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Basic Equations from Vector
Calculus

For a scalar function ¢(x,y,z,?),

, 00 00 0o Gradient is normal to surfaces
gradient: V¢ :(af , a)q;) , B(ZD] p=constant

For a vector F = (FI,FQ, 3)

divergence: V-
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Basic Vector Calculus

V(FAG)=G-VAF-F-VAG
VAVe=0, V-VAF=0
VAN AE)=V(V-F)-V*F

Stokes’ Theorem Divergence or Gauss’
Theorem

[[[v-Fav=4F-ds
|74 S

: Closed surface S, volume V,
Oriented RS outward pointing normal
A P KA
boundary C LA

[[VAF-aS=§F-ar
S C




What is Electromagnetism?

The study of Maxwell’s equations, devised in 1863 to
represent the relationships between electric and
magnetic fields in the presence of electric charges and
currents, whether steady or rapidly fluctuating, in a
vacuum or in matter.

The equations represent one of the most elegant and
concise way to describe the fundamentals of electricity
and magnetism. They pull together in a consistent way
earlier results known from the work of Gauss, Faraday,
Ampere, Biot, Savart and others.

Remarkably, Maxwell’s equations are perfectly
consistent with the transformations of special relativity.
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Maxwell’s Equations

Relate Electric and Magnetic fields generated by
charge and current distributions.

E = electric field

D = electric displacement
H = magnetic field

B = magnetic flux density
p= charge density

J = current density

Uo (permeability of free space) = 4x 10”7
£, (permittivity of free space) = 8.854 10-12
c (speed of light) = 2.99792458 108 m/s

In vacuum
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Maxwell’s 1st Equation

Equivalent to Gauss’ Flux Theorem:

E=D o [[[v-Ear=ffE.as giojﬂpdV:—

The flux of electric field out of a closed region is proportional to the
total electric charge Q enclosed within the surface.

A point charge g generates an electric field

q
4re, r

— = dS _ 49
-[E'd 477:80 ”

sphere Sphere

r

E =

Area integral gives a measure of the net charge enclosed;
divergence of the electric field gives the density of the

8
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Maxwell’s 2nd Equation

Force Vectors & Field Lines
Gauss’ law for magnetism:

V-B=0 < //E-d§

The net magnetic flux out of any closed
surface is zero. Surround a magnetic
dipole with a closed surface. The
magnetic flux directed inward towards
the south pole will equal the flux
outward from the north pole.
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If there were a magnetic monopole
source, this would give a non-zero
integral.
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Gauss’ law for magnetism is then a statement
that There are no magnetic monopoles
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(for a fixed circuit O

The elgctrgmotive force round a circuit
£ =§E-dl is proportional to the rate of
change of flux of magnetic field, @ = ”B-dS

through the circuit.

Faraday’s Law is the basis for electric
generators. It also forms the basis for
inductors and transformers. ASTeC
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Maxwell’s 4th Equation

Originates from Ampeére’s (Circuital) Law : V A E = ,Lloj

§B-di = [[VAB-dS=p,|[ ] dS=pu,l
C S S

Satisfied by the field for a steady line current (Biot-Savart Law,

:,uoljgdi/\F

41 r3

B

4dB For a straightline current B, = Hol
n 2y

Science & Technology Facilities Council

ASTeC




NG Y _ Need for
Displacement Current

Faraday: vary B-field, generate E-field

Maxwell: varying E-field should then produce a B-field, but not covered
by Ampeére’s Law.
Apply Ampeére to surface 1 (flat disk): line

integral of B =p,[
Surface 1

Applied to surface 2, line integral is zero
] since no current penetrates the deformed
—_— :
Current / i surface.

In capacitor, £ =——
E,A
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Charge conservation:

Total current flowing out of a
region equals the rate of decrease

of charge within the volume.

ff-d5=—2 [[fpav
o Jifv-jav=-Jl[ 2 av

qapo

V.
= ]+at

Consistency with
Charge Conservation

From Maxwell’s equations:
Take divergence of (modified)
Ampere’s equation

. 15’E
VAB= ,LL0]+ T
10

= V-VAB=pV-j+—5=(V E)

Charge conservation is implicit in Maxwell’s Equations




() e Maxwell’s
Equations in Vacuum

ASTeC

In'vacuum Equivalent integral forms
(useful for simple geometries)

-

D=¢,E, B=uH, €, =—

Source-free equations: 1
fas= ff o

VAE+8—B 0
ot

Source equations:

v.E=P
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Example: Calculate E from B

.- d cc =
§E-dl=—E”B-dS

d :
r<r, 2mrk,= —zn'rzBo sin wt =~ B,wcos ot
{
fe2 1
= E, =——B,0rcos ot
B,sinwt r<r, 2

0 r>r, d )
r>r 2nrk,=——mnr, B,sinwt =—nr, B,coswt
d

Also from VY A E — _a—B

ot

= 1 aE then g1 '
e gives current densr[y necessary
VA B H 0] + 2 4y to sustain the fields

ce & Technology Facilities Council

ASTeC




) RSTeC

Lorentz Force Law

Thought of as a supplement to Maxwell’s equations but
actually implicit in relativistic formulation, gives force on a
charged particle moving in an electromagnetic field:

]7 = q(E +V A B)
For continuous distributions, use force density
fd = pE +J ~B
Relativistic equation of motion

dP
- 4-vector form: F:d— — 7(
T

- 3-vector component:




Motion of charged particles in constant
magnetic fields

d
dt 2 ar?) =

d -
dt(mo}/c )—\7-f=

1. From energy equation, y is constant

No acceleration with a magnetic field

2. From momentum equation,

- d d - _ .
B-E(yv)=0=yE(B-v) = v, 18 constant

] constant and |7 | constant
— |v_| also constant
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Motion in Constant magnetic field

QV/\B=>d—V 1 5 AB e
dt  m)y Constant magnetic field
gives uniform spiral about B

q :
=—vVv,B with constant energy.

myy
myyv,

= circular motion with radius p= 7
q

B
at angular frequency @ = % -4 (m=m,y) \
m

Charge's Path
E\‘u\.‘ -

Magnetic rigidity
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Motion in Constant Electric Field

d .
—(moyv):qE

dt
2
:

—

Solution of %(ﬁ):iﬁ

m

2
Et
\/1+£q ) _1
m,c

1 gE
zx0+—q—t2 for gE << mc

m

Energy gain is gEx

Constant E-field gives uniform acceleration in straight line




Relativistic Transformations of E and B

According to observer O in frame F, partlcle has velocity v, fields are
E and B and Lorentz force is J@x

In Frame F’, particle is at rest and ﬁj = ¢ FE'

Assume measurements give sam ge and force, so

q:q% —E+7xB

- q UXT

Point charge @ at rest in %? = : B =0
9 q @ 47‘(’60 7”3
See a current in iving a field B’ = _pod v X —iﬁ x E
4 13 c2
1

Suggests B’ =
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Review of Waves

.. 0*u 1 0%u
1D wave equation is 572 = 23 92 with general
solution v
u(z,t) = f(vt —x) + g(vt + )

. Simple plane wave: > —

1D: sin(w?—kx) 3D: sin(a)t — k- fc)

Wavelength, ».
N\ : f i

-
2
Wavelength is A\ = Tw

Direction of motion

Frequency is

\_
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Phase and group velocities

jA(k)el[w(k)t—kx]dk

Superposition of plane waves. While

Plane wave sin(wt — kx) has constant shape is relatively undistorted, pulse
phase wt — kx = ;7 at peaks travels with the Group Velocity

4 w—kAz =0 h v:d—w
I dk
Ax

. w
At k ) ce & Technology Facilities Council
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Wave packet structure

T T T T T T
i)+ {x‘*}MW\/WWMW ]
1 il 1 1 1 1
wave

- Phase velocities of individual plane waves
making up the wave packet are different,

- The wave packet will then disperse with time




Electromagnetic waves

Maxwell’s equations predict the existence of electromagnetic waves,
later discovered by Hertz.

No charges, no currents:

(VX(VXE)——an—B

ot
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Nature of Electromagnetic Waves

A general plane wave with angular frequency ® travelling in
the direction of the wave vector £ has the form

—_

E = E,expli(wt—k-X)] B=B,expli(wi—k - %)]

Phase wf—k - X = 2w x number of waves and so is a Lorentz
invariant.

Apply Maxwell’s equations:

V < —ik V-E=0=V-B <«
0 . - -
5 @ VAE=-B &

Waves are transverse to the direction of
propagation, E B and k are mutually
perpendicular
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() RSTal Plane
Electromagnetic Wave

Electromagnetic waves transport
energy through empty space, stored
in the propagating electric and
magnetic fields.

Electnc

A ) field variation

Magnetic field
variation is
perpendicular
to electric field.

A single-frequency electromagnetic
wave exhibits a sinusoidal variation
of electric and magnetic fields in
space.




Plane Electromagnetic Waves

Combined with k AE =wB

‘E‘ 0 _k* =

deduce that
B koo

=

2T Reminder: The fact that wt — k - £ isan
Wavelength A =-— invariant tells us that

i A= (20)
o~ c

Frequency v =— 1s a Lorentz 4-vector, the 4-Frequency vector.
2r Deduce frequency transforms as

w' = y(w




Waves in a Conducting Medium
E= EO exp[i((ot—l;-)_é)] B= EO exp[i(a)t—l;-y_c’)]

- (Ohm’s Law) For a medium of conductivity o, j: O'E

Modified Maxwell: VA H = j +

ik NH = cFE + iweE

Put D= — ya \

we conduction displacement

Dissipation current current

factor
Copper: 0=58x10",e=¢, = D=10"
Teflon: 0 =3%x10",e=2.1g, = D=257x10""
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Attenuation in a Good Conductor

1

—

ik AH=0E+iwcE < kAH=icE—-weE

—

B L .
Combine with V/\E——a— = kAE=wuH

ot
= wpk A H=op(ic — we)E

(k-E)k-k’E = ou(ic — we)E

—

k> =ou(-ioc +we) since k-E=0

DB (1-1)

For a good conductor D >>1, O >> WE, k* = —ioUo = k=

Wave form 1s exp{i(a)t - %ﬂ exp[— %} k= %(1 —1)

where 0 = 2 is the skin - depth
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Maxwell’s Equations in a Uniform
Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary
surfaces

Maxwell’s equations with time dependence exp(iwt) are:

—

V/\E:—a—B:—ia)uﬁ VE=VE -E)-VA@AE)
=iouV AH

ot

Assume E(x,y,z, t) = E(x,y)e(iwt—yz)
7 _ (iot—yz)
H(x,y,z,t) = H(x,y)e""” Then V7 + (0’eu+ 7’2)]{ }:

v is the propagation constant

Can solve for the fields completely in
e & Technology Facilities Council
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A simple model: “Parallel Plate Waveguide”

Transport between two infinite conducting plates (TE,,; mode):

E =(0,,0)E(x) "7  where E(x) satisfies

2 d’E 2 2 2 2
VIE=——F=-KE, K ' =weu+y
dx
, sin
1.e. E=A4 Kx
COS
To satisfy boundary conditions, £=0 on x=0 and x=a, need
. niw .
E=A4smKx, K=K =—, ninteger
a

Propagation constant is

2
yz\/K,f—a)ze,u :ﬂ\/l—[ﬂ} where @, = K,

a

31




Cut-off frequency, o,

. nmx .
, E=Asin— ' “"""
a

= <o, gives real solution for v, so attenuation
only. No wave propagates: cut-off modes.

= o>, gives purely imaginary solution for v,
and a wave propagates without attenuation.

e b0 o) = (w_)/
Y=1k, k= 8,u(a) a)c) —a)@l e

" For a given frequency ® only a finite number of
modes can propagate.

T

a)>a)6=aj/7271 = n<@@

For given frequency, convenient to
choose a s.t. only n=1 mode occurs.

32
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. above cut-off " B F F B B

- lower w L - - - -
Created by Hsiu C. Han, 1996

. at cut-off

. below cut-off

. variable w




Phase and group velocities in the simple
wave guide

Wave number: k:@(a)z—a)f)% < m+Jeu

Wavelength: A= =i > o1 , the free —space wavelength
oNE

k

00 1
Phase velocity: VvV, =~ :
k  eu

larger than free - space velocity

Group velocity:

K =eu(0’ -wl) = v _do_ & :

o d w8u<\/@

smaller than free - space velocity




Calculation of Wave Properties

* If a=3 cm, cut-off frequency of lowest order mode is
3%x10°
Je =

o 2a@ 2%0.03
« At 7 GHz, only the n=1 mode propagates and

~5GHZ wc:—

k=g z—a)f)%E27t(72—52)1/2><109/3><108z103m‘1

% ~43%x10%ms™' > ¢

k 2.1x10°ms ™' <¢
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