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Radiation effects in electron storage rings

Average radiated power restored by RF
• Electron loses energy each turn U0 ≅ 10– 3 of E0

• RF cavities provide voltage to accelerate electrons
back to the nominal energy

Radiation damping
VRF > U0

Radiation damping
• Average rate of energy loss produces DAMPING of electron 

oscillations in all three degrees of freedom (if properly 
arranged!)arranged!)

Quantum fluctuations
• Statistical fluctuations in energy loss (from quantised emission 

f di ti ) d RANDOM EXCITATION f th ill tiof radiation) produce RANDOM EXCITATION of these oscillations
Equilibrium distributions

• The balance between the damping and the excitation of the 
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p g
electron oscillations determines the equilibrium distribution of 
particles in the beam



Radiation is emitted into a narrow cone

θ = 1
γ ⋅ θe

Synchrotron Radiation Basics, L. Rivkin, EPFL & PSI, Frascati, November 2008

v << c v ≈ c



Synchrotron radiation power

P ∝ E2B2Power emitted is proportional to:
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U =C ⋅ E4

4 γ 4

hc 197 Mev fm
Energy loss per turn:
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U0 =Cγ ⋅ ρ U0 = 4π
3 αhcγ

ρ



RADIATION DAMPINGRADIATION DAMPING

TRANSVERSE OSCILLATIONS



Average energy loss and gain per turn
E t l t di t ll O l th l it di l tEvery turn electron radiates small 
amount of energy
  

E1 = E0 – U0 = E0 1 –
U0

Only the longitudinal component 
of the momentum is increased in 
the RF cavity

only the amplitude of the 
momentum changes

E1 E0 U0 E0 1
E0

Energy of betatron 
oscillation

Eβ ∝ A2

momentum changes
  

P1 = P0 – U0
c = P0 1 –

U0
E0

A1
2 = A0

2 1 –
U0
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or A1 ≅ A0 1 –
U0
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  eVRF = U0



Damping of vertical oscillations

But this is just the exponential decay law!
   

ΔA U0 t−

The oscillations are exponentially damped

ΔA
A = –

U0
2E τteAA −⋅= 0

The oscillations are exponentially damped
with the damping time (milliseconds!)

2 TE
0

02
U

TE=τ the time it would take particle to 
‘lose all of its energy’

In terms of radiation power

E2 4

1∝τ
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and since 
γ

τ
P

= 4EP ∝γ 3E
τ



Adiabatic damping in linear accelerators

   
x′ =

p⊥
p decreases ∝ 1

E
In a linear accelerator:

  p⊥ p⊥

p p

p E

pp

In a storage ring beam passes many 
times through same RF cavitytimes through same RF cavity

RF

Cl l f t ( h i ’)Clean loss of energy every turn (no change in x’)

Every turn is re-accelerated by RF (x’ is reduced)Every turn is re accelerated by RF (x is reduced)

Particle energy on average remains constant



Emittance damping in linacs:Emittance damping in linacs:

ε ε
2

ε
4

Ω Ω Ω

2 4
ε ∝ −1γ

Ω 2 4
or

γ 2γ 4γ
γε = const.

γ 2γ 4γ



RADIATION DAMPINGRADIATION DAMPING

LONGITUDINAL OSCILLATIONS



Longitudinal motion: 
ti di ti l U RF

RF cavity provides accelerating field 

compensating radiation loss U0

0fhfRF ⋅=

RF

ca ty p o des acce e at g e d
with frequency
• h – harmonic number

0ffRF

VRF

The energy gain: τ
U0

Synchronous particle:

( )τRFRF eVU =

Synchronous particle: 
• has design energy 
• gains from the RF on the average as• gains from the RF on the average as 

much as it loses per turn U0



VRF

U0
Longitudinal motion: 
h t bilit τphase stability

Particle ahead of synchronous one
• gets too much energy from the RFgets too much energy from the RF
• goes on a longer orbit (not enough B)

>> takes longer to go around
• comes back to the RF cavity closer to synchronous part.

Pa ticle behind the s nch ono s oneParticle behind the synchronous one 
• gets too little energy from the RF
• goes on a shorter orbit (too much B)• goes on a shorter orbit (too much B)
• catches-up with the synchronous particle



Longitudinal motion: energy-time oscillations

energy deviation from the design energy, or gy g gy,
the energy of the synchronous particle

τ

ε

τ

longitudinal coordinate measured from the 
position of the synchronous electronposition of the synchronous electron



Longitudinal motion: 
damping of synchrotron oscillations 22BP E

During one period of synchrotron oscillation:

damping of synchrotron oscillations BP E∝γ

u g o e pe od o sy c ot o osc at o
when the particle is in the upper half-plane, it loses more 
energy per turn, its energy gradually reduces

  U > U0

τ

ε

when the particle is in the lower half-plane, it loses less 
energy per turn but receives U on the average so its

  U < U0

τ

energy per turn, but receives U0 on the average, so its 
energy deviation gradually reduces

The synchrotron motion is dampedThe synchrotron motion is damped
the phase space trajectory is spiraling towards the origin



Robinson theorem: Damping partition numbers

Transverse betatron oscillations 
are damped with 0

02
U
ET

zx ==ττ

Synchrotron oscillations 
are damped twice as fast 0

0

U
ET=ετ

The total amount of damping (Robinson theorem) 
depends onl on ene g and loss pe t ndepends only on energy and loss per turn

   1 + 1 + 1 =
2U0
ET =

U0
2ET J + J + Jε

the sum of the partition numbers

τx
+ τy

+ τε ET0 2ET0
Jx + Jy + Jε

Jx + Jz + Jε = 4
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the sum of the partition numbers Jx Jz Jε 4



Pγ∝E2B2
Radiation loss

Displaced off the design orbit particle sees fields that 
are different from design values

energy deviation ε
different energy: 2

γ EP ∝

different magnetic field B
particle moves on a different orbit defined by the

γ

particle moves on a different orbit, defined by the
off-energy or dispersion function Dx

b th t ib t t li t i ( )εPboth contribute to linear term in

betatron oscillations: zero on average

( )εγP
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betatron oscillations: zero on average



Pγ∝E2B2
Radiation loss

To first order in ε Urad = U0 + U′ ⋅ ε

electron energy changes slowly, at any instant it is 
moving on an orbit defined by Dx

after some algebra one can write
U′ ≡ dUrad

dE E0

U′ = U0
E 2 + DE0

k
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D ≠ 0 only when k

ρ ≠ 0



Damping partition numbers Jx + Jz + Jε = 4

Typically we build rings with no vertical dispersion

1=J 3=+ JJ

Horizontal and energy partition numbers can be 

1zJ 3+ εJJx

modified via D :

D−=1J D+= 2J

Use of combined function magnets

D1xJ D+2εJ

Use of combined function magnets

Shift the equilibrium orbit in quads with RF frequency
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q q q y



EQUILIBRIUM BEAM SIZESEQUILIBRIUM BEAM SIZES



Quantum nature of synchrotron radiation

Damping only
• If damping was the whole story, the beam emittance (size) p g y ( )

would shrink to microscopic dimensions!
• Lots of problems! (e.g. coherent radiation)

flQuantum fluctuations
• Because the radiation is emitted in quanta, radiation itself 

takes care of the problem!takes care of the problem!
• It is sufficient to use quasi-classical picture:

» Emission time is very short
» Emission times are statistically independent 

(each emission - only a small change in electron energy)

Purely stochastic (Poisson) process



Visible quantum effects

I have always been somewhat amazed that a purely quantum 
effect can have gross macroscopic effects in large machines;

and, even more,

that Planck’s constant has just the right magnitude needed to 
make practical the construction of large electron storage 
ringsrings.

A significantly larger or smaller value of h
would have posed serious -- perhaps  insurmountable --
problems for the realization of large rings.

Mathew Sands



Quantum excitation of energy oscillations
γ 3

Photons are emitted with typical energy
at the rate (photons/second) N =

Pγ

u ph

u ph ≈ h ω typ = h c γ
ρ

u ph

Fluctuations in this rate excite oscillations

During a small interval Δt electron emits photons N = N ⋅ Δ tDuring a small interval Δt electron emits photons

losing energy of

N N Δ t

N ⋅ u ph

Actually, because of fluctuations, the number is

resulting in spread in energy loss

N ± N

± N ⋅ u ph

For large time intervals RF compensates the energy loss, providing 
damping towards the design energy E0

Steady state: typical deviations from E0
≈ typical fluctuations in energy during a damping time τε



Equilibrium energy spread: rough estimate

We then expect the rms energy spread to be phuN ⋅⋅≈ εε τσ

   E0
and since                  andτε≈

E0
Pγ phuNP ⋅=γ

Relative energy spread can be written then as:

   σε ≈ E0 ⋅ uph geometric mean of the electron and photon energies!

Relative energy spread can be written then as: 
   σε

E
≈ γ λ–e

ρ λ–e = h
mec

∼ 4 ⋅ 10– 13m

it is roughly constant for all rings

E0
ρ mec

σ
• typically

σε
E0

~ const ~ 10 – 3
2ρ∝E



Equilibrium energy spread

More detailed calculations give 

i di l
• for the case of an ‘isomagnetic’ lattice ρ s = ρ0 in dipoles

∞ elsewhere

σε
E

2
=

Cq E 2

Jερ0

with

ερ0

   
Cq = 55

32 3
hc

m c 2 3 = 1.468 ⋅ 10 – 6 m
GeV 2

It i diffi lt t bt i d 0 1%

q 32 3 mec 2 GeV

It is difficult to obtain energy spread < 0.1%
• limit on undulator brightness!



Equilibrium bunch length

Bunch length is related to the energy spread
Energy deviation and time of arrival
(or position along the bunch)

ε

(or position along the bunch)
are conjugate variables (synchrotron oscillations) τ

τ = α εσ
recall that

τ = α
Ωs

ε
E

 
στ = α

Ωs

σε
EΩs ∝ VRF

Two ways to obtain short bunches:

RF voltage (power!) σ ∝ 11RF voltage (power!)

Momentum compaction factor in the limit of α = 0
isochronous ring: particle position along the bunch is 

στ ∝ 1 VRF
1 VRF

g p p g
frozen στ ∝ α



Excitation of betatron oscillations
ε

εβ xxx +=
εβ xxx ′+′=′E

Dx ε
ε ⋅=

0=Δ+Δ=Δ εβ xxx

E
Dx γ

β
ε

⋅−=Δ
E

Dx γ
β

ε
⋅′−=′ΔCourant Snyder invariant

E E

[ ]
2

2222 22 ⎟
⎞

⎜
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Excitation of betatron oscillations

Electron emitting a photon 
• at a place with non-zero dispersion• at a place with non-zero dispersion
• starts a betatron oscillation around a new 

f bitreference orbit

Dx γ
β

ε
⋅≈

Eβ
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Horizontal oscillations: equilibrium

Emission of photons is a random process
Again we have random walk, now in x. How far particle 

will wander away is limited by the radiation dampingwill wander away is limited by the radiation damping
The balance is achieved on the time scale of the damping 

time τx = 2 τεx ε

DDxx
εγ

β
σε

τσ ⋅⋅=⋅⋅⋅≈ 2N

Typical horizontal beam size ~ 1 mm

EExxβ

Quantum effect visible to the naked eye!

Vertical size - determined by coupling



Beam emittance

Betatron oscillations
• Particles in the beam execute betatron oscillations with 

’

Area = π ⋅ε

different amplitudes.

Transverse beam distribution

x’
σx’

• Gaussian (electrons)
• “Typical” particle: 1 - σ ellipse

(in a place where α = β’ = 0)

xσx
(in a place where  α = β  = 0)

Units of ε m ⋅ rad   
E itt σx

2
Emittance ≡ x

β σx = ε β
ε = σx ⋅ σx′

σσx′ = ε /β β = σx
σ x′



Equilibrium horizontal emittance

Detailed calculations for isomagnetic lattice 

2 2 H    
εx0 ≡

σxβ
2

β =
CqE 2

Jx
⋅

H mag
ρ

where

β x

H = γD 2 + 2αDD′ + βD′ 2H γD + 2αDD + βD

= 1
β D 2 + βD′ + αD 2

and                 is average value in the bending magnets  H mag



Ionization cooling
E

p⊥
similar to radiation 
damping, but there is 

p||

multiple scattering 
in the absorber that 
blows up the 

absorber acceleration
emittance

σ0
to minimize the 
blow up due to 
multiple

σ′0

multiple 
scattering in the 
absorber we can 
focus the beam
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focus the beam  
σ′ = σ′0

2 + σ′MS
2 σ′0 >> σ′MS



Summary of radiation integrals

I1 = D
ρ ds

I ds

Momentum compaction factor

I I2 = ds
ρ 2

I3 = ds
ρ 3

   
α = I1

2πR
3 ρ 3

I4 = D
ρ 2k + 1

ρ 2 ds
Energy loss per turn

   
U 1 C E 4 I

I5 = H
ρ 3 ds

U0 = 1
2πCγE 4 ⋅ I2

   
Cγ = 4π

3
re

mec 2 3 = 8.858 ⋅ 10 – 5 m
GeV 3
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Summary of radiation integrals (2)
I

I1 = D
ρ ds

I ds

Damping parameter

D i ti titi b

D =
I4

I2

I2 = ds
ρ 2

I3 = ds
ρ 3

Damping times, partition numbers
    Jε = 2 + D , Jx = 1 – D , Jy = 1

3 ρ 3

I4 = D
ρ 2k + 1

ρ 2 ds
Equilibrium energy spread

   
τ i = τ0

Ji
τ 0 = 2ET0

U0

I5 = H
ρ 3 ds

Equilibrium energy spread
   σε
E

2
=

Cq E 2

J
⋅

I3

I

Equilibrium emittance

E Jε I2

   σ 2 C E 2 I

Cq = 55
32 3

hc
mec 2 3 = 1.468 ⋅ 10 – 6 m

GeV 2
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εx 0 =
σxβ

2

β =
CqE

Jx
⋅

I5

I2 H = γD 2 + 2αDD ′ + βD ′ 2



Damping wigglers

Increase the radiation loss per turn U0 with WIGGLERS
E

reduce damping time

itt t l
wigPP

E
+

=
γ

τ

emittance control

wigglers at high dispersion: blow-up emittancewigglers at high dispersion: blow up emittance
e.g. storage ring colliders for high energy physics

wigglers at zero dispersion: decrease emittance

e g damping rings for linear colliders
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e.g. damping rings for linear colliders
e.g. synchrotron light sources (PETRAIII, 1 nm.rad)
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