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Overview
• The principle of special relativity

• Lorentz transformation and consequences

• Space-time

• 4-vectors: position, velocity, momentum, invariants, 
covariance.

• Derivation of E=mc2

• Examples of the use of 4-vectors

• Inter-relation between β and γ, momentum and energy

• An accelerator problem in relativity

• Motion faster than speed of light
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Reading
• W. Rindler: Introduction to Special Relativity (OUP 

1991)

• D. Lawden: An Introduction to Tensor Calculus and 
Relativity

• N.M.J. Woodhouse: Special Relativity (Springer 
2002)

• A.P. French: Special Relativity, MIT Introductory 
Physics Series (Nelson Thomes)

• Misner, Thorne and Wheeler: Relativity

• C. Prior: Special Relativity, CERN Accelerator School 
(Zeegse)
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Historical background
• Groundwork of Special Relativity laid by Lorentz in studies of 

electrodynamics, with crucial concepts contributed by Einstein to place 

the theory on a consistent footing.

• Maxwell’s equations (1863) attempted to explain electromagnetism and 

optics through wave theory

– light propagates with speed c = 3×108 m/s in “ether” but with 

different speeds in other frames

– the ether exists solely for the transport of e/m waves

– Maxwell’s equations not invariant under Galilean transformations

– To avoid setting e/m apart from classical mechanics, assume

• light has speed c only in frames where source is at rest

• the ether has a small interaction with matter and is carried along with 

astronomical objects 
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Contradicted by:
• Aberration of star light (small shift in apparent positions of 

distant stars)

• Fizeau’s 1859 experiments on velocity of light in liquids

• Michelson-Morley 1907 experiment to detect motion of the 

earth through ether

• Suggestion: perhaps material objects contract in the direction 

of their motion 

� 

L(v) = L0 1−
v 2

c 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2

This was the last gasp of ether advocates and the germ of 
Special Relativity led by Lorentz, Minkowski and Einstein.
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The Principle of Special Relativity
• A frame in which particles under no forces move with constant 

velocity is inertial.

• Consider relations between inertial frames where measuring 
apparatus (rulers, clocks) can be transferred from one to another: 

related frames.

• Assume:

– Behaviour of apparatus transferred from F to F' is independent of mode 
of transfer

– Apparatus transferred from F to F', then  from F' to F'', agrees with 
apparatus transferred directly from F to F''.

• The Principle of Special Relativity states that all physical laws 
take equivalent forms in related inertial frames, so that we 
cannot distinguish between the frames. 
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Simultaneity

• Two clocks A and B are synchronised if light rays 
emitted at the same time from A and B meet at the 
mid-point of AB

• Frame F' moving with respect to F. Events 
simultaneous in F cannot be simultaneous in F'.

• Simultaneity is not absolute but frame dependent. 

A BC
Frame F

A’’ B’’C’’

A’ B’C’Frame F’
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The Lorentz Transformation
• Must be linear to agree with standard Galilean transformation 

in low velocity limit

• Preserves wave fronts of pulses of light,

• Solution is the Lorentz transformation from frame F (t,x,y,z) 
to frame F'(t',x',y',z') moving with velocity v along the x-axis:

� 

i.e. P ≡ x 2 + y 2 + z2 − c 2t 2 = 0
whenever Q ≡ ′ x 2 + ′ y 2 + ′ z 2 − c 2 ′ t 2 = 0

ct

′t = γ t −
vx
c2

⎛
⎝⎜

⎞
⎠⎟

′x = γ x − vt( )
′y = y
′z = z

where γ = 1− v
2

c2
⎛
⎝⎜

⎞
⎠⎟

− 12



9  

� 

Set ′ t = α t + β x
′ x = γ x + δ t
′ y = εy
′ z = ς z

Then P = kQ

⇔ c 2 ′ t 2 − ′ x 2 − ′ y 2 − ′ z 2 = k c 2t 2 − x 2 − y 2 − z2( )
⇒ c 2 α t + β x( )2 − γ x + δ t( )2 −ε2y 2 − ς 2z2 = k c 2t 2 − x 2 − y 2 − z2( )
Equate coefficients of x, y, z, t.
Isotropy of space ⇒  k = k(

 
v ) = k(

 
v ) = ±1

Apply some common sense (e.g. ε,ς,k = +1 and not -1)

Outline of Derivation
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Consequences: length contraction

z

x

Frame F

v

Frame F’
z’

x’
RodA B

Moving objects appear contracted in the direction of the motion

Rod AB of length L' fixed in F' at x'A, x'B. What is its length 
measured in F?

Must measure positions of ends in F at the same time, so events 
in F are (t,xA) and (t,xB). From Lorentz:
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Consequences: time dilation

• Clock in frame F at point with coordinates (x,y,z) at 
different times tA and tB 

• In frame F' moving with speed v, Lorentz 
transformation gives

• So

Moving clocks appear to run slow

t′A = γ
(
tA −

vx

c2

)
t′B = γ

(
tB −

vx

c2

)

∆t′ = t′B − t′A = γ
(
tB − tA

)
= γ∆t > ∆t
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Schematic Representation of 
the Lorentz Transformation

Frame F′

Frame F

t

x

t′

x′

L

L′

Length contraction L<L′

t

x

t′

x′

Δt′Δt

Time dilatation:  Δt<Δt′
Rod at rest in F′. Measurement in F at 
fixed time t, along a line parallel to x-axis

Clock at rest in F. Time difference in F′ 
from line parallel to x′-axis

Frame F

Frame F′
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Example: High Speed Train

• Observers A and B at exit and entrance of tunnel say the train is 
moving, has contracted and has length 

• But the tunnel is moving relative to the driver and guard on the 
train and they say the train is 100 m in length but the tunnel has 
contracted to 50 m� 

100
γ

=100 × 1− v
2

c 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
2

=100 × 1− 3
4

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1
2

= 50m

All clocks synchronised. 
A’s clock and driver’s 
clock read 0 as front of 
train emerges from 
tunnel.
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Moving train length 50m, so driver has still 50m 
to travel before he exits and his clock reads 0. A's 
clock and B's clock are synchronised. Hence the 
reading on B's clock is 

Question 1
A’s clock (and the 
driver's clock) reads 
zero as the driver exits 
tunnel. What does B’s 
clock read when the 
guard goes in?

� 

− 50
v

= − 100
3c

≈ −200ns
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Question 2

What does the 
guard’s clock read as 
he goes in?

To the guard, tunnel is only 50m long, so driver is 50m 
past the exit as guard goes in. Hence clock reading is
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Question 3

Where is the guard 

when his clock 

reads 0?

Guard’s clock reads 0 when driver’s clock reads 0, which is as driver 
exits the tunnel. To guard and driver, tunnel is 50m, so guard is 50m 
from the entrance in the train’s frame, or 100m in tunnel frame. 

So the guard is 100m from the entrance to the tunnel when his clock 
reads 0.
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Example: Cosmic Rays

• µ-mesons are created in the upper 
atmosphere, 90km from earth. Their half life 
is τ=2 µs, so they can travel at most 2 
×10-6c=600m before decaying. So how do 
more than 50% reach the earth’s surface?

• Mesons see distance contracted by γ, so 

• Earthlings say mesons’ clocks run slow so 
their half-life is γτ and

• Both give

v(γτ) ≈ 90 km

vτ ≈ 90
v

km

γv

c
=

90 km

cτ
= 150, v ≈ c, γ ≈ 150



18

Space-time
• An invariant is a quantity that has the same value 

in all inertial frames.

• Lorentz transformation is based on invariance of 

• 4D space with coordinates (t,x,y,z) is called 
space-time and the point 
is called an event.

• Fundamental invariant (preservation of speed of 
light):

is called proper time, time in instantaneous rest frame, 
an invariant.  Δs=cΔτ is called the separation between 
two events

t

x

Absolute future

Absolute past

Conditional 
present(t, x, y, z) = (t, !x)

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2 = c2∆t2
(

1− ∆x2 + ∆y2 + ∆z2

c2∆t2

)
= c2∆t2

(
1− v2

c2

)
= c2

(
∆t

γ

)2

c2t2 − (x2 + y2 + z2) = (ct)2 − !x2
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4-Vectors
The Lorentz transformation can be written in matrix 
form as

An object made up of 4 elements which 
transforms like X is called a 4-vector
(analogous to the 3-vector of classical 
mechanics)

t′ = γ
(
t− vx

c2

)

x′ = γ(x− vt)
y′ = y
z′ = z

=⇒





ct′

x′

y′

z′



 =





γ −γv
c 0 0

−γv
c γ 0 0

0 0 1 0
0 0 0 1









ct
x
y
z





Lorentz matrix L

Position 4-vector X



A · A = AT gA = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − !a ·!b

c2t2 − x2 − y2 − z2 = (ct, x, y, z)





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









ct
x
y
z



 = XT gX = X · X

A′ · A′ = (LA)T g(LA) = AT (LT gL)A = AT gA = A · A

A′ · B′ = A · B

A = (a0,!a), B = (b0,!b)
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Invariants
Basic invariant 

Inner product of two 4-vectors 

Invariance:

Similarly



V =
dX

dτ
= γ

dX

dt
= γ

d
dt

(ct, #x) = γ(c,#v)

V · V = γ2(c2 − "v2) =
c2 − "v2

1− "v2/c2
= c2

P = m0V = m0γ(c,"v) = (mc, "p)

m = m0γ is the relativistic mass
p = m0γ"v = m"v is the relativistic 3-momentum
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4-Vectors in S.R. Mechanics

• Velocity:

• Note invariant

• Momentum:  
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4-Force
From Newton’s 2nd Law expect 4-Force given 

by
F =

dP

dτ
= γ

dP

dt

= γ
d
dt

(mc, #p) = γ

(
c
dm

dt
,
d#p

dt

)

= γ

(
c
dm

dt
, #f

)

Note: 3-force equation:
 !f =

d!p

dt
= m0

d
dt

(γ!v)



P · dP

dτ
=⇒ V · dP

dτ
= 0 =⇒ V · F = 0

=⇒ γ(c,#v) · γ

(
c
dm

dt
, #f

)
= 0

=⇒ d
dt

(mc2)− #v · #f = 0

!v · !f = rate at which force does work
= rate of change of kinetic energy
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• Momentum invariant

• Differentiate

Einstein’s Relation 

E=mc2 is total energy

P · P = m2
0V · V = m2

0c
2

T = mc2 + constant = m0c
2(γ − 1)

Therefore kinetic energy is



Relative velocity β =
v

c
Velocity v = βc
Momentum p = mv = m0γβc
Kinetic energy T = (m−m0)c2 = m0c2(γ − 1)

γ =
(

1− v2

c2

)− 1
2

=
(
1− β2

)− 1
2

=⇒ (βγ)2 =
γ2v2

c2
= γ2 − 1 =⇒ β2 =

v2

c2
= 1− 1

γ2
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Basic Quantities used 
in Accelerator Calculations



T = m0(γ − 1)c2

γ = 1 +
T

m0c2

β =
√

1− 1
γ2

p = m0βγc

For v ! c, γ =
(

1− v2

c2

)− 1
2

≈ 1 +
1
2

v2

c2
+

3
8

v4

c4
+ . . .

so T = m0c2(γ − 1) ≈ 1
2
m0v2
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Velocity v. Energy



P · P = m2
0V · V = m2

0c
2

↓
E2

c2
− p2 =⇒ p2c2 = E2 − (m0c2)2 = E2 − E2

0

= (E − E0)(E + E0)
= T (T + 2E0)

βγ =
m0βγc2

m0c2
=

pc

E0
= 1.56

γ2 = (βγ)2 + 1 =⇒ γ = 1.85

β =
βγ

γ
= 0.84
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Energy-Momentum Invariant

Example:  ISIS 800 MeV protons 
(E0=938 MeV)

 =>   pc=1.463 GeV



1
γ2

= 1− β2

=⇒ 1
γ3

∆γ = β∆β (2)

∆p

p
=

∆(m0βγc)
m0βγc

=
∆(βγ)

βγ

=
1
β2

∆γ

γ
=

1
β2

∆E

E

= γ2 ∆β

β

=
γ

γ + 1
∆T

T
(exercise)
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Relationships between small variations 
in parameters ΔE, ΔT, Δp, Δβ, Δγ

Note: valid to first order only

(βγ)2 = γ2 − 1
=⇒ βγ∆(βγ) = γ∆γ
=⇒ β∆(βγ) = ∆γ (1)
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m2
0c

2 = P · P =
E2

c2
− !p 2
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4-Momentum Conservation
• Equivalent expression 

for 4-momentum

• Invariant

• Classical momentum 
conservation laws → 
conservation  of 4-
momentum. Total 3-
momentum and total 
energy are conserved.

  

� 

P = m0γ(c,
 
v ) = (mc,  p ) = E

c ,
 
p ( )
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Example of use of invariants

• Two particles have equal rest mass m0.

– Frame 1: one particle at rest, total energy is 
E1.

– Frame 2: centre of mass frame where 
velocities are equal and opposite, total energy 
is E2.

Problem: Relate E1 to E2



P2 =
(
m0c,!0

)

P2 =
(

E2

2c
,−!p′

)

P1 =
(

E1 −m0c2

c
, !p

)

P1 =
(

E2

2c
, !p′

)

Invariant: P2 · (P1 + P2)
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Total energy E1

(Fixed target experiment)

Total energy E2

(Colliding beams expt)
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Collider Problem

• In an accelerator, a proton p1 with rest mass m0 
collides with an anti-proton p2 (with the same rest 
mass), producing two particles W1 and W2 with equal 
rest mass M0=100m0

– Expt 1: p1 and p2 have equal and opposite velocities in the 

lab frame. Find the minimum energy of p2 in order for W1 

and W2 to be produced.

– Expt 2: in the rest frame of p1, find the minimum energy E' 

of p2 in order for W1 and W2 to be produced.
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Note:         ⇒ same m0, same p mean same E.

p1

W1

p2

W2

Total 3-momentum is zero before 
collision and so is zero afterwards.

4-momenta before collision:

  

� 

P1 = E
c ,
 
p ( ) P2 = E

c ,−
 
p ( )

4-momenta after collision:

  

� 

P1 = ′ E 
c ,
 
q ( ) P2 = ′ E 

c ,−
 
q ( )

Energy conservation ⇒ E=E′ > rest energy = M0c2 = 100 m0c2 

Experiment 1
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p2

p1

W1

W2

Before collision:

  

� 

P1 = m0c,
 
0 ( ) P2 = ′ E 

c ,  p ( )
Total energy is 

� 

E1 = ′ E + m0c
2

Use previous result                         to relate E1 to total energy E2 in 
C.O.M frame

� 

2m0c
2E1 = E2

2

⇒ 2m0c
2 ′ E + m0c

2( ) = (2E)2 > 200m0c
2( )2

⇒ ′ E > 2 ×104 −1( ) m0c
2 ≈ 20,000m0c

2

Experiment 2

2m0c
2E1 = E2

2
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Motion faster than light
1. Two rods sliding over each 

other. Speed of intersection 
point is  v/sinα, which can 
be made greater than c.

2. Explosion of planetary 
nebula. Observer sees 
bright spot spreading out. 
Light from P arrives 
t=dα2/2c later.

α
xc

P

O
d
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