we obtain a longitudinal space
charge force of ±6 V/m for particles located at z = ±σz. The net energy change
of these particles after traveling 100 m of this transport line is eV/β = ±2 keV.
The space charge induced beam energy spread is therefore ±4× 10−5.

For a resistive wall, we have

V (z)

L
=

q

4bσ
3/2
z

√
c

2πσ
f

(
z

σz

)
f(u) = −|u|3/2e−u

2/4
[
(I−1/4 − I3/4) sgn(u)− I1/4 + I−3/4

]
with the Bessel functions I±1/4 and I±3/4 evaluated at u2/4. Continuing the
above numerical example, assuming an aluminum pipe, a particle located at
0.5σz ahead of bunch center loses an energy of 0.1 eV after traveling 100 m, and
a particle located at 1.8σz behind the bunch center gains 0.04 eV.

Beam breakup in a linac
In the previous section, the beam was centered in the vacuum chamber pipe.

There were no transverse wake forces (m = 0). In case the beam is executing
a betatron oscillation, an m = 1 dipole wakefield is excited by the bunch head,
which causes transverse deflection of the bunch tail. For a high-intensity beam,
this leads to a transverse breakup of the beam. The first observation of beam
breakup was made on the SLAC linac.

To proceed with a simplified macroparticle model, we first note that a one-
particle model is not useful because a point charge does not exert a transverse
wake force on itself. In the two-particle model, the leading macroparticle, un-
perturbed by its own transverse wakefield, executes a free betatron oscillation

y1(s) = ŷ cos kβs
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The trailing macroparticle, at a distance |z| behind, sees a deflecting wakefield
left behind by its leading partner,

y′′2 + k2
βy2 = −Ne

2W1(z)

2EL
y1

= −Nr0W1(z)

2γL
ŷ cos kβs

where W1(z) is the transverse wake function per cavity period L. We have
ignored acceleration of the beam energy. For the SLAC linac, kβ ≈ 0.06 m−1

and kβL ≈ 0.002.
The solution is

y2(s) = ŷ
[
cos kβs−

Nr0W1(z)

4kβγL
s sin kβs

]
The first term describes the free oscillation and the second term is the resonant
response to the driving wake force. The amplitude of the second term grows
linearly with s. The mechanism of beam breakup is that particles in the tail
of the beam are driven exactly on resonance by the oscillating wake left by the
head of the beam.

At the end of the linac, the oscillation amplitude of the bunch tail relative
to the bunch head is characterized by the dimensionless growth parameter

Υ = −Nr0W1(z)L0

4kβγL

where L0 is the total linac length.
For a beam bunch with realistic distribution, the bunch is distorted into a

banana shape. The motion of the bunch head is cos kβs, while the deviation of
the bunch tail relative to the bunch head is s sin kβs. When the bunch head is
at a maximum displacement, the tail lines up with the bunch head, but when
the bunch head displacement is zero, the tail swing is maximum. As the beam
propagates down the linac, the swing amplitude of the flapping tail increases
with s until the tail breaks up and particles are lost. Note that the sign of the
tail swing shown is not arbitrary, because Υ > 0.

Figure below shows four transverse beam profiles observed at the end of the
SLAC linac with N = 2 × 1010. The leftmost profile for a carefully steered
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beam. When the beam was injected off center by 0.2, 0.5, and 1 mm, the beam
profiles are as shown successively to the right. The beam sizes σx and σy were
∼120 µm.

(Courtesy John Seeman)

So far we have ignored beam acceleration, which has an important stabilizing
effect because, as its energy increases, the beam becomes more rigid and less
vulnerable to the wake fields. Repeating a similar analysis but taking into
account of acceleration yields the growth parameter

Υ = −Nr0W1(z)L0

4kβγfL
ln
γf
γi

which is basically simply replacing the factor L0/γ by its integral counterpart∫ L0

0
ds/γ(s). Due to acceleration, the tail amplitude thus grows logarithmically

rather than linearly with s, and the growth parameter is much reduced. If the
beam is accelerated in the SLAC linac from 1 to 50 GeV, the factor Υ becomes
14, instead of 180, which was calculated earlier for a beam coasting at 1 GeV.

The beam breakup instability described above is quite severe even with ac-
celeration. To control it, the beam has to be tightly focused, rapidly accelerated,
and carefully injected, and its trajectory carefully steered down the linac. Inter-
estingly, the contribution from trajectory missteering can in principle be largely
compensated by an intentional misinjection.

It turns out, however, that there is another interesting and effective method
to ameliorate the situation. This method, known as the BNS damping after
Balakin, Novokhatsky, and Smirnov, is described next.

Consider first the case without acceleration, where the leading macroparticle
executes a free betatron oscillation. The idea of BNS damping requires intro-
ducing a slightly stronger betatron focusing of the bunch tail than the bunch
head. The equation of motion of the tail particles can be written as

y′′2 + (kβ + ∆kβ)2y2 = −Nr0W1(z)

2γL
ŷ cos kβs
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The solution, assuming |∆kβ/kβ | � 1, is

y2(s) = ŷ cos(kβ + ∆kβ)s+
Nr0W1(z)

4kβ∆kβγL
ŷ
[
cos(kβs+ ∆kβs)− cos kβs

]
Compared with the result without ∆kβ , one observes that, by introducing a

slightly different focusing strength for the bunch tail, the beam breakup mecha-
nism of the bunch head resonantly driving the bunch tail is removed. A further
inspection shows that there exists a magical condition for the bunch tail to
follow the bunch head exactly for all s, namely

Nr0W1(z)

4kβ∆kβγL
= −1

or equivalently,
∆kβ
kβ

= −Nr0W1(z)

4k2
βγL

=
Υ

kβL0
(5)

where Υ is defined before, and kβL0 is the total betatron phase advance of the
linac. For short bunches, Υ and ∆kβ are positive; the betatron focusing required
to fulfill the BNS condition is therefore stronger at the bunch tail than at the
bunch head.

Under the BNS condition, y2(s) = y1(s) = ŷ cos kβs, and the beam no longer
breaks up.4 Physically, this happens because the additional external focusing
force introduced for the bunch tail has compensated for the defocusing dipole
deflection force due to the wakefield left behind by the bunch head. Note that
the BNS focusing has to be adjusted according to the beam intensity.

There are different ways to provide the BNS focusing. One is to introduce a
radio frequency quadrupole whose strength changes as the bunch passes by so
that the head and tail of the bunch see different quadrupole strengths. Another
is to choose the location of the bunch relative to the acceleration rf voltage in
such a way that the bunch tail acquires a lower energy than the bunch head.
The energy spread across the bunch then causes a spread in betatron focusing
according to

∆kβ
kβ

= ξ
∆E

E

where ξ is the chromaticity determined by the linac design. For a FODO lattice
design, for example,

ξ = − 2

µ
tan

µ

2

where µ is the betatron phase advance per FODO cell. By properly choosing
the phase of the rf voltage relative to the beam bunch, the betatron focusing
required by the BNS condition can be obtained, provided the required ∆kβ/kβ
is not excessive.

4The mechanism of BNS damping is not to be confused with that of Landau damping,
to be discussed later. They have little in common other than the fact that both involve a
frequency spread in the bunch population.
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In case of an accelerated beam, the BNS condition is still given by Eq.(5),
except that the parameter Υ is now that given by the case with acceleration.
Take the SLAC linac, for example, and assume µ = 90o; then the energy devi-
ation of the bunch tail from the bunch head required by the BNS condition is
about −5.5%. BNS damping has been routinely employed to control the beam
breakup instability in the SLAC linac operations.

Parasitic heating
When a beam bunch of charge q and line density λ(t) traverses an impedance

Z
‖
0 (ω), it loses energy to the impedance. This parasitic energy loss (or HOM

heating, HOM means “higher order mode”) is

∆E = −κ‖q2

where κ‖ is the loss factor, in units of V/pC,

κ‖ =
1

π

∫ ∞
0

dωReZ
‖
0 (ω) |λ̃(ω)|2 (6)

For a gaussian bunch, λ(t) = e−t
2/2σ2

/(
√

2πσ), λ̃(ω) = e−ω
2σ2/2.

Only the real part of the impedance contributes to the parasitic loss. The
space charge or the slowly varying wall impedances do not cause net energy
loss to the beam. However, this does not mean that individual particles do not
change their energies. It only means that the energy loss by the bunch head is
recovered by the bunch tail.

For resistive wall,

κ‖(σ)

L
=

Γ( 3
4 )c

4π2bσ
3/2
z

(
Z0

2σc

)1/2

, Γ(
3

4
) = 1.225

where b is the pipe radius (assumed cylindrically symmetric). It shows explicitly
that parasitic loss is more pronounced for short bunches.

Parasitic loss gives rise to heating of the vacuum chamber wall where there
are impedances. In high intensity electron storage rings, the beam position
monitors or bellows can heat up. This is especially serious for short bunches.

Most of the parasitic loss occurs as the beam traverses a discontinuity struc-
ture. Part of the wakefield gets trapped if the structure is cavity-like and if
the wakefield frequency is below the cutoff frequency of the pipe. The trapped
field energy is eventually deposited as heat on the cavity walls. The rest of the
wakefield, with frequency higher than the cutoff frequency, propagates up and
down the pipe and eventually dissipates on lossy material elsewhere in the vac-
uum chamber. For a cavity structure, κ‖ is given by a sum over cavity modes
below cut-off, plus a contribution above cut-off. Each cavity mode below cut-off
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contributes a resonator impedance, with

κ‖ ≈



ωrRs
2Qr

e−ω
2
rσ

2

high-Q resonator

ωrRs
2Qr

low-Q resonator, short bunch ωrσ � 1

Rs
4
√
πQ2

rω
2
rσ

3
low-Q resonator, long bunch ωrσ � 1

Above cut-off, the impedance per cavity can be represented by the diffraction
model,

Z
‖
0 (ω) = [1 + sgn(ω)i]

Z0

2π3/2

1

b

√
cg

|ω|

where g is the gap size of the cavity. This impedance has both real and imaginary
parts.

For a single bunch in a circular accelerator, the integral in Eq.(6) is replaced
by an infinite sum,

κ‖(σ) =
ω0

2π

∞∑
p=−∞

Z
‖
0 (pω0) |λ̃(pω0)|2

For short bunches in large machines (ω0 � 1/σ), the sum can be replaced by an
integral, and the difference between single passes and multiple passes disappears.

The parasitic loss by the beam goes into wakefields. Typically, only a small
fraction of the particle energy becomes wakefields, and most of the energy stored
in the wakefields ends up as heat on the vacuum chamber walls. But under un-
favorable conditions, a small portion of the wakefield energy can be transferred
systematically back to beam motion, causing beam instabilities. The parasitic
loss, therefore, is the ultimate culprit for the various collective instabilities.

The Vlasov equation
The Vlasov equation describes the collective behavior of a multiparticle sys-

tem under the influence of electromagnetic forces. To construct the Vlasov
equation, one starts with the single-particle equations of motion (assume 1-D)

q̇ = f(q, p, t)

ṗ = g(q, p, t)

The state of a particle at a given time t is represented by a point in the phase
space (q, p). The motion of a particle is described by the motion of its repre-
sentative point in phase space.

In a conservative deterministic system, the particle trajectory in phase space
is completely determined by the initial conditions (q0, p0) at time t = t0. Two
particles having the same initial conditions must have exactly the same trajec-
tory in phase space. It follows that the only way for two trajectories to meet
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at a given time is for them to coincide at all times. In other words, trajectories
either completely coincide or never intersect.

Consider a distribution of particles occupying an area in the phase space.
Because they cannot intersect with particles on the boundary of the distribu-
tion as the distribution evolves in time, particles inside cannot leak out of and
particles outside can not enter the distribution.

If the system is conservative,

f =
∂H

∂p
and g = −∂H

∂q

where H is the Hamiltonian. It follows that

∂f

∂q
+
∂g

∂p
= 0

As will be seen later, this condition leads to an area preservation property: as
the particle distribution evolves in the phase space, its shape may be distorted
but its area remains constant. In fact, in a nonconservative system, ∂f∂q + ∂g

∂p has
the physical meaning of the rate of area shrinkage.

Consider a distribution of a group of particles in the phase space at time t.
A rectangular ∆q∆p box is drawn:

A(q, p),

B(q + ∆q, p),

C(q + ∆q, p+ ∆p),

D(q, p+ ∆p).

At a later time, t + dt, the box moves and deforms into a parallelogram
A′B′C ′D′ with the same area as ABCD. All particles inside the box move with
the box. Let the number of particles enclosed by the box be

ψ(q, p, t) ∆q∆p

where ψ is the phase space distribution density normalized by

∞∫
−∞

dq

∞∫
−∞

dpψ(q, p, t) = N
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The vertices of the parallelogram are

A′[q + f(q, p, t) dt, p+ g(q, p, t) dt],

B′[q + ∆q + f(q + ∆q, p, t) dt, p+ g(q + ∆q, p, t) dt],

C ′[q + ∆q + f(q + ∆q, p+ ∆p, t) dt, p+ ∆p+ g(q + ∆q, p+ ∆p, t) dt],

D′[q + f(q, p+ ∆p, t) dt, p+ ∆p+ g(q, p+ ∆p, t) dt].

The condition that no particles leaking into or out of the box gives

ψ(q, p, t) area(ABCD) = ψ(q + fdt, p+ gdt, t+ dt) area(A′B′C ′D′)

For a Hamiltonian system, the area of the box is conserved:

area(A′B′C ′D′) = |
−−−→
A′B′ ×

−−−→
A′D′|

= ∆q∆p

[
1 +

(
∂f

∂q
+
∂g

∂p

)
dt

]
= ∆q∆p = area(ABCD)

We then have

ψ(q, p, t) = ψ(q + f dt, p+ g dt, t+ dt)

= ψ +
∂ψ

∂q
f dt+

∂ψ

∂p
g dt+

∂ψ

∂t
dt

or, after canceling out ψ on both sides, we obtain the Vlasov equation

∂ψ

∂t
+ f

∂ψ

∂q
+ g

∂ψ

∂p
= 0

Vlasov equation can also be put in a much more vague form

dψ

dt
= 0, or ψ = const in time.

Sometimes loosely referred to as the Liouville theorem, it states that the local
particle density does not change if (an important if) the observer moves with
the flow of boxes, but it does not tell how the boxes flow. The Vlasov form,
in contrast, does not have this ambiguity, since it contains explicitly the single-
particle information f and g.

Strictly speaking, f and g are given by external forces. Collisions among
discrete particles in the system, for example, are excluded. However, if a particle
interacts more strongly with the collective fields of the other particles than with
its nearest neighbors, the Vlasov equation still applies if one treats the collective
fields on the same footing as the external fields. This in fact forms the basis of
treating the collective instabilities using the Vlasov technique.
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One special case where the Vlasov equation can be solved exactly is when the
system is described by a Hamiltonian H(q, p) which does not have an explicit
time dependence. A stationary solution is found to be

ψ(q, p) = any function of H(q, p)

In this system, individual particles stream along constant-H contours in the
phase space in such a way that the overall distribution is stationary.

In the derivation of the Vlasov equation, we have assumed there are no
diffusion or external damping effects. This is usually a good approximation for
proton beams. For electron beams, synchrotron radiation contributes to both
damping and diffusion, and one needs to apply the Fokker-Planck equation,
a generalization of he Vlasov equation. However, when the instability occurs
faster than the damping or diffusion times, the Vlasov treatment applies also to
electrons.

Potential-well distortion
As a first application of the Vlasov technique, we study the effect of longitu-

dinal wakefield on a distortion of the equilibrium shape of a beam bunch. The
mechanism is a static one; no part of the beam bunch is executing collective os-
cillation. The extent of distortion depends on the beam intensity; higher beam
intensities cause larger distortions.

Consider a bunched beam that travels along the axis of the vacuum chamber
pipe in a circular accelerator. We assume the beam does not have any transverse
dimension, i.e., the beam is an infinitesimally thin thread. Such a beam does
not generate transverse wakefields; only the m = 0 wake is excited.

Consider a particle in the beam executing longitudinal synchrotron oscilla-
tion. The phase space coordinates q and p are

q = z and p = − ηc
ωs
δ

where η is the slippage factor defined by the accelerator lattice, ωs is the syn-
chrotron oscillation frequency.

The single-particle equations of motion are

z′ = −ηδ and δ′ = K(z)

We leave K(z) open for now, except that we do know it cannot depend on δ,
because the system is conservative.

The Vlasov equation reads

∂ψ

∂s
− ηδ ∂ψ

∂z
+K(z)

∂ψ

∂δ
= 0

where we will set ∂ψ/∂s = 0, since we are looking for a stationary distribution.
The general stationary solution is

ψ(z, δ) = any function of the Hamiltonian H ,
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H =
η2c2

ωs

[
δ2

2
+

1

η

∫ z

0

K(z′) dz′
]

The second integral term in the Hamiltonian is the potential-well term. A simple
harmonic system would have a parabolic potential well.

If the potential well is provided by an external rf voltage Vrf(z), we have

K(z) =
eVrf(z)

CE
=

ω2
s

c2ηV ′rf(0)
Vrf(z)

A practical case is given by Vrf = V̂ sin(ωrfz/c). The deviation of Vrf(z) from
a linear dependence on z is a cause of potential-well distortion. The general
stationary distribution is given by any function of the Hamiltonian

H =
η2c2

2ωs
δ2 +

ωsc
2

ω2
rf

[
1− cos

(ωrfz

c

)]
This Hamiltonian also describes the form of the rf bucket. A stationary distri-
bution must conform to the contours of constant Hamiltonian inside the bucket.
For small oscillation amplitudes, we have K = ω2

sz/ηc
2, the case of simple

harmonic motion.
One noteworthy special case of the stationary beam distribution is that given

by exp(−const×H). This distribution is always Gaussian in δ. In case the bunch
length is much shorter than the rf wavelength, (z � c/ωrf) the familiar quadratic
form of the Hamiltonian is reestablished, and the distribution is also Gaussian in
z. As the bunch length increases, the bunch shape deviates from Gaussian; the
potential well is distorted by the rf bucket, although the distribution remains
Gaussian in δ.

There is another reason for the Hamiltonian to deviate from the quadratic
form, and thus to cause potential-well distortion, namely, the wakefields. Con-
sider a bunch that is short compared with the rf wavelength. Let the wakefields
be W ′0(z) integrated over the accelerator circumference, and assume that the
wake has dissipated before the beam completes one revolution,

K(z) =
ω2
s

ηc2
z − r0

γC

∞∫
z

dz′ ρ(z′)W ′0(z − z′)

The corresponding Hamiltonian is

H =
η2c2

2ωs
δ2 +

ωs
2
z2 − ηc2r0

ωsγC

z∫
0

dz′′
∞∫
z′′

dz′ ρ(z′)W ′0(z′′ − z′)

The stationary solution to the Vlasov equation must be a function of H.
The complication here is that the complicated z-dependence of H now involves
the beam density ρ, which in turn is determined by the stationary distribution
itself. Clearly some self-consistency requirement is to be imposed.
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Continuing the Gaussian example, the stationary distribution maintains its
gaussian distribution in δ,

ψ(z, δ) =
1√

2πσδ
exp

(
− δ2

2σ2
δ

)
ρ(z)

The Gaussian form and the value of σδ are arbitrary if the collective behavior is
governed by the Vlasov equation, as in the case of a proton beam. However, if
the beam behavior is governed, as for an electron beam, by the Fokker-Planck
equation, then this Gaussian distribution with a specific value for σδ will be the
unique solution of the stationary beam distribution.

This distribution matches the stationary solution

ψ(z, δ) ∝ exp

(
− ωs
η2c2σ2

δ

H

)
Self-consistency then imposes a transcendental equation for ρ(z), called theHaissinski
equation,

ρ(z) = ρ(0) exp

−1

2

(
ωsz

ηcσδ

)2

+
r0

ησ2
δγC

z∫
0

dz′′
∞∫
z′′

dz′ ρ(z′)W ′0(z′′ − z′)


In the limit of zero beam intensity, the solution reduces to the bi-Gaussian

form, where σz = ηcσδ/ωs. For high beam intensities, ρ(z) deforms from Gaus-
sian. The Haissinski equation is solved numerically for ρ(z) once W ′0(z) is known
and σδ specified. Figure below shows the result for the electron damping ring
for the SLAC Linear Collider. The bunch shape is Gaussian at low beam inten-
sities, and it distorts as the beam intensity is increased. The calculations agree
with the measurements.
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The horizontal axis is x = −z/σz0, where σz0 is the unperturbed
rms bunch length. The vertical scale gives y = 4πeρ(z)/V ′rf(0)σz0.
(Courtesy Karl Bane, 1992.)

Note that the distribution leans forward (z > 0) as the beam intensity
increases. This effect comes from the parasitic loss of the beam bunch, and
is a consequence of the real (resistive) part of the impedance. Since the SLC
damping ring is operated above transition, the bunch moves forward so that the
parasitic energy loss can be compensated by the rf voltage.

Note also that the bunch length increases as the beam intensity increases.
The bunch shape distortion comes mainly from the imaginary part of the impedance.
That the bunch lengthens is a consequence of the fact that the imaginary part
of the impedance is mostly inductive.
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