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Basic Equations from Vector 
Calculus

  

� 

For a vector
 
F = F1,F2,F3( )

divergence :∇⋅
 
F =

∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

curl : ∇∧
 
F =

∂F3
∂y

−
∂F2
∂z
,∂F1
∂z

−
∂F3
∂x
,∂F2
∂x

−
∂F1
∂y

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

� 

For a scalar functionϕ x,y,z,t( ),

gradient : ∇ϕ = ∂ϕ
∂x
,∂ϕ
∂y
,∂ϕ
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Gradient is normal to surfaces 
φ=constant
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Basic Vector Calculus
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ϕ

  

� 

∇∧
 
F ⋅ d
 
S =

 
F ⋅ d r 

C
∫

S
∫∫

dSnSd 
=

Oriented 
boundary C

n

Stokes’ Theorem Divergence or Gauss’ 
Theorem

  

� 

∇⋅
 
F dV

V
∫∫∫ =

 
F ⋅ d
 
S 

S
∫∫

Closed surface S, volume V, 
outward pointing normal



What is Electromagnetism?

• The study of Maxwell’s equations, devised in 1863 to 
represent the relationships between electric and 
magnetic fields in the presence of electric charges and 
currents, whether steady or rapidly fluctuating, in a 
vacuum or in matter.

• The equations represent one of the most elegant and 
concise way to describe the fundamentals of electricity 
and magnetism. They pull together in a consistent way 
earlier results known from the work of Gauss, Faraday, 
Ampère, Biot, Savart and others.

• Remarkably, Maxwell’s equations are perfectly 
consistent with the transformations of special relativity.



Maxwell’s Equations
Relate Electric and Magnetic fields generated by 
charge and current distributions.

  

� 

∇ ⋅
 
D = ρ

∇ ⋅
 
B = 0

∇∧
 
E = − ∂

 
B 
∂t

∇∧
 
H =
 
j + ∂

 
D 
∂t

1,,In vacuum 2
0000 === cHBED µεµε



E = electric field

D = electric displacement

H = magnetic field

B = magnetic flux density

ρ= charge density

j = current density

µ0 (permeability of free space) = 4π 10-7 

ε0 (permittivity of free space) = 8.854 10-12 

c (speed of light) = 2.99792458 108 m/s
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Equivalent to Gauss’ Flux Theorem:

The flux of electric field out of a closed region is proportional to the 
total electric charge Q enclosed within the surface.

A point charge q generates an electric field

Maxwell’s 1st Equation 

000

1
ε

ρ
εε

ρ QdVSdEdVEE
VSV

==⋅=⋅∇⇔=⋅∇ ∫∫∫∫∫∫∫∫


0
2

0

3
0

4

4

επε

πε
q

r
dSqSdE

r
r
qE

spheresphere

==⋅

=

∫∫∫∫




Area integral gives a measure of the net charge enclosed; 
divergence of the electric field gives the density of the 
sources.

  

� 

∇ ⋅
 
E = ρ

ε0



∇ · !B = 0 ⇐⇒
∫∫

!B · d!S

Gauss’ law for magnetism:  

 

The net magnetic flux out of any closed 
surface is zero. Surround a magnetic 
dipole with a closed surface. The 
magnetic flux directed inward towards 
the south pole will equal the flux 
outward from the north pole. 

If there were a magnetic monopole 
source, this would give a non-zero 
integral. 

Maxwell’s 2nd Equation 

Gauss’ law for magnetism is then a statement 
that There are no magnetic monopoles

  

� 

∇⋅
 
B = 0



Equivalent to Faraday’s Law of Induction:

(for a fixed circuit C)

The electromotive force round a circuit                                          

       is proportional to the rate of 

change of flux of magnetic field,                    

through the circuit. 

Maxwell’s 3rd Equation 

  

� 

∇∧
 
E 

S
∫∫ ⋅ d

 
S = −

∂
 
B 
∂tS

∫∫ ⋅ d
 
S 

⇔ E ⋅ d
 
l = −

d
dt

 
B ⋅ d
 
S 

S
∫∫

C
∫ = −

dΦ
dt

∫ ⋅= ldE


ε

N S

Faraday’s Law is the basis for electric 
generators. It also forms the basis for 
inductors and transformers.

∫∫ ⋅=Φ SdB


  

� 

∇∧
 
E = −∂

 
B 
∂t



Maxwell’s 4th Equation

Originates from Ampère’s (Circuital) Law :

Satisfied by the field for a steady line current (Biot-Savart Law, 
1820):

  

� 

 
B ⋅ d
 
l = ∇∧

 
B ⋅ d
 
S = µ0

 
j ⋅ d
 
S = µ0

S
∫∫

S
∫∫

C
∫ I

r
IB

r
rldIB

π
µ

π
µ

θ 2

4
0

3
0

=

∧= ∫
current line straight a For




  

� 

∇∧
 
B = µ0

 
j 

Ampère

Biot

  

� 

∇∧
 
B = µ0

 
j + 1

c 2
∂
 
E 
∂t



12

Need for 
Displacement Current

• Faraday: vary B-field, generate E-field

• Maxwell: varying E-field should then produce a B-field, but not covered 
by Ampère’s Law.

Surface 1 Surface 2

Closed loop

Current I

 Apply Ampère to surface 1 (flat disk): line 
integral of B =μ0I

 Applied to surface 2, line integral is zero 
since no current penetrates the deformed 
surface.

 In capacitor,                 , so

 Displacement current density is t
Ejd ∂
∂=




0ε

dt
dEA

dt
dQI 0ε==

� 

E =
Q
ε0A

( )
t
EjjjB d ∂
∂+=+=∧∇




0000 εµµµ
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Consistency with 
Charge Conservation

Charge conservation: 
Total current flowing out of a 
region equals the rate of decrease 

of charge within the volume. 

From Maxwell’s equations:               
Take divergence of (modified) 
Ampère’s equation

  

� 

 
j ⋅ d
 
S = −

d
dt∫∫ ρdV∫∫∫

⇔ ∇⋅
 
j dV = −

∂ρ
∂t∫∫∫∫∫∫ dV

⇔ ∇⋅
 
j +

∂ρ
∂t

= 0
  

� 

∇∧
 
B = µ0

 
j +

1
c 2

∂
 
E 
∂t

⇒ ∇⋅∇∧ B = µ0∇⋅
 
j +

1
c 2

∂
∂t

∇⋅
 
E ( )

⇒ 0 = µ0∇⋅
 
j + ε0µ0

∂
∂t

ρ
ε0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⇒ 0 = ∇⋅
 
j +

∂ρ
∂t

Charge conservation is implicit in Maxwell’s Equations
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Maxwell’s 
Equations in Vacuum

In vacuum

Source-free equations:

Source equations:

Equivalent integral forms 
(useful for simple geometries)

  

� 

 
D = ε0

 
E ,
 
B = µ0

 
H , ε0µ0 =

1
c 2

  

� 

∇⋅
 
B = 0

∇∧
 
E +

∂
 
B 
∂t

= 0

  

� 

∇⋅
 
E =

ρ
ε0

∇∧
 
B − 1

c 2
∂
 
E 
∂t

= µ0

 
j 

  

� 

 
E ⋅ d
 
S =

1
ε0

ρdV∫∫∫∫∫
 
B ⋅ d
 
S = 0∫∫

 
E ⋅ d
 
l = −

d
dt∫

 
B ⋅ d
 
S ∫∫ = −

dΦ
dt

 
B ⋅ d
 
l ∫ = µ0

 
j ⋅∫∫ d
 
S +

1
c 2

d
dt

 
E ⋅ d
 
S ∫∫



Example: Calculate E from B

⎩
⎨
⎧

>
<

=
0

00

0
sin

rr
rrtB

Bz
ω

∫∫∫ ⋅−=⋅ dSB
dt
dldE


trBE

tBrtBr
dt
drErr

ωω

ωωπωππ

θ

θ

cos
2
1

cossin2

0

0
2

0
2

0

−=⇒

−=−=<

t
r
BrE

tBrtBr
dt
drErr

ωω

ωωπωππ

θ

θ

cos
2

cossin2

0
2
0

0
2
00

2
00

−=⇒

−=−=>

Also from 
  

� 

∇∧
 
E = −

∂
 
B 
∂t

dt
E

c
jB


 ∂+=∧∇ 20

1µ then gives current density necessary 
to sustain the fields

r

z
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Lorentz Force Law

• Thought of as a supplement to Maxwell’s equations but 
actually implicit in relativistic formulation, gives force on a 
charged particle moving in an electromagnetic field:

• For continuous distributions, use force density

• Relativistic equation of motion

– 4-vector form:

– 3-vector component:        Energy component:

 


f = q


E + v ∧


B( )

  

� 

 
f d = ρ

 
E +
 
j ∧
 
B 

  

� 

d
dt

m0γ
 v ( ) =
 
f = q

 
E +  v ∧

 
B ( )

  

� 

 v ⋅
 
f =

dE
dt

= m0c
2 dγ

dt

F =
dP

dτ
=⇒ γ

(
#v · #f

c
, #f

)
= γ

(
1
c

dE

dt
,
d#p

dt

)



Motion of charged particles in constant 
magnetic fields

1. From energy equation, γ is constant

2. From momentum equation,

17

No acceleration with a magnetic field

  

� 

d
dt

m0γ
 v ( ) =
 
f = q

 
E +  v ∧

 
B ( ) = q v ∧

 
B 

d
dt

m0γ c 2( ) =  v ⋅
 
f = q v ⋅  v ∧

 
B = 0

  

� 

 
B ⋅

d
dt

γ  v ( ) = 0 = γ
d
dt
 
B ⋅  v ( ) ⇒  v // is constant

|!v| constant and |!v‖| constant
=⇒ |!v⊥| also constant



Motion in Constant magnetic field

Constant magnetic field 
gives uniform spiral about B 

with constant energy.

rigidityMagnetic

0

q
p

q
vmB == γρ

  

� 

d
dt

m0γ
 v ( ) = q v ∧

 
B ⇒

d v 
dt

=
q

m0γ
 v ∧
 
B 

⇒
v⊥

2

ρ
=

q
m0γ

v⊥B

⇒ circular motion with radius ρ =
m0γ v⊥

qB

at angular frequency ω =
v⊥

ρ
=

qB
m

(m = m0γ )
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Motion in Constant Electric Field

Solution of  ( ) E
m
qv

dt
d 

0

=γ

Constant E-field gives uniform acceleration in straight line

  

� 

d
dt

m0γ
 v ( ) =

 
f = q

 
E +  v ∧

 
B ( ) →

d
dt

m0γ
 v ( ) = q

 
E 

is

� 

dx
dt

=
γ v
γ

⇒ x = x0 +
m0c

2

qE
1+

qEt
m0c

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2

−1
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

� 

≈ x0 +
1
2
qE
m0

t 2 for qE << m0c

Energy gain is qEx

� 

γ v =
qE
m0

t ⇒ γ 2 = 1+
γ v
c

⎛ 
⎝ 

⎞ 
⎠ 

2

⇒ γ = 1+
qE
m0c

t
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2



• According to observer O in frame F, particle has velocity v, fields are 

E and B and Lorentz force is 

• In Frame F’, particle is at rest and force is 

• Assume measurements give same charge and force, so

• Point charge q at rest in F:

• See a current in F’, giving a field

• Suggests

Relativistic Transformations of E and B

Rou
gh

 id
ea

!f = q
(

!E + !v × !B
)

!f ′ = q′ !E′

q′ = q and !E′ = !E + !v × !B

!E =
q

4πε0

!v × !r

r3
, !B = 0

!B′ = −µ0q

4π

!v × !r

r3
= − 1

c2
!v × !E

!B′ = !B − 1
c2

!v × !E



Review of Waves

• 1D wave equation is                       with general 
solution

• Simple plane wave: 

  

� 

1D : sin ω t − k x( ) 3D : sin ω t −
 
k ⋅
 
x ( )

∂2u

∂x2
=

1
v2

∂2u

∂t2

u(x, t) = f(vt− x) + g(vt + x)

Wavelength is λ =
2π

|#k|

Frequency is ν =
ω

2π



ω − k∆x = 0

⇐⇒ vp =
∆x

∆t
=

ω

k

vg =
dω

dk

Superposition of plane waves. While 
shape is relatively undistorted, pulse 
travels with the Group Velocity

Phase and group velocities

[ ]∫
∞

∞−

− dkekA kxtki )()( ω

Plane wave                     has constant 
phase                        at peaks

sin(ωt− kx)
ωt− kx = 1

2π
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Wave packet structure

• Phase velocities of individual plane waves 
making up the wave packet are different, 

• The wave packet will then disperse with time  



3D wave equation:

∇2 !E =
∂2 !E

∂x2
+

∂2 !E

∂y2
+

∂2 !E

∂z2
= µε

∂2 !E

∂t2

Electromagnetic waves
• Maxwell’s equations predict the existence of electromagnetic waves, 

later discovered by Hertz.

• No charges, no currents:

  

� 

∇∧
 
H = ∂

 
D 
∂t

∇∧
 
E = − ∂

 
B 
∂t

∇ ⋅
 
D = 0 ∇ ⋅

 
B = 0

∇×
(
∇× !E

)
= −∇× ∂ !B

∂t

= − ∂

∂t

(
∇× !B

)

= −µ
∂2 !D

∂t2
= −µε

∂2 !E

∂t2

∇× (∇× !E) = ∇(∇ · !E)−∇ ! !E

= −∇ ! !E



Nature of Electromagnetic Waves
• A general plane wave with angular frequency ω travelling in 

the direction of the wave vector     has the form

• Phase                = 2π × number of waves and so is a Lorentz 
invariant.

• Apply Maxwell’s equations:

)](exp[)](exp[ 00 xktiBBxktiEE 
⋅−=⋅−= ωω

ωi
t

ki

↔
∂
∂

−↔∇


  

� 

∇⋅
 
E = 0 = ∇⋅

 
B ↔

 
k ⋅
 
E = 0 =

 
k ⋅
 
B 

∇∧
 
E = −

 ˙ B ↔
 
k ∧
 
E = ω

 
B 

Waves are transverse to the direction of 
propagation,           and       are mutually 
perpendicular

  

� 

 
E ,
 
B k



xkt  ⋅−ω

!k
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Plane 
Electromagnetic Wave



Plane Electromagnetic Waves

E
c

Bk
t
E

c
B






22

1 ω−=∧↔
∂
∂=∧∇

ω
ω

ω
2

 thatdeduce

 withCombined

kc
kB

E

BEk

==

=∧







c
k

=⇒ 
ω is in vacuum  waveof speed

π
ων

πλ

2
Frequency

k
2Wavelength

=

= 
Reminder: The fact that                        is an 
invariant tells us that

                 

is a Lorentz 4-vector, the 4-Frequency vector. 
Deduce frequency transforms as

Λ =
(ω

c
,"k

)
ωt− "k · "x

ω′ = γ(ω − #v · #k) = ω

√
c− v

c + v



Waves in a Conducting Medium

• (Ohm’s Law) For a medium of conductivity σ,                                      

• Modified Maxwell:                                   

• Put

 
conduction 

current
displacement 

current

)](exp[)](exp[ 00 xktiBBxktiEE 
⋅−=⋅−= ωω

4
0

8-

12
0

7

1057.21.2,103:Teflon

10,108.5:Copper
−×=⇒=×=

=⇒=×=

D
D

εεσ
εεσ

Dissipation 
factor 

!j = σ !E

∇∧ !H = !j + ε
∂ !E

∂t
= σ !E + ε

∂ !E

∂t

−i!k ∧ !H = σ !E + iωε !E
D =

σ

ωε



Attenuation in a Good Conductor

  

� 

Combine with ∇∧
 
E = −

∂
 
B 
∂t

⇒
 
k ∧
 
E = ωµ

 
H 

⇒
 
k ∧
 
k ∧
 
E ( ) = ωµ

 
k ∧
 
H = ωµ iσ −ωε( )  E 

⇒
 
k ⋅
 
E ( )  k − k 2  E = ωµ iσ −ωε( )  E 

⇒ k 2 = ωµ −iσ + ωε( ) since
 
k ⋅
 
E = 0

  

� 

−i
 
k ∧
 
H = σ

 
E + iωε

 
E ⇔

 
k ∧
 
H = iσ

 
E −ωε

 
E 

For a good conductor D >> 1,  ( )ikik −≈⇒−≈>> 1
2

, 2 µσωµσωωεσ

( )

depth-skin  theis2where

11,expexpis form Wave

µσω
δ

δδδ
ω

=

−=⎟
⎠
⎞⎜

⎝
⎛−⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ − ikxxti



Maxwell’s Equations in a Uniform 
Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary 
surfaces

Maxwell’s equations with time dependence exp(iωt) are:

( ) ( )

  





















022

2

2

=+∇

−=

∧∇=

∧∇∧∇−⋅∇∇=∇

⇒
=

∂
∂=∧∇

−=
∂
∂−=∧∇

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

H
E

E
Hi

EEE

Ei
t
DH

Hi
t
BE

µεω

εµω
µω

εω

µω

Assume 
)(

)(

),(),,,(

),(),,,(
zti

zti

eyxHtzyxH
eyxEtzyxE

γω

γω

−

−

=

=




Then 
  

� 

∇ t
2 + (ω 2εµ + γ 2)[ ]

 
E 
 
H 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0
γ is the propagation constant

Can solve for the fields completely in 
terms of Ez and Hz

z

x

y
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A simple model: “Parallel Plate Waveguide”
Transport between two infinite conducting plates (TE01 mode):

2222
2

2
2
t

)(

,

satisfies )( where)()0,1,0(

γεµω

γω

+=−==∇

= −

KEK
dx
EdE

xEexEE zti


KxAE
⎭
⎬
⎫

⎩
⎨
⎧

=
cos
sin

i.e.

To satisfy boundary conditions, E=0 on x=0 and x=a, need

integer ,,sin n
a
nKKKxAE n
π===

Propagation constant is 

εµ
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Cut-off frequency, ωc

 ω<ωc gives real solution for γ, so attenuation 
only. No wave propagates: cut-off modes.

 ω>ωc gives purely imaginary solution for γ, 
and a wave propagates without attenuation.

 For a given frequency ω only a finite number of 
modes can propagate.

� 

γ =
nπ
a

1− ω
ωc

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2

, E = A sin nπx
a

eiω t−γ z, ωc =
nπ
a εµ

� 

ω > ωc =
nπ
a εµ

⇒ n <
aω
π

εµ
For given frequency, convenient to 

choose a s.t. only n=1 mode occurs.

� 

γ = ik, k = εµ ω 2 −ωc
2( ) 12 = ω εµ 1− ωc

2

ω 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
2
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Waveguide animations

• above cut-off

• lower ω

• at cut-off

• below cut-off

• variable ω



34

Phase and group velocities in the simple 
wave guide

� 

k = εµ ω 2 −ωc
2( )
1
2 < ω εµWave number:

wavelengthspacefreethe,22 −>=
εµω
ππλ

kWavelength:

velocityspace-freethanlarger

,1
εµ

ω >=
k

vpPhase velocity:

� 

k 2 = εµ ω 2 −ωc
2( ) ⇒ vg = dω

dk
= k
ωεµ

< 1
εµ

smaller than free - space velocity

Group velocity:
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Calculation of Wave Properties

• If a=3 cm, cut-off frequency of lowest order mode is

• At 7 GHz, only the n=1 mode propagates and

GHz5
03.02
103

2
1

2

8

≅
×
×≅==

εµπ
ω

a
f c
c

� 

k = εµ ω 2 −ωc
2( )
1
2 ≅ 2π 72 − 52( )1 2 ×109 /3×108 ≈103m−1

λ = 2π
k

≈ 6cm

vp = ω
k
≈ 4.3×108ms−1 > c

vg = k
ωεµ

= 2.1×108ms−1 < c

εµ
πω

a
n

c =
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