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Plasma wake generation 
(non linear) + blowout regime
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Pioneering work in 70s - 80s opened a brand new field

Plasma based accelerators

window co-moving with 
laser pulse  

@ speed of light

E0[V/cm] ≈ 0.96 n0
1/2 [cm-3]  

n0 = 1018 cm-3 → E0 ≈ 1 GV/cm
L. O. Silva | CERN, November 2014 
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Multidimensional plasma waves are nonlinear
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Lasers and intense beams drive large waves
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Simulations play an important role

Scaling Tests

Sim. Volume Parallel 
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Efficiency @
 1.6 Mcores

97%
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• Scaling tests on LLNL Sequoia
4096 → 1572864 cores (full system)

• Warm plasma tests
Quadratic interpolation
uth = 0.1 c

• Weak scaling
Grow problem size
cells = 2563 × ( Ncores / 4096 )
23 particles/cell

• Strong scaling
Fixed problem size
cells = 20483 
16 particles / cell

F. Fiúza et al. (2013) L. O. Silva | CERN, November 2014 



LWFA Performance
• 7.09×1010 part / s
• 3.12 μs core push time
• 77 TFlops (3.3 % of Rpeak)
• Limited by load imbalance

Peak Performance
• 1.86 ×1012 particles
• 1.46 ×1012 particles / s
• 0.74 PFlops
• 32% of Rpeak (42% of Rmax)

Petascale modelling of LWFA

221184 cores @ Jaguar
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The wave equation for e.m. waves
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Linearized wave equation for e.m. waves
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Equation for driven electron plasma waves

Evolution of the electron density
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Coupling of light with plasma electrons

Driven electron plasma waves

E.m. waves coupled with plasma + relativistic mass correction
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Starting point: the master equation

Remember: from canonical momentum conservation py = ay

@2
t

p
x

+
�
1 + @

t

@
x

p
x

+ @2
x

�
� p

x

�
+ @

t

@
x

� = 0

@2
t

p
y

� @2
x

p
y

+
�
1 + @

t

@
x

p
x

+ @2
x

�
� p

y

�
= 0

x

y

z

Ay,Ey

k

Bz

Master equation

@2
t ~p+ c2r⇥r⇥ ~p = �


!2
p0 +

1

m
r ·

�
@t~p+mc2r�

�� ~p

�
�mc2@tr�

1D

x component

y component

Normalized Units



L. O. Silva | CERN, November 2014 

Normalisations

Electric field normalised to the cold wave breaking limit

Magnetic field normalised to the cold wave breaking 
limit multiplied by c

Scalar and vector potentials normalised to electron 
rest energy divided by the elementary charge

Space and time normalised to the plasma skin depth and 
inverse of plasma frequency

Charge, mass and velocity normalised to the elementary charge, 
electron mass and speed of light. Momenta normalised to me c
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Everything at c: Speed of light variables

Waves driven by short laser pulses with vph ~ c
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1D Quasi Static equations
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Physical interpretation
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Wakefield generation

leads to a strong frequency downshift of the pulse front on a time
scale tdown much faster than the compression time, tcomp, of the
pulse because of the strong group velocity variation along the
pulse: the front is strongly downshifted to almost zero wave-
number, and it quickly falls behind the rest of the laser pulse. In
this manner, the front of the pulse is etched away by the strong
frequency downshift, whereas the main part of the pulse is
continuously downshifted, or photon decelerated, at a lower
rate.

The laser pulse’s energy decreases as the wake is generated but
the total number of photons N!, or equivalently, the classical
action of the electromagnetic wave, is conserved. Photon decel-
eration will continue until the laser central frequency " ap-
proaches a few "p, at which time only a single cycle of radiation
is left. N! can be written as N! ! a2"L0W2, where L0 is the pulse
duration, and W is the laser spot size. Because the number of
photons N! is conserved and " is decreasing then a increases:
this mechanism acts as an amplifier for the vector potential.
These qualitative arguments were first given in ref. 13.

These qualitative arguments can be supplemented by semi-
quantitative estimates for important time scales based on the
quasi-static equations for the laser and the plasma wake (14). We
first assume that the local frequency along the pulse can
be determined by the linear dispersion relation "̂(#,$) !

!k̂2 % 1"& where "̂ " """p0, and k̂ " kc""p0. The maximum
frequency rate of change can then be calculated from the
condition '#

2[1"x(# " #M)] " 0 along with the equation for & (Eq.
1). Exact analytical results can be obtained for a square-shaped
pulse, for which the maximum gradient is #(a0) " ('#1"&)max "
(1"&M

2 )(a0
2 $ 2 % &M % (1 $ a0

2"&M)1/2, where &M " &(#M) "
2"3(a0

2 $ 1) % 1"3(4a0
4 $ a0

2 $ 1)1/2 is evaluated at the position
of maximum gradient # " #M. The local frequency at # " #M
evolves as "̂2 # "̂0

2 % t#. The photon deceleration time tdown is
then defined as the time necessary for the frequency at the front
of the pulse to decrease to """pe0 ( 2: tdown " ("̂2 % 2)"#(a0),
which scales as a0

%1 for a0 && 1. Examining Fig. 1 c and d, it is
clear that the very front part of the pulse is propagating at the
linear group velocity in the plasma (because 1"& '1), while the
back of the pulse is propagating in an almost vacuum-like region
where 1"& (( 1. The compression time is the time necessary for
the back of the pulse to reach the front of the pulse tcomp ' "̂0

2L̃
!a0

2 % 1"!a0
2 % 1 % 1), where the velocity of the back of the pulse

was assumed to move at the nonlinear group velocity (21), and
L̃ " L0"p"c. We will refer back to these expressions shortly. We
also note that the typical time for linear dispersion of the pulse
scales as tdisp ' 1"2"̂0

3L̃2 (22, 23), much longer than tcomp for
typical parameters of ultra-intense a0 & 1, short pulses L̃ ' ).

The actual scenario is highly nonlinear and multidimensional.
A comprehensive theory is therefore difficult to obtain so we rely
on full-scale, fully explicit PIC simulations. We used OSIRIS§,

which is an object-oriented, parallel, electromagnetic PIC code.
The simulations are performed in both 2$1"2D (two dimensions
in real space and three dimensions in momentum space) and 3D
(three dimensions in both real and momentum space). This code
uses a moving window that moves at the speed of light, so that
in all figures the laser is nearly stationary.

We begin by self-consistently illustrating the generation of
single pulses with 1D simulations. In these 1D simulations, the
frequency ratio is 5, the laser pulse length is L0 " *p"2, and the
peak amplitude is either 1.4 or 4.0. We find from these 1D
simulations that a0 && 1 for this scheme to work. This is shown
in Fig. 2, where a sequence of the laser electric field is presented:
for a0 " 4 (Upper), the front of the pulse is strongly downshifted,
and the resulting very long wavelength quickly falls behind the
main part of the pulse (Fig. 2c) while the rear of the pulse is
compressed. For lower intensities (Fig. 2 Lower), the downshift
of the front of the pulse is not strong enough, and the down-
shifted part of the pulse does not slip back fast enough, thus
resulting in a stretched pulse with a negative chirp (Fig. 2f ).
These simulations therefore indicate that tdown needs to be
(tcomp for pulse compression and single-cycle generation. Using
the expressions for a square pulse and assuming L̃ " L0"p"c "
), and "̂0 " 5, implies that a0 & 3 so that tdown ( tcomp. We

§Hemker, R. G., Tsung, F. S., Decyk, V. K., Mori, W. B., Lee, S. & Katsouleas, T., Proceedings
of the 1999 Particle Accelerator Conference, March 29–April 2, 1999, New York, pp.
3672–3674.

Fig. 2. Time evolution of the normalized laser electric field, eE"(mc"p) for
two laser amplitudes (a–c) and (d–f ).

Fig. 3. Snapshots of the laser’s electric field for the short-pulse case. The
isosurfaces are taken at ) 0.1 a0("0"c).

Fig. 1. Normalized absolute vector potential of laser pulse ("̂0 " 5) and the
plasma susceptibility &%1 as determined from the quasi-static equation for &:
(a) L0 " *p, a0 " 0.5, while L0 " *p"2 for (b) a0 " 0.5, (c) a0 " 1.4, and (d) a0 "
4.0.

30 $ www.pnas.org"cgi"doi"10.1073"pnas.262543899 Tsung et al.

Quasi-static equations at the basis of many theoretical 
developments on laser wakefield
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Wakefield structure and wavebreaking

Quasi-static approximation breaks down when plasma wave breaks
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Analytical results can be obtained for specific laser pulse shapes (e.g. square 
pulse Berezhiani & Muruzidze, 90)

Peak electric field ~ ay0

Optimal pulse length for 
wakefield excitation

plasma sheaths cross
Wavebreaking limit (cold)

Non relativistic

Relativistic

Naïve 1D estimate 
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quasi-static (square 
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Beam loading in the linear regime

Properly tailored witness electron 
bunch flattens accelerating wakefield: 

no energy spread growth!

presence of the load, while in the simulations by Gordienko
and Pukhov,7 the wake was severely loaded by trapped
particles.

However, scaling laws do not give the exact coefficient
and they do not predict the optimal place to load the par-
ticles. Additionally, scaling laws cannot explain the effect of
the current profile on beam quality and they do not allow for
an accurate prediction on the beam loading efficiency. In
Ref. 30 we started from the theory on the excitation of non-
linear plasma waves31,32 to develop a predictive formalism
that allows one to analyze nonlinear beam loading, and in so
doing, provided the first description of the physics of beam
loading in nonlinear wakes.

In this article we expand on the work in Ref. 30. In Sec.
II the linear theory is reviewed and the difficulties that arise
when operating plasma-based accelerators in this regime are
discussed. Subsequently, in Sec. III, the physical picture of
beam loading in the nonlinear regime is presented and the
advantages of this regime are discussed. The analytical cal-
culations are presented in Sec. IV and the efficiency and
beam quality are addressed in Sec. V.

II. LINEAR THEORY

The linear theory for beam loading was developed by
Katsouleas et al.,33 who superimposed the wakefield gener-
ated by the trailing bunch to the wakefield generated by the
driver to obtain the final accelerating field. The maximum
number of particles N0 was found by requiring that the wake
behind an ultrashort unshaped trailing bunch vanishes,

N0 ! 5 ! 105""n

np
#$npA , %3&

where "n is the density perturbation of the wake and A is the
cross-sectional area of the wake in cm2. In this configuration,
100% efficiency is achieved only at the expense of 100%
spread in the energy gain of the beam.

In this regime the energy spread can be minimized for a
bunch with a triangular charge profile, as shown in Fig. 1.
However, this requires a compromise between the maximum
charge, accelerating field and efficiency. Let us assume that
an electron bunch with total charge Ql and transverse spot
size A is loaded at #=#0 in a linear wake so that the field
within the bunch is flat El,t= %m$pc /e&n1 /n0cos%kp#0&.33 The
formulas %22a&–%22d& in Ref. 33 yield

El,t = E0 cos%kp#0& , %4&

N = N0
sin2%kp#0&

2 cos%kp#0&
. %5&

As a result the energy absorbed per unit length is

El,tQl =
1
2

sin2%kp#0&
E0

2

4%
A =

E0
2

8%
A −

El,t
2

8%
A , %6&

where El,0'%E0
2 /8%&A and El,t'%El,t

2 /8%&A are the energy
per unit length in the plasma wave in front and behind the
bunch, respectively. This formula may also be derived by
inspection from Fig. 1, where the wake in front of the bunch
has amplitude E0 and behind the bunch El,t. Thus the energy

absorbed per unit length is El,tQl=El,0−El,t and the beam
loading efficiency is &l=1−El,t /El,0. The efficiency only
reaches 100% for zero accelerating field %El,t=0&, while for
the maximum accelerating field %El,t=E0& the efficiency ap-
proaches zero.

In the discussion above A was a free parameter. How-
ever, if one wants both high efficiency and good beam qual-
ity there are possible limitations on A. In a finite-width
plasma wave the accelerating field depends on the radial lo-
cation. Therefore, electrons at different radii within the same
bunch are accelerated at different rates leading to energy
spread. Additionally, a finite-width wave has focusing/
defocusing fields and for small amplitude wakes the focusing
force does not depend linearly on the radius r. Such focusing
forces can lead to emittance growth. One solution based on
linear theory is to use matched beams, where the focusing
force of the loaded wake is matched to the diffraction from
the beam emittance. For emittances envisaged in future ac-
celerators %'N((m& and focusing forces in wakes at typical
plasma densities and with Gaussian transverse profiles, the
beams will need to be narrow %kp)r*1, where )r is the spot
size of the beam& in order to be matched. This will also
minimize the energy spread while keeping the focusing
forces nearly linear %F!(r&.

In Ref. 33 it was shown that a narrow beam may only
interact with—and thus absorb energy from—the wake up to
a radius equal to a skin depth. Therefore, only an area Aeff
(c2 /$p

2 %Ref. 33& should be used when estimating the
amount of charge that can be loaded. Under this assumption

FIG. 1. %Color& The linear wakefield of a properly tailored trailing bunch %b&
is superimposed to the wake of the driver %a& to yield the total wakefield %c&.
The triangular charge profile leads to a constant wakefield within the bunch.

056705-2 Tzoufras et al. Phys. Plasmas 16, 056705 !2009"

Downloaded 01 Jul 2009 to 193.136.137.228. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

Beam loading concept Optimal scenario: wakefield due to beam cancels 
plasma wave field exactly
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Blow out regime 
(or the bubble regime)
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Wakefields are multidimensional
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3D non-linear laser and beam driven wakes 

Laser drivenBeam driven

PUKHOV et al. Laser wake field acceleration: the highly non-linear broken-wave regime 357

a b
FIGURE 2 Spectra of accelerated electrons: a final spectrum of the case of
Fig. 1; b the case of the 33-fs, 12-J laser pulse, time evolution of the energy
spectrum: (1) ct/λ = 350, (2) ct/λ = 450, (3) ct/λ = 550, (4) ct/λ = 650,
(5) ct/λ = 750 corresponding to Figs. 3, 4, and 5, (6) ct/λ = 850

tains a population of blue electrons, which stream from right
to left and feed the wave structure trailing the pulse.

The green wave crests are curved and start to break at their
vertex near the propagation axis. The curvature reflects the
3D structure of a plasma wave with transverse size of order
λp. A study in 2D geometry [15] has shown that these curved
wavefronts break at considerably lower wave amplitudes than
plane fronts. In the present 3D simulation, wave breaking oc-
curs already for Emax/Ewb ≈ 0.3 and strong electron depletion
is observed only in the first wave bucket. When comparing
with non-broken wake fields, the conspicuous new feature in
Fig. 1b–d is the stem of relativistic electrons growing out of
the base with a cross section of σtr ≈ 0.3 µm2 in this case.
The energy rises toward the top of the stem, with red elec-
trons which have been trapped first and accelerated over the
full propagation distance. This cavity with a stem is a surpris-
ingly stable structure. It is hardly affected by the drop in laser
intensity, which decreases steadily due to energy transfer to
electrons. The efficiency of electron acceleration in the cavity
is surprisingly high. At the end about 15% of the initial laser
energy has been transferred to the electron bunch. In Fig. 1d
the cavity arrives at the rear boundary of the plasma layer and
bursts, releasing the relativistic electron load into vacuum.

The electron pulse produced here consists of about 109

relativistic electrons in the range 10 < γ < 100, compressed
to a density above the ambient electron density and a pulse
length of just 5 fs. The energy spectrum consists of a plateau
extending from 1 to 50 MeV, as is seen in Fig. 2a. The spec-
trum is clearly non-thermal and thus different from the en-
ergy spectra observed with long laser pulses. Emerging from
a 2-µm spot with an angular divergence of about ±1◦, the elec-
tron bunch has a normalized emittance of γε⊥ < π mm mrad,
better than existing electron sources. These pulses may have
a broad range of applications, in particular for ultra-short,
ultra-bright, high-repetition-rate sources of X-rays and nu-
clear radiation (positrons, neutrons, etc.).

3 Quasi-monoenergetic beams of electrons from
laser-plasma cavities

As the second example (case II), we present the
simulation of a laser pulse with a2 = 10, τ2 = 33 fs, and σ2 =

12λ, propagating in plasma with ne = 1019 cm−3. A 3D per-
spective view of the fast electrons at time ct/λ = 700 is given
in Fig. 3. Here we plot each 100th electron above 10 MeV as
a dot colored according to its energy. We see that the highly
compressed stem of energetic electrons has a uniform color,
corresponding to a peak in the spectrum. The evolution of this
peak will be discussed in more detail below.

The wake field in this high-intensity regime is different
from that in Fig. 1. As seen in Fig. 4a–c, it has mutated into
a solitary cavity, and wave breaking has washed out all down-
stream structure. The laser pulse is so strong that it scatters
electrons sidewards, leaving an empty cavity behind. Com-
paring Fig. 4a and b, we see that the cavity stretches and the
stem elongates with time. At ct/λ = 700 the stem contains

FIGURE 3 The case of a 12-J, 33-fs laser pulse after propagating z/λ =
690 in 1019 cm−3 plasma. 3D perspective view of hot electron distribution.
Each 100th electron above 10 MeV is shown as a dot colored according to its
energy. The white disc shows the laser-intensity surface at I = 1019 W/cm2

FIGURE 4 Solitary laser-plasma cavity produced by 12-J, 33-fs laser pulse.
a ct/λ = 500, b ct/λ = 700, c electron trajectories in the frame moving to-
gether with the laser pulse; color distinguishes electron groups with different
distances from the axis initially

A. Pukhov, J.Meyer-Ter-Vehn, 
Appl. Phys. B 74, 355 (2002) 

J.B. Rosenzweig et al, Phys. Rev. A 44, R6189 (1991)

Plasma wave generation and electron acceleration 
driven by ultra-high intensity laser with a0>>1

Non-linear plasma wave generation by an electron 
bunch with nb/n0>1. Electron cavitation is a 
distinctive signature of the blowout regime.
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Laser blowout
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Electron beam blowout
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And for positron drivers?
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Self-injection provides electrons for acceleration

Structure of laser driven wakefield
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Blow-out regime of laser wakefield acceleration

Self-injection, Dephasing, and Depletion

a0 
normalized vector potential of the laser 

[quiver momentum p/mc of e- field] 

a0 ~ 0.8 (λ/μm)(Intensity/1018 W/cm2)1/2

W0 
spot size

τlaser 
pulse duration

window co-moving with 
laser pulse  

@ speed of light



• Intense laser pulse pushes electrons away from axis

• Electron void is formed behind laser

– Blowout-regime/ bubble regime 

• Electrons return to axis due to ion channel force

• Trajectory crossing leads to self injection when outer sheet 
near spot-size reaches axis

• Ion column creates strong accelerating and focusing gradients

Plasma Density

Accelerating Gradient Focusing Gradient

Blow-out regime of laser wakefield acceleration

L. O. Silva | CERN, November 2014 
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Match laser spot size to 
bubble radius

Linear focusing 
force

Electric fields created by laser pulse

Dynamics of the laser and e- define key parameters  

W. Lu et al. PR-STAB (2007)

Longitudinal

Ez max �
⇥

a0

kpR � kpW0 = 2
⇥

a0

Letch > Ld

c�FWHM > 2R/3
Ld �

2
3

�2
0

�2
p

R

Matched laser parameters

Transverse

kpR � 2
⇥

a0

Linear accelerating 
gradient

For maximum energy gain: 
trapped e- dephasing before pump depletion

Letch � c⇥2
0/⇥2

p�FWHM

Phenomenological theory based on physical picture
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W0 =
3
2
c�FWHM

np[1018 cm�3] � 3.71
a3
0

P [TW]

�
�0[µm]

0.8

⇥�2

Laser pulse Injected bunchPlasma

⌅FWHM[fs] � 53.22
�

⇥0[µm]
0.8

⇥2/3 �
�[J]
a2
0

⇥1/3

Lacc[cm] � 14.09
�[J]
a3
0

q[nC] � 0.17
�

⇥0[µm]
0.8

⇥2/3

(�[J] a0)1/3

�E[GeV] � 3
�

�[J]
a2
0

0.8
⇥0[µm]

⇥2/3

* S. Gordienko and A. Pukhov PoP (2005)
** W. Lu et al. PR-STAB (2007)

Self-guiding

Main goal

External-guiding

Maximize 
Charge

Maximize 
electron energy

Self Injection I* Self Injection II** Self Injection** External Injection**

Efficiency � 0.52/a019%

Typical a0 �
�

2nc/np � (nc/np)1/5 � 2
PW range

� 3

Maximum electron energy

Different regimes for LWFA
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Acceleration distances can be reduced by orders of magnitude

Longitudinal 
momentum

12-14 GeV 
beams

40GeV 
beam

Plasma 
channel

Laser 
pulse

Self-injection: >10 GeV External-injection w/ beam loading: 40GeV

Laser 
pulse

Distance [m]

En
er

gy
 [G

eV
]

Ez
 [G

V/
cm

]

x1 Boost [µm]

10

20

30

40

0 1 2 3 4 5

0.1

0.0

-0.1
6000400020000 

S.F. Martins et al Nat. Physics 6 311 (2010)
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Parameter range for 300J laser system

Self-guiding External-guiding
Self Injection I* Self Injection II** External Injection**

Laser

Plasma

e- Bunch

a0

Spot [μm]

Duration [fs]

Density [cm-3]

Length [cm]

Energy [GeV]

Charge [nC]

53 5.8 2

10 50 101

1.5×1019 2.7×1017 2.2×1016

33 110 224

0.25 22 500

3 13 53

14 2 1.5

* S. Gordienko and A. Pukhov PoP (2005)
** W. Lu et al. PR-STAB (2007)



+3GeV self-injection in strongly nonlinear regime
Extreme blowout a0=53

Laboratory frame 
3000x256x256 cells 

~109 particles
105 timesteps

3.4 GeV
17 nC
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S.F. Martins et al, Nature Physics (April 2010)
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~300x faster  
than lab simulation
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Laser
pulse

Accelerating
electron beam

+10GeV self-injection in nonlinear regime
Controlled self-guided a0=5.8

Laser 

Injected 
electrons

Smooth 

Boosted frame 
7000x256x256 cells 

~109 particles
3x104 timesteps

7-12 GeV
1-2 nC
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10

20

30

40

0 1 2 3 4 5

Ez
 [G

V/
cm

]
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Distance [m]
En
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gy

 [G
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]

+40GeV with externally injected beams
Channel guided a0=2

Stable accelerating field 
for over 5 meters

Guiding channel 
Length: 5.28m

Density: 2.2e16 cm-3

Tailored injected 
beam to minimize final 

energy spread

Boosted frame 
8000x128x128 cells 

~5x108 particles
2x105 timesteps

Υ=10

40 GeV
~1 nC

Laser 

~300x faster  
than lab simulation
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Energy frontier LWFA modeling

Extreme blowout :: a0=53

‣ Very nonlinear and complex physics
‣ Bubble radius varies with laser propagation
‣ Electron injection is continuous ⇒	 very strong beam loading
‣ Wakefield is noisy and the bubble sheath is not well defined

Controlled self-guided :: a0=5.8 

‣ Lower laser intensity ⇒ cleaner wakefield and sheath
‣ Loaded wakefield is relatively flat 
‣ Blowout radius remains nearly constant
‣ Three distinct bunches ⇒ room for tuning the laser parameters

Channel guided :: a0=2

Plasma
channel

Laser
pulse

Accelerating
electron beam

‣ Lowest laser intensity ⇒ highest beam energies (less charge)
‣ External guiding of the laser ⇒ stable wakefield
‣ Tailored electron beam that initially flattens the wake
‣ Controlled acceleration of an externally injected beam to very high energies

L. O. Silva | CERN, November 2014 
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The plan for a theoretical model for the blowout regime 

Determine the equation of motion for a fluid element in the 
quasi-static approximation and assuming no sheath crossing

Determine the structure of the fields (cylindrically symmetric) 
for a model of the current/charge system in the bubble/

blowout

Determine the equation of motion for the inner surface of the 
blowout region (r = rb)



L. O. Silva | CERN, November 2014 

Generic particle Hamiltonian in 3D

Hamiltonian for a charged particle:

H =
q

m2
ec

4 + (P+ eA/c)2 � e�

New co-moving frame variables: 

⇠ = v�t� x

⌧ = x

Canonical momentum
(P=p-eA/c)

Vector potential scalar potential

Distance to the head of a 
beam moving at vΦ

Propagation distance

Hamiltonian in the co-moving frame

H = H � v�Pk



L. O. Silva | CERN, November 2014 

Hamilton’s equations in the co-moving frame variables 

dH

dt
=

@H

@t
= v�

@H

@⇠

@

@x

=
@

@⇠

� @

@⌧

@

@t

= v�
@

@x

d⇠

dt
=

�
v� � vk

�

Chain rule for co-moving frame variables

Hamilton’s equations in co-moving frame

dPk

dt
= �@H

@x
=

@H

@⇠
� @H

@⌧
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Evolution of the Hamiltonian in the co-moving frame

�
v� � vk

� dH
d⇠

=


v · @A

@⌧
� @�

@⌧

�
General evolution of the co-moving frame Hamiltonean

=d/dt use the chain rule

Δ𝓗=𝓗(tf)-𝓗(ti) depends on initial and final positions only:

Integration over the 
particle’s trajectory

~0 for a non-evolving wake/driver (quasi-
static approximation) 

�H =

Z
dH
dt

dt =

Z
d⇠

v� � vk

dH
d⇠
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Constants of motion under quasi-static approximation

�
�
1� �k

�
= 1 +  

�H = �� � v��pk �
�
��� v��Ak

�

= �� � v��pk �� 

General constant of motion under quasi-static approximation

Constant of motion for a particle initially at rest in region of vanishing fields

pseudo potential 
Ѱ=Φ-vΦA||

For β|| → 1 ⇒ Ѱ → -1 

For β|| → -1 ⇒ Ѱ → ∞

�1 <  < +1
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Lorentz force equation for the radial motion of a plasma 
electron under the quasi-static approximation

Goal: write Lorentz force in the co-moving frame (vɸ=c=1)

d

dt
= (1� vk)

d

d⇠
=

1 +  

�

d

d⇠

velocity normalised to c

dp?
dt

=
1 +  

�

d

d⇠


(1 +  )

d

d⇠

�

Recast ɣ using constant of motion

� =
1 + p2? + (1 +  )2

2 (1 +  )

Use constant of motion to write total time derivative:

Use constant of motion to write total time derivative:

p? = �v? = (1 +  )
dr?
d⇠ !

W. Lu,  MsC thesis, UCLA (2004)
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Lorentz force equation for the radial motion of a plasma 
electron under the quasi-static approximation

2 (1 +  )2

1 + (1 +  )2
⇣

dr
d⇠

⌘2
+ (1 +  )2

d

d⇠


(1 +  )

dr

d⇠

�
= F?

particles do not move 
in ξ under the q.s.a.

Potentials associated with electromagnetic fields under q.s.a.:

Ez =
@ 

@⇠
Er = �@�

@r
� @Ar

@⇠
B✓ = �@Az

@r
� @Ar

@⇠

accelerating field radial electric field azimuthal magnetic field

All other fields vanish for a cylindrically symmetric configuration 

F? = �
�
Er � vkB✓

�

W. Lu,  MsC thesis, UCLA (2004)
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The plan for a theoretical model for the blowout regime 

Determine the equation of motion for a fluid element in the quasi-static 
approximation and assuming no sheath crossing

Determine the structure of the fields (cylindrically 
symmetric) for a model of the current/charge system 

in the bubble/blowout

Determine the equation of motion for the inner surface of the 
blowout region (r = rb)
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Electromagnetic field equations for cylindrically 
symmetric plasma waves

Equations for potentials under q.s.a.:

1

r

@

@r

✓
r
@Ar

@r

◆
� Ar

r2
= nev?

1

r

@

@r

✓
r
@Ak

@r

◆
= nb + nevk

plasma density normalised to 
background density (n0)

particle beam driver density 
normalised to n0

1

r

@

@r

✓
r
@�

@r

◆
= nb + ne � 1

1

r

@

@r

✓
r
@ 

@r

◆
= ne + nevk � 1

1

r

@

@r
rAr = �@ 

@⇠

immobile ion density normalised to n0

Gauge condition

W. Lu,  MsC thesis, UCLA (2004)
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General solutions to wakefield potentials

F? = �
�
Er � vkB✓

�
=

✓
@�

@r
� vk

@Ak

@r

◆
+

�
1� vk

� @Ar

@⇠
� 1

�
r?|

aL
2
|2

General solutions for potentials:

� = �0 (⇠)�
r2

4
+ � (⇠) ln (r)

ξ dependence: 
blowout shape

� (⇠) =

Z 1

0
rnbdr

beam shape

Ak = Ak0 (⇠) + � (⇠) ln r

 =  0 (⇠)�
r2

4

From gauge condition:

Ar = Ar0 (⇠) r Ar0 (⇠) = �1

2

d 0

d⇠

1

r

@

@r

✓
r
@�

@r

◆
= nb + ne � 1 !

!1

r

@

@r

✓
r
@Ak

@r

◆
= nb + nevk

ion contribution (no 
electrons in blowout)

1

r

@

@r

✓
r
@ 

@r

◆
= ne + nevk � 1 !

!

Right hand side of Lorentz force:

1

r

@

@r

✓
r
@ 

@r

◆
= ne + nevk � 1

!

W. Lu,  MsC thesis, UCLA (2004)
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Find equation of motion for the electron layer 
defining the blowout region

Right hand side of Lorentz force re-written

Goal: write the Lorentz force for the motion of the thin electron sheath that 
defines the blowout:

Ez!! " !t" = − Et = −
rt

2#2
#Rb

4

rt
4 − 1. !20"

The shape of the bubble for !t#!#!F is described by the
parabola

rb
2 = rt

2 − 4Et!! − !t" . !21"

The corresponding profile $!!" can be calculated directly
from Eq. !10":

$!!" = Et
2 +

rb
2

4
=

Rb
4 + rt

4

8rt
2 −#Rb

4 − rt
4

8rt
2 !! − !t" . !22"

One can instead write $!!" in terms of Et by solving for rt
2 in

terms of Et from Eq. !20" and substituting the resulting ex-
pression into Eq. !22",

$!!" =#Et
4 +

Rb
4

24 − Et!! − !t" . !23"

The trapezoidal profile in Eq. !23" is the one used in Fig. 3.
In order to calculate the maximum total charge that can

be loaded into the wake, we assume that the bunch extends
all the way to the back end of the bubble, where the sheath
reaches the !-axis. Equation !21" yields

%!tr =
rt

2

4Et
. !24"

The average charge per unit length for a trapezoidal bunch
with length %!tr is

$$%%!tr
=

$!!t + %!tr" + $!!t"
2

=
Rb

4

8rt
2 , !25"

which is the same as &0 from Eq. !16". The maximum charge
that can be loaded while maintaining a constant wakefield
within the bunch is

Qtr = 2'&0%!tr =
'

16

Rb
4

Et
. !26"

D. Simulations

We can now design a simulation for which the wakefield
within the accelerating bunch is constant. In Fig. 5 we show
results from PIC simulations in cylindrical geometry. The
entire simulation box !not shown" is 30c /(p)30c /(p. The
driver &a Gaussian electron beam with np!r ,!"
= 'Nb / !2'"3/2*r

2*z(e−r2/!2*r
2"e−!! − !c"2/!2*z

2", *r=0.5c /(p, *z
=1.414c /(p, Nb=139!c /(p"3, and !c=10c /(p) is chosen

FIG. 4. !Color" The back half of the bubble and the corresponding wakefield
is plotted using the theoretical results. Each curve in plots !a" and !c" shows
the innermost particle trajectory/wakefield for bunches with C+0. The
smallest bubble is the one for &0=0 and we increase &0 by 0.1)Rb

4 / !8rt
2"

for each subsequent curve. Each curve in plots !b" and !d" shows the inner-
most particle trajectory/wakefield for bunches with C#0. The trajectory
that reaches the axis is the one for C=0 and we increase &0 by 0.1
)Rb

4 / !8rt
2" for each curve. The curves in !b" and !d" are terminated when

rb!=0. For all cases in this figure the bunch is loaded at !t=0.67Rb⇔rt
=0.707Rb and is terminated at the end of the bubble.

FIG. 5. !Color" Results from cylindrical PIC simulations with kpRb=5. !a"
The colormap shows the electron density. The beam driver and the load
move from left to right. The broken line shows what the shape of the bubble
would be in the absence of the load. !b" $!!"=*0

,r!nb!r" /np"dr for the driver
!red" and the load !blue" is plotted. The area under each line !times 2'"
yields the total charge. !c" The wakefield Ez!! ,r=0" in the presence !ab-
sence" of the trapezoidal bunch loaded for Et+1.75c /(p is drawn with the
red !black" line. !d" Ez!! ,r=0" for an optimal trapezoidal bunch loaded for
Et+2.2c /(p !green" and Et+1.3c /(p !blue".

056705-6 Tzoufras et al. Phys. Plasmas 16, 056705 !2009"
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F? = �r

2
+

�
1� vk

� � (⇠)
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+

�
1� vk

� dAr0

d⇠
r � 1

�
r?|

aL
2
|2

W. Lu,  MsC thesis, UCLA (2004)
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Equation of motion for the blowout radius

The pseudo potential Ѱ (see how important it is!) fully determines  
the motion of the blowout region

F? = �r

2
+

�
1� vk

� � (⇠)

r
+

�
1� vk

� dAr0

d⇠
r � 1

�
r?|

aL
2
|2

�
1� vk

�
=

1 +  

�
� =

1 + p2? + (1 +  )2

2 (1 +  )
Recall:

d

d⇠


(1 +  )

drb
d⇠

�
= rb

(
�1

4

"
1 +

1

(1 +  )2
�

✓
drb
d⇠

◆2
#)

� 1

2

d2 0

d⇠2
+
� (⇠)

r2b
� 1⇣

 0 �
r2b
4

⌘r?|
aL
2
|2

W. Lu,  MsC thesis, UCLA (2004)
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General expressions to calculate the pseudo-potential Ѱ

Recall differential equation for Ѱ

Boundary condition: Ѱ vanishes away from the blowout region

1

r

@

@r

✓
r
@ 

@r

◆
= ne + nevk � 1

Use Green’s function method to find an integral solution

 (r, ⇠) = ln r

Z r

0
r0
⇥
ne (r

0, ⇠)
�
1� vk (r

0, ⇠)
�
� 1

⇤
dr0

+

Z 1

r
r0 ln r0

⇥
ne (r

0, ⇠)
�
1� vk (r

0, ⇠)
�
� 1

⇤
dr0

Z r

0
r0
⇥
ne (r

0, ⇠)
�
1� vk (r

0, ⇠)
�
� 1

⇤
dr0 = 0

Need model for ne(1-v||)

W. Lu,  MsC thesis, UCLA (2004)
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Source term model for Ѱ in the blowout regime

Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime
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We present a theory for nonlinear, multidimensional plasma waves with phase velocities near the speed
of light. It is appropriate for describing plasma waves excited when all electrons are expelled out from a
finite region by either the space charge of a short electron beam or the radiation pressure of a short intense
laser. It works very well for the first bucket before phase mixing occurs. We separate the plasma response
into a cavity or blowout region void of all electrons and a sheath of electrons just beyond the cavity. This
simple model permits the derivation of a single equation for the boundary of the cavity. It works
particularly well for narrow electron bunches and for short lasers with spot sizes matched to the radius of
the cavity. It is also used to describe the structure of both the accelerating and focusing fields in the wake.

DOI: 10.1103/PhysRevLett.96.165002 PACS numbers: 52.38.Kd, 52.35.Mw, 52.65.Rr

In plasma-based acceleration, a plasma wave with a
phase velocity close to the speed of light is driven by a
short intense particle or laser beam. When a laser pulse is
used it is called laser wakefield acceleration (LWFA) [1]
and when a particle bunch is used it is called plasma
wakefield acceleration (PWFA) [2]. Most analytical theo-
ries to date on plasma waves and wakefield excitation have
either been restricted to linear fluid theory [2–4] or one-
dimensional nonlinear fluid theory [5,6]. In recent PWFA
and LWFA experiments [7,8] the wakes are excited in the
so-called blowout regime where electrons are expelled
radially. In this regime neither fluid nor one-dimensional
(axial) theory applies. These wakes are complicated be-
cause their fields are electromagnetic, relativistic mass
effects are important, and trajectory crossing occurs.

In the blowout regime all the plasma electrons are
expelled from a region around the axis, leaving behind a
uniform column of plasma ions. The column is surrounded
by a thin layer of the expelled electrons which is sur-
rounded by a weakly perturbed plasma with a thickness
of a linear skin depth. The ions pull the electrons back to
the axis in about a plasma period (or equivalently a plasma
wavelength of 2!c=!p). These electrons overshoot,
thereby creating the wake. The first oscillation or bucket
is of most interest to plasma-based acceleration. This is
illustrated in Fig. 1(a) where the electron density resulting
from a short electron bunch is plotted from a fully non-
linear particle-in-cell (PIC) simulation using the code
OSIRIS [9]. The electron bunch is propagating to the left
in the variable " ! ct" z. The blowout or ion column
radius, rb, is also defined in this plot.

Creating wakefields in the blowout regime was first
investigated by Rosenzweig et al. [10] for PWFA case of
electron beam drivers. These wakefields had perfectly
linear focusing fields and had radially independent accel-
eration fields for electrons. Similar wakefields can be
excited by laser drivers. In recent work on LWFA the
term bubble regime [11], instead of blowout regime, is

used. Despite this intense interest, little theory for how
the wakefields in the blowout regime scale with the elec-
tron beam or laser beam parameters currently exists; and
no theory exists for how beam loading occurs within the
ion channel. In addition, while there are expressions for the
nonlinear frequency shift [5] for one-dimensional wakes
there is no such expression for multidimensional wakes.
Recently Barov et al. [12], Lotov [13], and Kostyukov
et al. [14] each have analyzed some aspects of the blowout
regime; however, these analyses do not predict the shape of
the ion column (bubble) or of the field structures. In this
Letter, we will present a predictive theoretical model for
wake excitation in the blowout (‘‘bubble’’) regime.

We begin with Maxwell’s equations in the Lorentz
gauge and the equation of motion for a plasma electron.

FIG. 1 (color). (a) Electron density with the defined blowout
radius rb#"$ and (b) "##" Jz=c$ profile from a PIC simulation.
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Pseudo-potential in the blowout regime: from non-
relativistic to ultra-relativistic plasma responses

General expression for Ѱ

 [rb (⇠)] =
r2b
4

 
(1 + ↵)2 ln (1 + ↵)2

(1 + ↵)2
� 1

!

Non-relativistic blowout regime

Ultra-relativistic blowout regime
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4
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W. Lu et al, PRL 96 165002 (2006)



L. O. Silva | CERN, November 2014 

The plan for a theoretical model for the blowout regime 

Determine the equation of motion for a fluid element in the quasi-static 
approximation and assuming no sheath crossing

Determine the structure of the fields (cylindrically symmetric) 
for a model of the current/charge system in the bubble/

blowout

Determine the equation of motion for the inner 
surface of the blowout region (r = rb)
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Full equation of motion for the blowout radius

Equation describing the motion of the blowout region
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Does not hold at the back of 
the bubble where Δ~rb 
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Theory compares very well with computer simulations

terms of rb!!". Such a relation can be approximately
obtained as follows. This is the key simplification in this
Letter.

The source term for  !r;!" is "# Jz. At each !, "#
Jz $ "ion % "e # Jze, where "ion $ 1 for all r and "e #
Jze is zero for r < rb, rises sharply within a sheath of
thickness of !s!!" [simulations and analytic arguments
[3] show that it is small compared with rb!!" for most of
the ion channel, i.e., !s=rb & #' 1, but its absolute value
can be significant, e.g., for rb ( 10, #( 0:1, !s ( 1]
and gradually falls to unity in a width !L!!" [a region
where the plasma electrons respond nearly as they would
be in a linear wake, !L!!" ( 1 from linear theory]. This is
illustrated in Fig. 1(b) where the profile #!"# Jz=c"
versus r is plotted for an arbitrary value of ! from
Fig. 1(a). ! & !s %!L $ #rb % !L is also defined in
Fig. 1(b). The structure of "# Jz enables us to write
 0!!" approximately in terms of rb!!", !L, and #, e.g.,
 0!rb!!";!L; #", by assuming a parametrized profile. We
find that very accurate results can be obtained using a
very simple profile, which assumes a constant n! over
the sheath and the linear region, where n! $

r2
b

!rb%!"2#r2
b

for rb < r < rb % !. This is illustrated in Fig. 1(b). Inter-
estingly, the results are very insensitive to the forms of the
profiles, but obviously, more refined profiles can be used.
For this profile,

 !r;!" $  0!!" #
r2

4
$ r2

b!!"
4
!1% $" # r

2

4
(10)

for r ) rb where $*rb!!";!L; #+ $ !1%%"2 ln!1%%"2
!1%%"2#1

# 1 and
% & !=rb $ !L=rb % #.

All the ! derivatives of $ that arise in Eq. (9) can be
written as d!$ $ d!rb@rb$ under the assumption that !L

and # only depend weakly on ! so we can assume @!!L ,
0 and @!# , 0. Proceeding in this way Eq. (9) can then be
put in the following form after collecting terms,

A!rb"
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d!2 % B!rb"rb

!
drb
d!

"
2
% C!rb"rb $

&!!"
rb

; (11)

where A!rb" $ 1% *14%
$
2 % 1
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3
4 rb
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Recall that once rb!!" is solved for then  !r" is known
[Eq. (10)] and Ez!r$0;!"$d 0=d!$d*r2

b!1%$"=4+=
d! is known. We note here that for a laser driver C!rb"$
1
4*1%

1%a2
2

!1%$
4r

2
b"2
+ and the right side of Eq. (11) becomes

#
d
dr
jaj2

4

1%$
4r

2
b

, which comes from the laser’s ponderomotive force.

We show the accuracy of our model by directly integrat-
ing Eq. (11) for a bi-Gaussian electron beam driver. We
choose kp'r$0:1 and kp'z$

###
2
p

and electron initial po-
sitions r0' rm. In Fig. 2(a), we plot the trajectories of
rb!!" for different values of beam charge, i.e., eN, and
hence different maximum blowout radius (rm varies from

0.18 to 4) and compare these trajectories with the blowout
boundaries extracted from fully nonlinear PIC simulations.
The theory and PIC simulation results for rb are essentially
identical for each case. We used !s$0:1rb and !L $ 1 for
each case. Varying !L from 0 to 3 leads to only a 20% de-
viation in both the blowout radius and the ion channel
length.

Figure 2(b) compares the wakefields, Ez, calculated
from the model with those from PIC simulations. The
agreement is also excellent until near the rear of the blow-
out region. We have determined that much of the disagree-
ment comes from assuming constant !s=rb and !L, which
is not exactly true near the rear of the first bucket. In
Fig. 2(b) (1), we also plot the wakefield which is calculated
using a !L which depends on !. This gives better agree-
ment near the rear of the ion column. Although this simple
model cannot give exact predictions for Ez near the very
rear of the ion channel, it provides the correct trajectory for
rb and hence the correct structure of the wakefield, e.g., the
peak decelerating field, the useful accelerating field, the
useful transformer ratio, and the wake’s wavelength for
arbitrary shaped bunches. It also describes quantitatively
how the wakefield’s structure changes as rm increases. We
also note that it is accurate enough to treat the beam
loading problem. Figure 2(b) (2) shows the agreement
between the theory and simulation where a drive beam
and a trailing beam are used. The agreement is exact within
the trailing beam. More details on beam loading will be
given in a separate publication.

Much can be learned by examining Eq. (11) in two
distinct regimes: namely, the nonrelativistic blowout re-

FIG. 2 (color). (a) comparison of the trajectories of rb!!"
(beam center is at ! $ 5); (b) comparison of the accelerating
field Ez!!": PIC simulation (red), calculation by a constant
profile (blue), calculation by a varying profile (brown, !L $ 1
for ! from 1 to 8, and decreases linearly to 0.2 at ! $ 15).

PRL 96, 165002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
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165002-3

Perfect match except at the back 
of the bubble where Δ ~ rb

Very good agreement for a wide 
range of conditions

From weakly-relativistic to strongly 
relativistic blowouts

W. Lu et al, PRL 96 165002 (2006)
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The blowout is close to a sphere 
regardless of the nature of the driver (laser or particle bunch)

rb
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+ 2
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drb
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+ 1 =
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Ultra-relativistic blowout:

=0 right after the driver

rb
d2rb
d⇠2

+

✓
drb
d⇠

◆2

+ 1 = 0

The factor ‘2’ leads to 
stronger bending of rb at the 
back of the bubble

Spherical blowout

Equation for surface of a sphere:

W. Lu et al, PRL 96 165002 (2006)
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Accelerating field in the blowout regime

Recall field expressions

Ez =
@ 

@⇠
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Ultra-relativitic blowout (α≪1):

Ez ' 1

2

drb
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Ultra-relativitic blowout (α≪1):

Integration of the equation for rb(ξ) 
yields at the center of the bubble:
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2
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W. Lu et al, PRL 96 165002 (2006)
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Focusing force in the blowout regime

Recall field expressions

Er = �@�
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� @Ar

@⇠
B✓ = �@Az
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� @Ar
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v = c = 1

Focusing for relativistic particle
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Linear focusing force:
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W. Lu et al, PRL 96 165002 (2006)
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Beam loading: achieving high quality bunches 
with low energy spreads

Properly tailored witness electron 
bunch flattens accelerating wakefield: 

no energy spread growth!

presence of the load, while in the simulations by Gordienko
and Pukhov,7 the wake was severely loaded by trapped
particles.

However, scaling laws do not give the exact coefficient
and they do not predict the optimal place to load the par-
ticles. Additionally, scaling laws cannot explain the effect of
the current profile on beam quality and they do not allow for
an accurate prediction on the beam loading efficiency. In
Ref. 30 we started from the theory on the excitation of non-
linear plasma waves31,32 to develop a predictive formalism
that allows one to analyze nonlinear beam loading, and in so
doing, provided the first description of the physics of beam
loading in nonlinear wakes.

In this article we expand on the work in Ref. 30. In Sec.
II the linear theory is reviewed and the difficulties that arise
when operating plasma-based accelerators in this regime are
discussed. Subsequently, in Sec. III, the physical picture of
beam loading in the nonlinear regime is presented and the
advantages of this regime are discussed. The analytical cal-
culations are presented in Sec. IV and the efficiency and
beam quality are addressed in Sec. V.

II. LINEAR THEORY

The linear theory for beam loading was developed by
Katsouleas et al.,33 who superimposed the wakefield gener-
ated by the trailing bunch to the wakefield generated by the
driver to obtain the final accelerating field. The maximum
number of particles N0 was found by requiring that the wake
behind an ultrashort unshaped trailing bunch vanishes,

N0 ! 5 ! 105""n

np
#$npA , %3&

where "n is the density perturbation of the wake and A is the
cross-sectional area of the wake in cm2. In this configuration,
100% efficiency is achieved only at the expense of 100%
spread in the energy gain of the beam.

In this regime the energy spread can be minimized for a
bunch with a triangular charge profile, as shown in Fig. 1.
However, this requires a compromise between the maximum
charge, accelerating field and efficiency. Let us assume that
an electron bunch with total charge Ql and transverse spot
size A is loaded at #=#0 in a linear wake so that the field
within the bunch is flat El,t= %m$pc /e&n1 /n0cos%kp#0&.33 The
formulas %22a&–%22d& in Ref. 33 yield

El,t = E0 cos%kp#0& , %4&

N = N0
sin2%kp#0&

2 cos%kp#0&
. %5&

As a result the energy absorbed per unit length is

El,tQl =
1
2

sin2%kp#0&
E0

2

4%
A =

E0
2

8%
A −

El,t
2

8%
A , %6&

where El,0'%E0
2 /8%&A and El,t'%El,t

2 /8%&A are the energy
per unit length in the plasma wave in front and behind the
bunch, respectively. This formula may also be derived by
inspection from Fig. 1, where the wake in front of the bunch
has amplitude E0 and behind the bunch El,t. Thus the energy

absorbed per unit length is El,tQl=El,0−El,t and the beam
loading efficiency is &l=1−El,t /El,0. The efficiency only
reaches 100% for zero accelerating field %El,t=0&, while for
the maximum accelerating field %El,t=E0& the efficiency ap-
proaches zero.

In the discussion above A was a free parameter. How-
ever, if one wants both high efficiency and good beam qual-
ity there are possible limitations on A. In a finite-width
plasma wave the accelerating field depends on the radial lo-
cation. Therefore, electrons at different radii within the same
bunch are accelerated at different rates leading to energy
spread. Additionally, a finite-width wave has focusing/
defocusing fields and for small amplitude wakes the focusing
force does not depend linearly on the radius r. Such focusing
forces can lead to emittance growth. One solution based on
linear theory is to use matched beams, where the focusing
force of the loaded wake is matched to the diffraction from
the beam emittance. For emittances envisaged in future ac-
celerators %'N((m& and focusing forces in wakes at typical
plasma densities and with Gaussian transverse profiles, the
beams will need to be narrow %kp)r*1, where )r is the spot
size of the beam& in order to be matched. This will also
minimize the energy spread while keeping the focusing
forces nearly linear %F!(r&.

In Ref. 33 it was shown that a narrow beam may only
interact with—and thus absorb energy from—the wake up to
a radius equal to a skin depth. Therefore, only an area Aeff
(c2 /$p

2 %Ref. 33& should be used when estimating the
amount of charge that can be loaded. Under this assumption

FIG. 1. %Color& The linear wakefield of a properly tailored trailing bunch %b&
is superimposed to the wake of the driver %a& to yield the total wakefield %c&.
The triangular charge profile leads to a constant wakefield within the bunch.
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Note that the wakefield is independent of r. Here we are
interested in the back half of the bubble, where the quantity
2!"!#" is the charge per unit length of the accelerating
bunch. In the rest of the paper, we use these equations to
analyze beam loading. We note that for smaller blowout ra-
dius Eq. !9" can be solved numerically.

In linear theory an ultrashort bunch can absorb all of the
energy in the wake. This is not the case in the nonlinear
wakes we consider here. Let us assume that an ultrashort
bunch is loaded at the location where the broken line in Fig.
2 intersects the #-axis. For the bunch to absorb all of the
energy in the plasma wave would mean that the sheath would
follow the broken line and that the plasma would be quiet
after that. However, a bunch with very large negative charge
per unit length repels the electrons in the sheath and delays
them from returning on axis. As a result, the presence of the
bunch causes the sheath to bend away from the #-axis instead
of toward it.

On the other hand, a bunch with finite length and charge
per unit length allows the electrons in the sheath to reach the
axis while slowly decreasing their transverse momentum.
Ideally the electrons should arrive on axis with no transverse
momentum, which implies zero longitudinal momentum as
well !see Refs. 31 and 32". This configuration leads to nearly
100% absorption of the energy available in the bubble.

Unlike the linear case, in a 3D nonlinear wake the fo-
cusing forces depend linearly on r and the accelerating fields
are constant with r. The beam’s self-fields cancel to order
1 /$2. The forces inside the ion channel for a cylindrically
symmetric wake in the nonlinear regime are F!=!!% and
Fz=−"% /"#, where % is the pseudopotential defined as %
=&−Az, with & as the scalar potential and Az as the vector
potential for the plasma fields in the Lorentz gauge.31,32 In
the blowout regime %= #!1+'"rb

2!#"−r2$ /4, therefore, F!

=−r /2 and Fz=−!1 /4"#d!1+'"rb
2 /d#$. It immediately fol-

lows that both "F! /"#=0 and "Fz /"r=0 even in the pres-
ence of the trailing bunch. Because the load changes the
shape of the sheath as a function of # it can only change Fz,
while F!=−r /2 and "F! /"#="Fz /"r=0 as without the load.
That is, there are no distortions in the focusing field and no
transverse variations of Ez.

31,32 However, variations in the
accelerating force Fz with # can induce significant energy
spread for a bunch without a properly tailored profile, unless
the bunch is extremely short and it contains very low charge.
Such a bunch would only absorb a minute fraction of the
energy available in the plasma wake.

A major issue in designing an accelerator is ensuring that
the wakefield within the bunch is relatively flat, so that all of
the electrons feel the same accelerating force. Before we
detail the calculations, we show how this could be possible
using insight from the above discussion. Such an optimum
design is sketched in Fig. 3. The back half of the bubble is
plotted in cylindrical coordinates !# ,r" in the bottom portion
of the figure. The blue curve, which starts at rb!#=0"=Rb,
tracks the innermost particle trajectory in the absence of an
electron bunch. If an electron bunch with spot size rw
(rb!#F"%rF is loaded between #t and #F—between the bro-
ken lines—the innermost particle trajectory is modified as

shown by the black curve. Specifically, due to the presence
of the electron bunch, which repels the electrons in the
sheath, the sheath bends slightly upward. Behind the bunch,
for #)#F, the electrons in the sheath only feel the force from
the ion column just as for #(#t. However, since some of the
energy in the bubble has been absorbed by the bunch, the
trajectory segment for #)#F corresponds to a bubble with
maximum radius R̃b!(Rb". The entire trajectory of the inner-
most particle is found by following !from right to left" first
the blue curve, then the black segment joining the blue and
red curves, and finally the red curve until rb=0. The wake-
field after the first bubble consists of bubbles with maximum
radius R̃b.

The resulting wakefield Ez is plotted in the upper portion
of Fig. 3. The blue segment corresponds to Ez ahead of the
bunch, the black segment to Ez within it, and the red segment
to Ez behind it. We will show below that the charge/current
profile that leads to Ez being constant within the bunch is an
inverse trapezoid as in the upper plot of Fig. 3. This prevents
the bunch from breaking apart, thereby optimizing the trans-
former ratio. Figure 3 was plotted using the analytical results
from the following section.

FIG. 3. !Color" The plot on top shows the wakefield Ez in the presence of a
trapezoidal bunch with charge per unit length such that Ez is constant within
the bunch. The wakefield ahead of !behind" the bunch is colored blue !red"
and corresponds to a bubble with radius Rb !R̃b" plotted in the bottom part of
the figure. The two bubbles are connected with the parabolic segment
!black", which represents the shape of the sheath between the two broken
lines !#t and #F in the text".
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Linear regime Blowout regime

Goal: find the optimal beam profile that flattens accelerating fields

M. Tzoufras et al (2008)
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Optimal shape for witness electron bunch

+

=

Beam loading in the blowout

l is the current density of the 
witness beam

Trapezoidal bunches lead to ideal beam-loading

the very front and the very back of the bubble. To make
progress analytically, we take the ultrarelativistic limit,
where the normalized maximum radius of the ion channel
is !pRb=c ! 1. The equation for the innermost particle
trajectory reduces to (see Ref. [13]):

rb
d2rb
d!2 þ 2

!
drb
d!

"
2
þ 1 ¼ 4"ð!Þ

r2b
; (1)

where we adopt normalized units, with length normalized
to the skin-depth c=!p, density to the plasma density np,
charge to the electron charge e, and fields to mc!p=e. The
term on the right-hand side of Eq. (1) can describe the
charge per unit length of an electron beam driver or a
trailing beam (an additional term for the pondoromotive
force of the laser can also be included [13]). Here we are
interested in the back half of the bubble, where the wake-
field is accelerating and the quantity 2#"ð!Þ, with "ð!Þ ¼R1
0 rnbdr, is the charge per unit length of the beam load.
We define ! ¼ 0 at the location where rb is maximum,

i.e., drb
d! j!¼0 ¼ 0. In Ref. [13], it was shown that for

!pRb=c ! 1, the wakefield is Ez ’ 1
2 rb

drb
d! ; therefore,

Ezð! ¼ 0Þ ’ 0. For !> 0, the electrons are attracted by
the ion channel back toward the !-axis with drb

d! j!>0 < 0

until ! ¼ !s where beam loading starts. For ! & !s, the
electrons feel the repelling force from the charge of the
accelerating beam, in addition to the force from the ion
channel. The additional repelling force decreases the slope
of the sheath drb

d! , thereby lowering the magnitude of Ez.

This can be seen in the simulation results in Fig. 1, where
the trajectory of the innermost electron for an unloaded

wake is drawn on top of the electron density for a loaded
wake, and the corresponding wakefield for the two cases is
also plotted. The method for choosing the charge profile of
the load is described below.
If the repelling force is too large and the beam too long,

the electrons in the sheath will reverse the direction of their
transverse velocity at some !r, where

drb
d! j!¼!r

¼ 0, and,

consequently, Ezð!rÞ ¼ 0. This is a very undesirable con-
figuration because it implies that the front of the bunch
feels a much stronger accelerating force than the back.
We are interested in trajectories for which rbð!> 0Þ

decreases monotonically. " may then be expressed as a

function of rb: "ð!Þ ¼ lðrbÞ. Substituting r00b ¼ r0b
dr0b
drb

,

where the prime denotes differentiation with respect to !,

Eq. (1) reduces to
dr0b
drb

¼ 4lðrbÞ'r2b½2ðr0bÞ2þ1)
r3
b
r0b

, which can be

integrated to yield

Ez ’
1

2
rb

drb
d!

¼ ' rb
2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

R
rb lð$Þ$d$ þ C

r4b
' 1

s
(2)

First we comment on salient features of the unloaded
case ðlðrbÞ ¼ 0Þ. Evaluating the constant in Eq. (2) from
the condition Ezðrb ¼ RbÞ ¼ 0, we obtain:

EzðrbÞ ’
1

2
rb

drb
d!

¼ ' rb
2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
b

r4b
' 1

s
; Rb & rb > 0:

(3)

Equation (3) can be integrated from the top of the bubble
rbð! ¼ 0Þ ¼ Rb to yield the innermost particle trajectory
for 0< rb * Rb:

!

Rb
¼ 2E

$
arccos

$
rb
Rb

%&&&&&&&&
1

2

%
' F

$
arccos

$
rb
Rb

%&&&&&&&&
1

2

%
; (4)

whereFð’jmÞ,Eð’jmÞ are the incomplete elliptic integrals
of the first and second kind [18].
To minimize the energy spread on the beam, we seek the

beam profile that results in Ezðrb * rsÞ ¼ 1
2 rb

drb
d! jrb¼rs ’

const + 'Es within the bunch. The shape of the bubble in
this case is described by the parabola r2b ¼ r2s ' 4Esð!'
!sÞ. For 0 * ! * !s, Ez is given by Eq. (3). Es is found by
requiring that the wakefield is continuous at !s: Es ¼
rs
2
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
b

r4s
' 1

r
. For !s * ! * !s þ r2s

4Es
, where !s þ r2s

4Es
is

the location at which the sheath reaches the !-axis, the
profile of "ð!Þ that leads to a constant wakefield is trape-

zoidal with maximum at "ð!sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E4
s þ R4

b

24

q
and minimum

at "ð!s þ r2s
4Es

Þ ¼ E2
s

"ð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E4
s þ

R4
b

24

s
' Esð!' !sÞ (5)

and the total charge Qs ¼ 2#
Rr2s=ð4EsÞ
!s

"ð!Þd! is

FIG. 1 (color online). The electron density from a PIC simu-
lation with OSIRIS [19] for kpRb ¼ 5 is presented. The beams
move to the right. The broken black line traces the blowout
radius in the absence of the load. On the bottom, the red (black)
line is the lineout of the wakefield Ezð!; rb ¼ 0Þ when the beam
load is present (absent).
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for the usable area and using the formula 1 /kp!c /!p"5.3
"105 /#np, we can write the maximum number of particles
in Eq. $3% as

N0 " &#n

np
'npkp

−3 "
1.5 " 108

#np(1018 cm−3)
&#n

np
' . $7%

In linear theory the perturbation of the wake is by as-
sumption small #n /np$1. An upper limit on N0, above
which nonlinearities become important, can be estimated
from Eq. $7% by using #n /np*1. For example, for a density
np=1017 cm−3 the maximum amount of loaded charge in a
linear wake cannot exceed 5"108 particles or 80 pC. Even
this result is an overestimate, because it relies on the assump-
tion that all of the energy in the wake is absorbed by the
bunch. In the linear regime this can only occur when the
accelerating field is very weak. High energy physics applica-
tions need bunches with nano-Coulombs of charge. One way
to increase the charge is to operate at substantially lower
densities, but this leads to lower acceleration gradients.
Therefore, in order to increase the amount of loaded charge,
we need to increase the energy available in the part of the
wake that can be absorbed. This requires pushing #n /np
and/or Aeff into nonlinear regimes. We will show next that
3D nonlinear wakes have ideal properties for loading and
accelerating electron beams. For example, the accelerating
field is independent of r, the focusing forces are linear in r,
and unlike in a linear wake, these properties do not change
when the wake is loaded. $Another possible option discussed
in Ref. 33 is to use wide linear wakes and load wide trailing
beams, but such beams can be susceptible to transverse
breakup.%

III. PHYSICAL PICTURE

A 3D nonlinear plasma wake is characterized by the
shape of the ion channel, which can be represented by the
trajectory of the innermost plasma electron in the surround-
ing sheath.31,32 This trajectory rb$%%, where $% ,r% are cylin-
drical coordinates with %=ct−z and the driver moves to-
wards positive z, defines the boundary of the ion channel or
equivalently the blowout radius. The maximum value for
rb$%% is Rb. Such a trajectory is sketched in Fig. 2 where the
electron density is plotted using data from a self-consistent
particle-in-cell simulation using the code OSIRIS.34 Above the
%-axis we show the electron density $in green%, the acceler-
ating field $in blue%, and decelerating field $in pink%. Below
the %-axis we show the plasma density along with the charge
density of the beam driver and the beam-loaded bunch. This
description of the wake in terms of the trajectory of the in-
nermost electron rb$%% works well, except at the very front
and the very back of the bubble, where electron trajectories
cross. Hereafter, we adopt normalized units, with length nor-
malized to the skin depth c /!p, density to the plasma density
np, charge to the electron charge e, and fields to mc!p /e. The
wakefield Ez in each transverse slice was found31,32 to be
completely defined in terms of the local radius of the ion
channel rb and the slope of the sheath drb /d%, specifically,

Ez$%,r% = Ez(rb$%%) =
d

d%
+1

4
(1 + &$rb%)rb

2, , $8%

where &$rb% depends on the width of the plasma sheath and
is a weak function of rb.

In Refs. 31 and 32 it was also shown that the innermost
particle trajectory is described by the differential equation,

A$rb%
d2rb

d%2 + B$rb%rb&drb

d%
'2

+ C$rb%rb =
'$%%
rb

, $9%

where A, B, and C are functions, which depend on rb (and
&$rb%). The term '$%%=-0

(r(nb$r% /np)dr on the right hand
side of Eq. $9% represents the charge per unit length of the
electron beam driver and/or load. For a laser driver, a term
that depends on the ponderomotive force can be added to the
right hand side of Eq. $9%. In the ultrarelativistic limit, where
the maximum blowout radius greatly exceeds a skin depth,
the contributions from the sheath surrounding the ion
channel are ignored because its width is much smaller
than the width of the ion channel Rb)3
⇒ (A$rb% ,B$rb% ,C$rb% ,&$rb%)→ $rb

2 /4,1 /2,1 /4,0%. In this
limit the shape of the sheath is described by $see Refs. 31
and 32%

rb
d2rb

d%2 + 2&drb

d%
'2

+ 1 =
4'$%%

rb
2 $10%

and the wakefield Ez$% ,r% becomes

Ez$%,r% = Ez(rb$%%) =
1
2

rb
drb

d%
. $11%

FIG. 2. $Color% The plot is in cylindrical coordinates $r ,%% and the blowout
radius is Rb. The electron density is shown in green and the driver is as-
sumed to be an electron beam. In the top half the pink $blue% color repre-
sents the decelerating $accelerating% field. In the bottom half the innermost
electron trajectory is sketched. As the innermost electron approaches the
trailing electron bunch it feels a repelling force $green arrow%, which tends
to counter the accelerating and focusing force $blue arrow% due to the ions.
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Total charge and efficiency in the blowout regime

Maximum charge in the blowout

Note that the wakefield is independent of r. Here we are
interested in the back half of the bubble, where the quantity
2!"!#" is the charge per unit length of the accelerating
bunch. In the rest of the paper, we use these equations to
analyze beam loading. We note that for smaller blowout ra-
dius Eq. !9" can be solved numerically.

In linear theory an ultrashort bunch can absorb all of the
energy in the wake. This is not the case in the nonlinear
wakes we consider here. Let us assume that an ultrashort
bunch is loaded at the location where the broken line in Fig.
2 intersects the #-axis. For the bunch to absorb all of the
energy in the plasma wave would mean that the sheath would
follow the broken line and that the plasma would be quiet
after that. However, a bunch with very large negative charge
per unit length repels the electrons in the sheath and delays
them from returning on axis. As a result, the presence of the
bunch causes the sheath to bend away from the #-axis instead
of toward it.

On the other hand, a bunch with finite length and charge
per unit length allows the electrons in the sheath to reach the
axis while slowly decreasing their transverse momentum.
Ideally the electrons should arrive on axis with no transverse
momentum, which implies zero longitudinal momentum as
well !see Refs. 31 and 32". This configuration leads to nearly
100% absorption of the energy available in the bubble.

Unlike the linear case, in a 3D nonlinear wake the fo-
cusing forces depend linearly on r and the accelerating fields
are constant with r. The beam’s self-fields cancel to order
1 /$2. The forces inside the ion channel for a cylindrically
symmetric wake in the nonlinear regime are F!=!!% and
Fz=−"% /"#, where % is the pseudopotential defined as %
=&−Az, with & as the scalar potential and Az as the vector
potential for the plasma fields in the Lorentz gauge.31,32 In
the blowout regime %= #!1+'"rb

2!#"−r2$ /4, therefore, F!

=−r /2 and Fz=−!1 /4"#d!1+'"rb
2 /d#$. It immediately fol-

lows that both "F! /"#=0 and "Fz /"r=0 even in the pres-
ence of the trailing bunch. Because the load changes the
shape of the sheath as a function of # it can only change Fz,
while F!=−r /2 and "F! /"#="Fz /"r=0 as without the load.
That is, there are no distortions in the focusing field and no
transverse variations of Ez.

31,32 However, variations in the
accelerating force Fz with # can induce significant energy
spread for a bunch without a properly tailored profile, unless
the bunch is extremely short and it contains very low charge.
Such a bunch would only absorb a minute fraction of the
energy available in the plasma wake.

A major issue in designing an accelerator is ensuring that
the wakefield within the bunch is relatively flat, so that all of
the electrons feel the same accelerating force. Before we
detail the calculations, we show how this could be possible
using insight from the above discussion. Such an optimum
design is sketched in Fig. 3. The back half of the bubble is
plotted in cylindrical coordinates !# ,r" in the bottom portion
of the figure. The blue curve, which starts at rb!#=0"=Rb,
tracks the innermost particle trajectory in the absence of an
electron bunch. If an electron bunch with spot size rw
(rb!#F"%rF is loaded between #t and #F—between the bro-
ken lines—the innermost particle trajectory is modified as

shown by the black curve. Specifically, due to the presence
of the electron bunch, which repels the electrons in the
sheath, the sheath bends slightly upward. Behind the bunch,
for #)#F, the electrons in the sheath only feel the force from
the ion column just as for #(#t. However, since some of the
energy in the bubble has been absorbed by the bunch, the
trajectory segment for #)#F corresponds to a bubble with
maximum radius R̃b!(Rb". The entire trajectory of the inner-
most particle is found by following !from right to left" first
the blue curve, then the black segment joining the blue and
red curves, and finally the red curve until rb=0. The wake-
field after the first bubble consists of bubbles with maximum
radius R̃b.

The resulting wakefield Ez is plotted in the upper portion
of Fig. 3. The blue segment corresponds to Ez ahead of the
bunch, the black segment to Ez within it, and the red segment
to Ez behind it. We will show below that the charge/current
profile that leads to Ez being constant within the bunch is an
inverse trapezoid as in the upper plot of Fig. 3. This prevents
the bunch from breaking apart, thereby optimizing the trans-
former ratio. Figure 3 was plotted using the analytical results
from the following section.

FIG. 3. !Color" The plot on top shows the wakefield Ez in the presence of a
trapezoidal bunch with charge per unit length such that Ez is constant within
the bunch. The wakefield ahead of !behind" the bunch is colored blue !red"
and corresponds to a bubble with radius Rb !R̃b" plotted in the bottom part of
the figure. The two bubbles are connected with the parabolic segment
!black", which represents the shape of the sheath between the two broken
lines !#t and #F in the text".
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Smaller Et: increases but final 
energy gain lowers

Efficiency

Efficiency: ratio between absorbed energy 
and total wakefield energy

Witness goes all the way until the bubble 
closes (rb=0)

actual beam charge

!b =
QF

Qtr
. !34"

We note that for "#F→"#tr⇒QF→Qtr and the efficiency
approaches 100%. Equation !34" is only valid for optimal
trapezoidal bunches but it may be generalized for arbitrary
electron bunches by writing the efficiency as the ratio of the
rate of energy gain by the arbitrary bunch over the rate of
energy gain by the optimal trapezoidal bunch,

!b #
2$$0

#FEz!#"%!#"d#

EtQtr
. !35"

We can now use Eq. !35" to calculate the efficiency of an
optimally loaded flat-top bunch discussed earlier. We assume
that the bunch extends all the way to the back of the bubble.
For such a bunch 2$$0

#FEz!#"%!#"d#=2$&0"#%Ez&"#. From
Eqs. !16", !A7", and !A8" we have &0, Ez, and "#, which we
can use to obtain

Q%Ez&"# = 2$&0
rt

2

4
=

$Rb
4

16
. !36"

Thus, a flat-top bunch with &0=Rb
4 / !8rt

2" leads to nearly
100% efficiency as well. For smaller charge per unit length,
&0'Rb

4 / !8rt
2", the plasma electrons reach the #-axis quickly

with large kinetic energy. As a result, they overshoot and
continue to oscillate. For &0(Rb

4 / !8rt
2" there is a minimum

radius rm='4&0−'!4&0"2+Rb
4−8&0rt

2, for which Ez!#m"
=0 and the innermost electron’s transverse velocity changes
sign as described earlier. Since the plasma electrons do not
return on the #-axis they still have some potential energy.
Thus, for &0!Rb

4 / !8rt
2", there is always some energy in the

plasma behind the bunch.
We see that both for an optimal flat-top bunch and for a

trapezoidal bunch nearly 100% efficiency can be achieved
and the total accelerating force Q%Ez&"# is given in both cases
from Eq. !27". In order to compare the linear !with A=Aeff"
to the nonlinear regime we have

QlEl,t

mc2/re
=

1
8$

sin2!kp)0"(n1

n0
)2

, !37"

QtrEt

mc2/re
=

1
43 !kpRb"4. !38"

In the blowout regime even a moderate radius kpRb*5 leads
to a total accelerating force three orders of magnitude larger
than that in the linear regime. The strong dependence on the
blowout radius kpRb comes for the most part from the charge,
which scales as Qtr* !kpRb"3.

The physical explanation for the fact that the blowout
regime provides much higher total accelerating force and the
potential for high beam loading efficiency while keeping the
acceleration gradients high is as follows: The total energy per
unit length in a wake scales as Ez

2A. In the linear regime, the
amplitude of Ez behind the bunch is reduced while A remains
unchanged. In the nonlinear regime both Ez

2 and A scale as

Rb
2, so that both the wake amplitude Ez and the spot size A

decrease behind the bunch, leading to a more efficient ab-
sorption process.

In Fig. 6 the electron density from four 2D cylindrical
simulations with OSIRIS is presented. In Fig. 6!a" there is no
externally injected electron bunch and the radius of the
bubble in the second bucket is similar to that in the first
bucket. In Fig. 6!b", where an optimal trapezoidal bunch is
loaded at the back of the wake, the blowout radius in the
second bucket decreases by a factor about 1/2 and the effi-
ciency becomes !b*1− !1 /2"4=93.75%. Similar results are
observed for trapezoidal bunches loaded at different loca-
tions and shown in Figs. 6!c" and 6!d". This confirms the
theoretical prediction that, in contrast with the linear regime,
the efficiency is independent of the accelerating gradient.

C. Evolution in time

In designing an accelerator we must take into account
the evolution of the wake in time. If the wake is driven by an
ultrarelativistic electron beam the accelerating electron
bunch can be assumed to be phase locked with the wake. In
this case a bunch with optimal trapezoidal profile conserves
its energy spread throughout the acceleration process. For a
laser driver, however, the accelerating electron bunch moves
faster than the wake and it samples multiple phases of the
accelerating field. As a result, even if the current profile of
the bunch is chosen so that the wake is initially flat, this
stops being the case as soon as the bunch moves to a differ-
ent phase.

To study this issue we use the theoretical solutions de-
rived for flat-top bunches. Let us assume that a flat-top bunch
is initially loaded so that C!#t"=0. After some time the bunch
finds itself at a new location #t,2'#t⇒rt,2(rt and therefore
C!#t,2"'C!#t"=0. As the bunch keeps approaching the cen-
ter of the bubble, C!#t,2" decreases. We can see from Fig.
4!d" that when C!#t,2"'0 there is a minimum for Ez, which
occurs within the electron bunch. As a result, there is a re-
gion around this minimum for which dEz /d#+0.

FIG. 6. !Color" The electron density from four simulations with kpRb=5. !a"
A case without a beam loaded bunch. ,!b"–!d"- Cases with optimal loading,
using trapezoidal bunches with different lengths.
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Engineering formulas for the maximum injected charge
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Scaling for maximum number of particles
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Limits to energy gain in LWFA  

Dephasing, Diffraction, Depletion

�E = eEzLacc

Diffraction 
laser pulse diffracts in 
scale of Zr (Rayleigh length) ~ few mm

Depletion 
laser pulse looses its energy to the plasma in Ldepl

for small a0, Ldepl >> Ldph ; for a0 > 1, Ldepl ~ Ldph 
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Stable propagation in a plasma wakefield accelerator

linear focusing forces lead to 
extremely stable beam propagation 

=0 for matched 
propagation

Stable wakefields are critical to provide high 
quality bunches with high energies

Beam waist evolution in blowout

Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime

W. Lu,1 C. Huang,1 M. Zhou,1 W. B. Mori,1,2 and T. Katsouleas3
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We present a theory for nonlinear, multidimensional plasma waves with phase velocities near the speed
of light. It is appropriate for describing plasma waves excited when all electrons are expelled out from a
finite region by either the space charge of a short electron beam or the radiation pressure of a short intense
laser. It works very well for the first bucket before phase mixing occurs. We separate the plasma response
into a cavity or blowout region void of all electrons and a sheath of electrons just beyond the cavity. This
simple model permits the derivation of a single equation for the boundary of the cavity. It works
particularly well for narrow electron bunches and for short lasers with spot sizes matched to the radius of
the cavity. It is also used to describe the structure of both the accelerating and focusing fields in the wake.

DOI: 10.1103/PhysRevLett.96.165002 PACS numbers: 52.38.Kd, 52.35.Mw, 52.65.Rr

In plasma-based acceleration, a plasma wave with a
phase velocity close to the speed of light is driven by a
short intense particle or laser beam. When a laser pulse is
used it is called laser wakefield acceleration (LWFA) [1]
and when a particle bunch is used it is called plasma
wakefield acceleration (PWFA) [2]. Most analytical theo-
ries to date on plasma waves and wakefield excitation have
either been restricted to linear fluid theory [2–4] or one-
dimensional nonlinear fluid theory [5,6]. In recent PWFA
and LWFA experiments [7,8] the wakes are excited in the
so-called blowout regime where electrons are expelled
radially. In this regime neither fluid nor one-dimensional
(axial) theory applies. These wakes are complicated be-
cause their fields are electromagnetic, relativistic mass
effects are important, and trajectory crossing occurs.

In the blowout regime all the plasma electrons are
expelled from a region around the axis, leaving behind a
uniform column of plasma ions. The column is surrounded
by a thin layer of the expelled electrons which is sur-
rounded by a weakly perturbed plasma with a thickness
of a linear skin depth. The ions pull the electrons back to
the axis in about a plasma period (or equivalently a plasma
wavelength of 2!c=!p). These electrons overshoot,
thereby creating the wake. The first oscillation or bucket
is of most interest to plasma-based acceleration. This is
illustrated in Fig. 1(a) where the electron density resulting
from a short electron bunch is plotted from a fully non-
linear particle-in-cell (PIC) simulation using the code
OSIRIS [9]. The electron bunch is propagating to the left
in the variable " ! ct" z. The blowout or ion column
radius, rb, is also defined in this plot.

Creating wakefields in the blowout regime was first
investigated by Rosenzweig et al. [10] for PWFA case of
electron beam drivers. These wakefields had perfectly
linear focusing fields and had radially independent accel-
eration fields for electrons. Similar wakefields can be
excited by laser drivers. In recent work on LWFA the
term bubble regime [11], instead of blowout regime, is

used. Despite this intense interest, little theory for how
the wakefields in the blowout regime scale with the elec-
tron beam or laser beam parameters currently exists; and
no theory exists for how beam loading occurs within the
ion channel. In addition, while there are expressions for the
nonlinear frequency shift [5] for one-dimensional wakes
there is no such expression for multidimensional wakes.
Recently Barov et al. [12], Lotov [13], and Kostyukov
et al. [14] each have analyzed some aspects of the blowout
regime; however, these analyses do not predict the shape of
the ion column (bubble) or of the field structures. In this
Letter, we will present a predictive theoretical model for
wake excitation in the blowout (‘‘bubble’’) regime.

We begin with Maxwell’s equations in the Lorentz
gauge and the equation of motion for a plasma electron.

FIG. 1 (color). (a) Electron density with the defined blowout
radius rb#"$ and (b) "##" Jz=c$ profile from a PIC simulation.
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Stable propagation in a laser wakefield accelerator

Laser pulse body guiding
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 W. Lu et al. PR-STAB (2007)
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Scalings for the acceleration distance in the blowout regime

Acceleration length

vetch
c

Letch ' c⌧FWHM

vetch
c

=
!2
p

!2
0

Letch ⇠ c⌧FWHM
!2
0

!2
p

Pump depletion:

Dephasing:

(c� v�)

c
Ld = Rb

v� = vg � vetch = 1� 3

2

!2
p

!2
0

Ld =
2

3

!2
0

!2
p

Rb

Minimum pulse duration

De-phasing larger or equal to pump 
depletion:

⌧FWHM � 2Rb

3

Optimal condition: no energy left in the 
driver after dephasing:

⌧FWHM =
2Rb

3

 W. Lu et al. PR-STAB (2007)



L. O. Silva | CERN, November 2014 

Scalings for the maximum energy in a LWFA
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Blowout regime vs linear regime
Maximum charge

Maximum energy

Beam quality

Positron acceleration for a linear collider

The blowout regime maximizes the charge that can be accelerated. Thus the number of 
energetic particles can be much larger in the blowout regime.

In the laser case, external guiding structures are required to focus the laser pulse in the 
linear regime. In the blowout regime, the laser can be self-guided by the plasma wave it 
creates. This leads to very stable accelerating and focusing fields.

The maximum energy is larger in the linear regime than in the non-linear regime as it 
implies the use of lower densities where electrons take longer to dephase and the laser 
takes longer to deplete. 

Focusing foces are linear in the blowout regime. Thus, particle bunches can accelerate with 
little emittance growth. This is generally not possible in the linear regime as the focusing 
force is non-linear.

Stability

Recent work shows that positrons can accelerate in non-linear regimes. Until recently this 
was thought to be impossible.



L. O. Silva | CERN, November 2014 

Contents

Motivation  
Plasmas waves are multidimensional

Blowout regime   
Phenomenological model

Theory for blowout   
Field structure and beam loading

Challenges  
Positron acceleration, long beams, polarized beams

Summary  



L. O. Silva | CERN, November 2014 

Match laser spot size to 
bubble radius

Linear focusing 
force

Electric fields created by laser pulse

Dynamics of the laser and e- define key parameters  

W. Lu et al. PR-STAB (2007)
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Positrons can not ride large amplitude plasma waves because 
they are quickly defocused away from the plasma wave.

World’s biggest wave (Nazaré, Portugal) 

…but not for positron acceleration

Large amplitude plasma waves ideal for electron acceleration…
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Suck-in regime for positron beam and electron acceleration

positively charged driver
(tail positrons may accelerate)

sucked-in 
electrons

bubble

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1248
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Figure 3 | Evolution of the proton bunch and electron bunch in the plasma. a–h, Snapshots of the combined longitudinal phase space of the driver and the
witness bunches (energy versus coordinate) (a–d) and corresponding energy spectra (e–h). The snapshots are taken at acceleration distances L=0, 150,
300, 450m. The electrons are shown as blue points and the protons are depicted as red points.

channel, it is seen that the tail of the proton bunch loses significant
amounts of energy, while the electron bunch picks up energy.
Figure 3e–h shows the energy spectra of the driver and of thewitness
bunches at the chosen locations along the plasma channel.

The mean energy of the electron bunch as a function of the
distance along the channel is shown in Fig. 4. After 450m of
acceleration, the electron bunch reaches a mean energy of 0.62 TeV
per electron. The spread in the electron energy is also shown in
Fig. 4, and is about 1% at the highest energies. This value could
probably be improved with optimization of the witness bunch
shape. The overall energy conversion from the driver bunch to the
witness bunch after this distance was nearly 10% with nearly 100%
of injected electrons present in the accelerated bunch. As can be
clearly seen in Fig. 3a–d, the proton-bunch phase space changes
considerably over the length of the channel, and the acceleration
of the electron bunch decreases significantly after about 400m.
The proton bunch acquires a large spread in both momentum and
position. After 450 m propagation, the proton bunch length grows
somuch that it leaves the resonance condition and the plasma-wave
excitation becomes inefficient.

Simulations indicate that the normalized transverse emittance
of the electron bunch is not significantly affected by the plasma
acceleration (see also ref. 35). However, it should be noted that the
scattering of electrons on plasma ions was not included in the PIC
simulations. A separate simulation usingGEANT4 indicates that the
growth in emittance from this effect will be less than 0.02 nm-rad
after 500m of propagation in the plasma.

Outlook
The simulation results indicate that a proton bunch could indeed
be used to accelerate a bunch of electrons to high energies. Further
tuning of parameters would probably lead to improvements in
simulation results. The key issue for the future applicability of
proton-driven plasma-wakefield acceleration will be the ability
to phase rotate a high-energy bunch of protons in such a
way that the bunch is very short, of order 100 µm or less.
Clearly, advances in longitudinal proton beam cooling would make
this task much simpler.

The acceleration of positrons has not been addressed here,
and could be considerably more difficult than the acceleration
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Figure 4 | Electron energy versus distance. a,b, The mean electron energy
in TeV (a) and the r.m.s. variation of the energy in the bunch as a
percentage (b) as a function of the distance travelled in the plasma.

of electrons36. Initial investigations indicate that the electric field
configurations do not have the broad equilibrium region seen for
electron bunches, such that achieving a low energy spread will be

4 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

Proton driven plasma wakefield accelerator

‣ p+ plasma wake similar to e+ 

‣ beam loading is also identical 
‣ requires p+ bunches shorter than c/ωp

Model for suck-in regime
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LG lasers have doughnut intensity profiles

Electric field isosurfaces

Transverse slice of laser envelope
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Doughnut-shaped intensity profile
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positrons can 
accelerate here

J. Vieira and J. T. Mendonça PRL 112, 215001 (2014)

Positron acceleration using lasers with Orbital Angular Momentum
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Onset of positron focusing and acceleration

zoom of the simulation box

Plasma electrons merge on-axis 
providing positron focusing

Propagation direction
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J. Vieira and J. T. Mendonça PRL 112, 215001 (2014)

focused+accelerated 
positrons

laserplasma

Demonstration of positron acceleration 

Three dimensional simulations confirm positron acceleration 
mechanism in strongly non-linear regimes
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Donut electron beam

Positron beam

Donut plasma wave

Positron acceleration using SLAC type ring electron bunches
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What about long beams?
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Un-polarized beam Polarized beam

Beam polarization is the average spin vector including 
the contributions from all beam particles

Spin precession in plasma waves
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T-BMT equations define the spin precession dynamics

stochastic spin diffusion mechanism, which can polarize
electron beams in circular accelerators. On the other hand,
the spin precession is a deterministic process, and can be
examined by treating the spin as an intrinsic electron
magnetic moment.

The spin precession is an important mechanism that has
a decisive role in the design of accelerators. In circular
accelerators, the spin precession can depolarize the beam
completely if the spin precession frequency is a multiple of
the orbital frequency (depolarizing resonance) [1,2]. In
linear accelerators (linacs) and colliders, however, the
typical depolarizations are as low as 0.1%–0.5% for
0.5–1 TeV accelerators and colliders [5]. This work is
then focused on the dynamics of spin precession in plasma
wakes, while the nondeterministic spin diffusion is left for
a future work.

This paper shows that the electron beam depolarization
during the acceleration in PBAs may fulfill the require-
ments for high energy physics experiments, provided
that the beam emittances are sufficiently low, and shows
that depolarizations of 0.1%–0.2% can be achieved in 100–
500 GeV accelerators. In Sec. II, the Thomas–Bargman-
Michel-Telegdi (T-BMT) equations, which describe the
spin precession of relativistic charged particles, are used
to derive a set of coupled equations for the spin precession
in plasma accelerators. This analysis reveals that the spin
precession is fully determined by the transverse forces that
act on relativistic particles. In Sec. III, analytical expres-
sions for the depolarization associated with zero-emittance
electron beams are derived. In Sec. IV it is shown that
externally guided propagation regimes lead to lower depo-
larization rates in comparison to self-guided propagation
regimes. In addition, it is found that the depolarization of
higher energy plasma accelerators is lower than that of
lower energy plasma accelerators. In Sec. V the model is
compared with numerical simulations in scenarios that go
beyond the validity limits of the analytical theory. Two
approaches were used: in the first approach, the prescribed
electromagnetic fields and trajectories of electrons in the
blowout regime are considered; the second approach uses
the fully self-consistent electromagnetic fields and electron
trajectories from 3D PIC simulations in QUICKPIC [32].
Finally, in Sec. VI, the conclusions are stated.

II. SINGLE ELECTRON SPIN DYNAMICS

In order to determine the polarization of the beam, the
spin precession of a single electron is first examined. For
nonrelativistic electrons, the spin precession follows:

ds

dt
¼ !"B ¼ #g

s" B

2
; (1)

where ! ¼ #gs=2 is the electron intrinsic magnetic
moment, g ’ 2:002 322 8 is the dimensionless magnetic
moment of the electron (g factor), t is the time normalized

to the inverse of the plasma frequency!p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4"e2n0=me

p
,

with e and me being the electron charge and mass, n0 the
plasma density, B is the magnetic field normalized to
mec!p=e, and where c is the speed of the light.
Equation (1) indicates that the spin of a nonrelativistic

(NR) electron—with relativistic gamma factor # ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# v2

p
* 1, with v denoting its velocity normalized

to c—precesses around the magnetic field lines with fre-
quency!NR ¼ #!B ¼ gB=2. However, most interesting
particle acceleration scenarios use ultrarelativistic electron
beams with # $ 1. In order to obtain a correct description
of the spin precession dynamics for this case, the relativ-
istic generalization of Eq. (1), which is not covariant, is
required, and given by [31]

ds

dt
¼#

"#
aþ 1

#

$
ðB#v"EÞ#v

a#

#þ1
v (B

%
"s¼!"s:

(2)

All the quantities in Eq. (2) are in the laboratory frame,
except for s, which is an intrinsic property of the electron
and is, for that reason, described in the electron rest
frame. Moreover, the precession frequency ! is ! ¼
½ðaþ 1=#ÞðB# v" EÞ # va#v (B=ð#þ 1Þ*. The quan-
tity a ¼ ðg# 2Þ=2 ’ 0:001 161 4 is the anomalous mag-
netic moment of the electron, and E is the electric field
normalized to me!p=e.
Although the T-BMTequations are strictly valid whenE

and B are homogenous, they can still be used as long as
Stern-Gerlach–type forces (FS-G) can be neglected [2], i.e.
as long as the spin dynamics does not change the electron
trajectories. These forces are proportional to FS-G/
rð! (BÞ/ ðg@=2Þr0!$B, where B / r0 cosð!$tÞ was as-
sumed, and where!$¼!p=

ffiffiffiffiffiffi
2#

p
is the betatron frequency.

Thus, Lorentz forces, proportional to FL / Eþ v"B /
r0 $ FS-G / @r20= ffiffiffiffi

#
p

, dominate the electron dynamics in
the plasma wave, validating Eq. (2) for PBAs.
Investigation of Eq. (2) in cylindrical coordinates pro-

vides a clear understanding of the physics of the spin
precession for a single electron. In cylindrical coordinates,
the spin vector is s ¼ ðsr; s%; szÞ, where si ¼ s ( ei, and
where ei corresponds to the unit vectors in the radial (er),
azimuthal (e%), and longitudinal (ez) directions. In addi-
tion, ðr;%; zÞ are the radial, azimuthal, and longitudinal
coordinates. To simplify the notation, each spin component
is normalized to the absolute value of the electron spin,
such that s takes values between #1 and 1.
The electric field inside the plasma wave has both

radial and longitudinal components E ¼ Erer þ Ezez,
with Ez + Er. Moreover, for electrons with # $ 1, vr ,
vz ’ 1, which means that the first term on the right-hand
side of Eq. (2) coincides with the radial plasma focusing
force Fr felt by a relativistic electron:

ðB#v"EÞ¼ ðB%#vzErþvrEzÞe%’ ðB%#ErÞe%
-Fre%; (3)

J. VIEIRA et al. Phys. Rev. ST Accel. Beams 14, 071303 (2011)

071303-2

International Linear Collider

Large (>80%) 
polarisations at 

interaction point

Relativistic spin-precession equation
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The individual beam particle spin 
variations are very small even for the 

standards to conventional accelerators

The total beam polarisation variations are 
also very small and are on the 

order 0.01 % for very high 
accelerations

Spin precession is very small in plasma waves in the 
blowout regime

In the conditions of Eq. (7), the electron trajectories are
almost planar, and ds!=dt ! 1 which implies that s! and
s2r þ s2z ¼ 1$ s2!0 are conserved, with s!0 the initial

tangential spin component. Under these conditions, the
expression for the longitudinal component of the spin is
found by combining Eqs. (4a) and (4b), yielding

szðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$s2!0

q
sin

"
$
Z t

0

#
aþ1

"

$
Frdtþarctan

#
sz0
s!0

$%
; (8)

where sz0, and sr0 are the initial longitudinal and radial spin
components, and where the radial component of the spin is
given by s2rðtÞ ¼ 1$ s2!0 $ s2zðtÞ. Equation (8), which is

valid for arbitraryFr as long as Eq. (7) is satisfied, describes
the spin precession of a single electron in the PBA.

The radial plasma focusing force in Eq. (8) depends on
the electron trajectory as Fr ¼ Fr½rðtÞ(. The radial electron
trajectory for low emittance electron beams (hjp?0ji !ffiffiffiffiffiffiffi
#"

p hjx?0ji) is obtained from Eq. (6) by replacing x?ðtÞ
by rðtÞ, and x?0 by ðx0jx0jþ y0jy0jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q
) r0. Thus

Eq. (8) can be rewritten as

sz½"ðtÞ( ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ s2!0

q
sin

"
r0!½"ðtÞ( þ arctan

#
sz0
sr0

$%
; (9)

where !½"ðtÞ( ¼ $½ð1þ a"Þð#2"0="
3Þ1=4( sin½2 ffiffiffiffi

#
p *

ð ffiffiffiffi
"

p $ ffiffiffiffiffiffi
"0

p Þ=Eaccel(. Equation (9) gives the evolution of
the longitudinal spin precession component for a single

electron that propagates under linear focusing forces and
constant accelerating gradients. It shows that sz oscillates
with the betatron frequency, and that the amplitude of the
oscillations depends directly on the electron energy, since
! is a function of ". Figure 1 illustrates the evolution of sz
for a single electron according to Eq. (9) with r0 ¼
0:5c=!p, "0 ¼ 103, sz0 ¼ 0:9, and sr0 ¼ 0:1, showing
that the spin precession amplitude is on the order of
sz0=100 thus suggesting that plasma accelerators can be
efficiently used to accelerate polarized electron beams in
conditions that are relevant for high energy physics
experiments.
The qualitative evolution of sðzÞ given by Eq. (9) is

represented in Fig. 2. If the spin of the electron initially
lies in the first or second quadrants of the ðsr; szÞ phase space
[i.e. if $$<arctanðsz0=sr0Þ<0], sz reaches its maximum

global extremum, sz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ s2!0

q
, when " is higher than

"> "1 ¼
½2 arctanðsz0=sr0Þ $ $(4

16a4r40#
2"0

; (10)

FIG. 1. Evolution of the longitudinal spin component sz as a
function of " for a single electron with zero initial velocity, with
r0 ¼ 0:5c=!p, "0 ¼ 103, sz0 ¼ 0:9, and sr0 ¼ 0:1. The solid
lines denote the envelope of the oscillations. The dashed lines
represent szðtÞ. The amplitude of the oscillation is on the order of
sz0=100 for an electron accelerating to 1 TeV, indicating the
potential of plasma based accelerators to accelerate polarized
electron beams. The period of the oscillation of sz is equal to the
betatron oscillations period.

FIG. 2. Qualitative temporal evolution of sz (solid-gray lines)
during acceleration. Part (a) shows szðtÞ for "< "1, (b) for "1 <
"< "2, and (c) for "> "2. The solid-black lines are smax=min

z .
The circumferences show the possible trajectories of the spin in
the ðsz; srÞ phase space for constant s!. The arches on top
represent the trajectory ðsz; srÞ for the time frame correspondent
to the left plots.
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