1) SPACE-CHARGE

Introduction

The many charged particles in a high intensity
beam represent a space-charge and produce
electromagnetic self-fields which affect the
beam dynamics being otherwise determined
by the guide fields of the magnetic lattice
and RF-system. Assuming weak self-fields
we treat their effects as a perturbation and
concentrate on the transverse case where this
shifts the betatron frequencies (tunes).

For the direct space charge effect the
conducting vacuum chamber is neglected,
E and B-fields are obtained directly. The
E-field is repelling and defocuses while
the Lorentz force of the B-field focuses.
The balance between them becomes more
perfect as the particle velocity v approaches c.
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Conducting boundaries modify the field giving
an indirect space-charge effect which is cal-
culated with image charges. Here the balance
between F and B-effects is perturbed and this
effect is important also for v — ¢

For a rigid, coherent, oscillation of the beam
as a whole, the direct-space charge represents
an internal force which does not influence this
motion, however the indirect wall effect does.




Direct space-charge effect

Fields and forces .

Continuous (unbunched) beam of circular cross section, Fields inside beam, p < a, relevant
radius a, uniform charge/current densities 7, J = nBc for direct space-charge, only charges
with total charge per unit length A\ = 7ma®n and cur- p’ < p contribute. Force on a particle

rent [ = B, produces cylindrically symmetric fields FeFot Fp=e <E+ 7 % ED
E=|E, 0,0] and B = [0, Ey, 0] at radial distance p:

— - pyp=y

divE:n/eo curl E:uof 2¢€ 2megcvy? a?
///divEdV:// EdSg| | §B-ds=/[curl B-dS] F 7 gives linear defocusing be-
dSE = 2mpldp, 0, 0], dS; = 2wpdp|0, 0, 1], ing oc 1/+% and vanishes as 3 — 1.

ds = p[0, dg, 0], dV = 2mpdsdp. Integrate [/n(p’)dp’

2nplE,= ra*ln/ey| in 2mpBy = ma’ 1oy
A < I
B NP _ p o psa B¢_ﬁnp_uo p

P2 2meya? - 2¢c 21 a?
27r,0€Ep:7r,02€77/60 out 27rpB¢:7rp2,qu3
2 > 2
na Al jpza Bna” ol 1
b, = By S

2€0p - 27'('6(); - 2epcp 2T p
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Space-charge defocusing
Uniform space-charge force on particle is linear,
radial, repulsive and defocuses beam in x- and

y-plane, changing tunes ()., /Qy (taking y):
ﬁ:FEJrFB:e(EJr[fUX ED

— ﬂ(1 5
26()

el p
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Force deflects by angle Ay’ = y
E, ~moyd®y/dt* = moc® 3 c*dy’ /ds

dy’_d 1y elds ~ 2rolds
y  \f)  2mepalmoc33By3 ec33y3a?
. e’ 1.54 - 10~'® m protons
) _

" dmegmoc®  2.82- 107 melectrons

y' = dy/ds =~ y/(Bc) < 1, focusing strength
1/ f, classical particle radius ry. Tune change
by element of length As, strength 1/f.

1 ~ By(s) (1)  —rol By(s)ds
Q,=""a( 2] =
4 \f) 2mcefy3 a?(s)
—rol | By(s)ds  —rolR
v 27T06ﬁ3’}/3f a2(s)  ce@3E,
using invariant emittance &, ~ a?/(3,. Tune
shift by local space-charge depends on &, not
on (3, and a separately. Small 3, gives small a
and strong force but reduced effect.
Approx.: €, ~ a*/[3,; no change of j3,.
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Elliptic beam cross section

Uniform 7 and elliptic cross section with half-
axes a, b give fields and forces inside (L. Teng)

- : I Ty
E—I[E, E) = vy
' " 7wepla+b)Be {a b}
5 : pol y x
B=[B, B = F [ Y7
' P wla+b) { b CJ

which satisfies divE = n/ey, curl B = ..

B L5 I(z/a), b)|.
F=e|E+[0x B = W[E(Og/cé%(ayi?j)

This force is F, oc @, I, o< y and gives linear

defocusing in the two directions.

—7“()] a F, E
Q WGCBS’}/SS;U %a/—i_ b ° SR an
A — d ~L
@ wecﬂ%?’é’y%aer ’

Since a/b depends on s the local tune shift

contribution depends also weakly on s.
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Bunched beams

Current I(s) depends on longitudinal distance
s from bunch center. Relativistic field has
small opening angle ~ 1/~ and depends on
local I(s) if this changes little over As = a/~y

roRI(s) roRI(s)
AQ?J ~ 3~3 o 3~3’

ecE, 3>y ecE, 3y
Tune shift depends on particle position s in

bunch giving to a tune spread, and, through
synchrotron oscillations, to a tune modulation.

AQ, ~

Non-uniforn(; distribution
General charge distribution is not uniform, has
radial dependence 7(p) giving non-linear force,
making tune shift depend on betatron oscilla-
tion amplitude and leading to a tune spread.



Indirect space-charge effect — influence of the chamber wall

Conducting boundary imposes | = 0 with only £/,. To
calculate field we introduce image charge —\ at distance
h behind wall which cancels F on surface. Have fields:

direct Ed, image E:-, surface EdH = EzH EH =0
inside: £ = Ed + EZ-, divﬁd = 1/€o, dIVEZ' = ()

Conducting plates at /. To get there £ = 0, need image charges
of beam and of images. Field close to beam, first order in x, y

(quadrupole field) of n-th image pair at +2nh and sum over n

oo (=1)" A 1 1 N Ay (=)
W omey \2nh+y  2nh—vy)  dwegh? n?
Ay _ PV
Ez Em ) di E@ =0 Ez - = )
v=3 Bin ireh?212’ T T T k212
r _26)\33 1 2 2edy (1 N 2
T 2mey \ 20242 48K2)7 TV 2mey (20292 48R2
27“0[R<ﬁ / > 1 7T2 .
A —— /Y th I = A\jc.
ey ec33 2022 Tagpz) be

B field not affected, no relativistic E/B-force compensation.
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Incoherent and coherent motion

Direct space-charge effect

Individual particles move -
center-of-mass not: Center of mass moves
incoherent motion coherent motion

For incoherent motion particles
have space-charge tune shift

ACQinc - ol

' cea? 333
In coherent motion space-charge
force is intern, moves with beam,
no effect on center-of-mass mo-

tion AQ o =0
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Indirect space-charge effect
Space-charge field with a conducting wall
at distance h was obtained by image line
charge at h behind wall. A coherent
beam motion by ¢y moves first images to
+2h — 4 with a field at the beam

oo A1 1
W oreg \2h +2y 2k —2y)°

Equidistant 2nd images cancel, general

e UL (D
o dmegh? \n? n?
o0 )\g 7T2 7T2
Ec — Ecn —
Y 21: ' Amegh? (12 " 6 )
7T2 2?“0[R<6y>
choh. — QO T 16 60/83’}/}?,2

6h 1

4h

2h

-2h

_4h

-6h 1

B 2T0]R<ﬁy> ( 1 7T2
choh. Qymc. — 6063”7

20272 24h2>

I11770000770071711171111771111771111717
conducting wall




Problems caused by space-charge in rings

In rings space-charge can shift tunes into resonances
where ) = N/M is a simple rational fraction.
pole imperfection deflects particle each turn in phase
if () =integer and for a quadrupole error this hap-
pens if () =half integer. Since space-charge shifts co-
herent and incoherent tunes differently and produces
spread it may be difficult to avoid all resonances.

dipole error, () = N

Related effects

Beam-beam effect: electric and magnetic forces ad.
lons and electron clouds: don't move, no B-force.
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spread at different v during ac-
celeration (shaded areas), CERN
booster, E. Brouzet, K.H. Schindl.



2) IMPEDANCES AND WAKE FUNCTIONS

Resonator

For space charge a perfectly conducting wall of
uniform cross section and electrostatic meth-
ods were used. General cross sections have
resonances described by an impedance.
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Cavities have narrow band oscillation modes
which can drive coupled bunch instabilities.
Each resembles an RCL - circuit and can,
in good approximation, be treated as such.
This circuit has a shunt impedance R, an in-
ductance L and a capacity C. In a real cavity
these parameters cannot easily be separated
and we use others which can be measured di-
rectly: The resonance frequency w,, the
quality factor () and the damping rate a:

1 C Ry
Wy = \/Tic , Q = RSJ: — LWT, — RSCWT
Wy R Q
= — _l; e (:7 e .
“ 20) Qu, ’ wyr Ry



Driving this circuit with a current I gives the Wake/Green — function, pulse response

voltages and currents across the elements I(t) = qdt, charge q gives capacity voltage
I wy R _
Iny| Il b 1 Ve = IgR, V(0T) = % = ——qusing C' = QR
C Ve = = [ Icat @ writs
@O rS —— LV § fdlL Energy stored in C' = energy lost by ¢
N 2 P Tar q2 _wTRS 2:‘/(0+> 2

U:

- — k-
e 20 q 5 q pmd
.VR - Ve - VL.: V’. In+lc + Ip=1 parasitic mode loss factor k,,, = w, R,/2Q
I=Ip+1c+1,=V/R;+CV +V/L. Capacitor discharges first through resistor

USing L — RS/<WT’Q>' C — Q/(WT’RS> gives ) + q [R V<O+> 2("-)frkpm
. Wy wr Ry - _V<O):5:C: CR :_Tq.
differential eqn. V + —V + w2V = —"] , ’
Q Q VN, V() — A=2qky,, B= \/4—1‘;71
Homogeneous solution is damped oscillation v
1
1 — —at T
V(t) _ e—at (A COS wr\ll o Wt) V<t> qupme (COS (WrJ1 4Q2t)
- / I
B | 1 ; Wy o (wr L ngt) ~ 2qk,me” " cos(wt).
+ D SIn | Wy _TQQ ,oz—@ \/4@2—_1 p
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Impedance

A harmonic excitation of circuit with current
I = I cos(wt) gives differential equation

V—F—TV—FW?V _ Artls rdls
Q Q

Homogeneous solution damps leaving particular

[

one V(t) = Acos(wt) + Bsin(wt). Put into
differential equation, separating cosine and sine

(@’ —w)A+ "B = 0

W — w =

? R
5 Wy wrw Ry -
w”—w.)B+ A = I.
( 0 0 0

Voltage induced by current I cos(wt) is
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Twsin(wt).

_in. cos(wt) + Q ;. Sl;l(tdt)
! T QQ ( Wr >

Cosine term is in phase with exciting cur-
rent, absorbs energy, resistive. Sine term
is out of phase, does not absorb en-
ergy, reactive. Voltage/current ratio is
impedance as function of frequency w

1
9 (wi—w? 2
1 ™ Q ( ;UTW2>
Q%
5.
2
1+Q ( Wrw >
Resistive part Z,(w) > 0, reactive part
Zi(w) positive below, negative above w;,.

I cos(wt) — V =1[Z, cos(wt) — Z; sin(wt)]
[sin(wt) — V =1[Z, sin(wt) + Z; cos(wt)]

V(t)

Zr(w) = Ry

— R,




Complex notation

Excite: I(t)

I(t) =

— [ cos(wt) =

Ae]wt_i_e Jwt

I

with 0 < w < 0

fejwt/Q with — oo < w < o0

€0
Tkm
/\

Wake function

t

Wake function

G()
T@ =

0\ /1 2 3 4S£/wr \/ v \/ \/4\2ij,,
]y ka

; YA /[ SNAWAWAN)

A —4 =3 2 —1\/0 A,J—4\/—3\/—2\/—1\/0

Impedance

Impedance
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1 —jQe

Z(w)= Ry . 5 =2+ 77
1+Q2( WWT)
~ R, 1_]2QAW/WT2 for Q) > 1
1 +4Q* (Aw/wy)

WR W, |w— w|fw, = |Aw|/w, < 1.
Resonator impedance properties:

atw =w, — Z(w,) max., Z;(w,) =0
0 <w<w, — Zj(w)>0 (inductive)
w > w, — Zj(w) <0 (capacitive)
General impedance or wake properties
Zr(w)=Z(—w) , Zjw)=—-7Zi(—w)
= [7 G(t)e ' dt
Z(w) o Fourier transform of G(t)
fort <0 — G(t) =

no fields before particle arrives, 3 ~ 1.



Typical impedance of a ring

Aperture changes form cavity-like objects
with w,, R, and () and impedance Z(w) de-
veloped for w < w,, where it is inductive
. CLJQ_CLJ%
1 —JQ=
2_,,2\2
L+ (Q7)
Sum impedance at w < w,;. divided by mode
number n = w/wy is with inductance L

i

Z(w) = Rs

—_— 0 —_—
k kark R
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It depends on impédance per length, ~ 15
(2 in older, 1 €2 in newer rings. The shunt
impedances R, increase with w up to cut-
off frequency where wave propagation starts
and become wider and smaller. A broad band
resonator fit helps to characterize impedance
giving Z,., Z;, G(t) useful for single traversal
effects. However, for multi-traversal instabil-
ities narrow resonances at w,; must be used.



3) LONGITUDINAL INSTABILITIES
Longitudinal dynamics

A particle with momentum deviation Ap has
different orbit length L, revolution time 7{ and
frequency wy

AL _ | Ap_ acak
L p [2FE

:Oéc

_— = _ 776
T wo v¢) p p

with momentum compaction o, = 1/77, slip
factor 7. At transition energy moc*yr the wo-
dependence on Ap changes sign

1 A
E>ET—>—<&C_>770>17 .

— < 0

y? AFE

1 Aw()
E<ET—>$>040—>77C<1,E>0.

Fory>1 — Ap/p~AE/E =¢€, 1. = ..
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Usfer —— —fp = — — = — = — = — — — — — — —

bunch "
; N\
RF-cavity of voltage v, frequency wg =
hwgy, SR energy loss U the energy gain or
loss of a particle in one turn de = E/F is

SF = eV sin(hwo(ts + 7)) — U

ts= synchronous arrival time at the cav-
ity, 7= deviation from it, synchronous phase
0s = hwyts. For hwyt < 1 we develop

SF = eV sin(¢y) + hwoeV cos ¢ — U.



For 0E/E < 1 use smooth approximation

E ~ 8§E/Ty, 7 = AT /Ty = n.AE/E

o woeV sin O wghef/ COS qbsT B ﬂU.
2T 2T 2T
Use Ty = 27 /wy, relative energy e = AE/E
_ woev Sin @y N w%hef/ COS Py wo U
= T— ——.
2rE 2rE 2m b
Energy loss U may depend on E
oU
U ~ Uy+ =——=AFE
(6, 7') 0+ EY5
giving for the derivative of the energy loss
o wghef/ COS qbsT B ﬂa—UG
2mE 2mOF
T = 1€

where we used that for synchronous particle

e =0, 7 =0 we have Uy = eV sin ¢,
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Combining these into a second order equation

7+ ;(T)gg’f + wiT =0,

5 —wghncev COS (g 1wy oU
“s0 = 2rE T 09 OE
Wi = Wiy — O R Wy
T4 2007 + wiyT = 0
T =7e “cos(wet) , € = e " sin(wgt)

From 7 = n.€ we get € = w7 /1.

To get real wy,y we need cos @, < 0 above
transition where 1. > 0 and vice versa.

To get a stable (decaying) solution we need
an energy loss which increases with E

_woc?_U_ wo oU

= m0E  nE e

o



Induced voltage and energy loss by a stationary bunch

Circulating symmetric bunch (N, particles) has current circulating single bunch
5o ) | " | time domain
[(t) =3 [(t — ]‘CT()) 0 N (4 To) A ® I(t—To)
S i i
I(t)=1y+ 2 0210 I, cos(pwot), I, = /OTO I(t) cos(pwot )dt /\ A /\
In impedance Z(w) it induces voltage i) I
V(t)=2X1,|Z(pwy) cos(pwot — Z;(pwp) sin(pwt)]
Energy lost per particles and turn U = /OTOI(t)V(t)dt/Nb 0 ‘ . -

_ 2R () = S 122,
U Nb 21: p (pw0> [() 21: P (pw())

using /OTO cos(p'wot) sin(pwot)dt = 0, Iy = eN, /Ty

T , - Ty/2 forp' =p
Jy * cos(p'wt) cos(pwot)dt = 0 forp #p

IP Z?“ ]p

“ |
L L
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Robinson instability
Qualitative treatment

Important longitudinal instability of a bunch
interacting with an narrow impedance, called
Robinson instability. In a qualitative ap-
proach we take single bunch and a narrow-
band cavity of resonance frequency w, and
impedance Z(w) taking only its resistive part
Z,. The revolution frequency wy depends on
energy deviation AFE

A(.d() B
Wo p
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|
|
|
| |
| |
| |
| l
Wy P w bl Wy w

While the bunch is executing a coherent di-
pole mode oscillation €(t) = €cos(wst) its
energy and revolution frequency are modu-
lated. Above transition wgis small when
the energy is high and wyis large when
the energy is small. If the cavity is tuned
to a resonant frequency slightly smaller than
the RF-frequency w, < pwy the bunch sees
a higher impedance and loses more energy
when it has an energy excess and it loses
less energy when it has a lack of energy.
This leads to a damping of the oscillation. If
w, > pwy this is reversed and leads to an in-
stability. Below transition energy the depen-
dence of the revolution frequency is reversed
which changes the stability criterion.



m AR

Frequency domain,
one harmonic p

e = ée “'sin(wst), damping if oy > 0
I Wsop[;?(ZT(szJr) — Zr(wp-))
’ 210hV cos ¢,

v>7r, cos ps< 0, stable Z,(w,_) > Z(w,)
Damping rate o< Z, difference at side-bands.

RF-cavity: (g - ]()(ZT(ij—) — ZT<wp—>>

Z]?pzhjo_ Ws0 2 2V cos ¢

general: A = ZplP(ZT(prrA) _ ZT(wp—))
Wso P 210hV cos ¢

cas08long-05

Qualitative understanding

turn k T turn k+1
| illati |
k(1) 4 OS(ngt!]%BES]Ch rk(t) |
I _ |
| ] | I
I(t) Stationary bunch ()
% 1O
1 + |
t t
71(t) | Perturbation 71(t) |
/\E i
t t
Cavity field induced by the two sidebands
E. | = (1 + Qs)wo L
L | 7
z | = (1 - Qs)wo |
1L

¢ Phase motion of the bunch center

(e ¢t

Narrow band — long memory, vice-versa

Y > T




Potential well bunch lengthening

At low frequency wall is inductive with Lwy =

dL/ds
=== mf\uf

+++

Vil

s .
E. = _de[w B ALdL,
V= o Bz =L

| E.dz i
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|Z/nlo:
We take a parabolic bunch form

A T 3l T
Lr) = I{1-" -
i7) ( %2> 2w0%( %2)
dr, 3mlyT
0 _ Io=(I
dr word T Y ).
. 3mlyL
V = V(sin ¢s + hwy cos ¢s7) + i 0A37'
woT
. 3| Z /nl|ol
V = V |siné + cos ¢shwg (1+ 3miZ/mlo v
hV cos ¢s(woT)3
5 w% hnce‘A/ COS Qg
Wgo = —
2k
3|4 I
wg = w§0{1+ ~ T2/l OA
hVgr cos ¢s(woT)?
Aws  Ws—ws 3m|Z /nloly
wo  we WV COS Os(woTp)?

)"



V(#)
T e
. t
w? 4 3| Z/n|ody
w3 hVpE cos ¢s(woT)?
ws —wso  Aws 3w Z/n|olo

ws 2KV cos Os(woTp)?

Only incoherent frequency wy of single parti-
cles is changed (reduced v > 7, increased
v < ~r), not coherent dipole (rigid bunch)

frequency wy;. The two get separated.

V(?)
A

Ws0
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Decreasing w; reduces longitudinal focusing,
increases bunch length 7. Relative energy
spread € = Tw,/n. is given for electrons
by synchrotron radiation, for protons the
product (emittance) Té=const.

Awg AT

electron = ———, proton =

AT Awy
To W0 To 2wq0
From observed bunch lengthening impedance
is estimated.
Frequency measurement would be better, but
wy is invisible and w4, doe not move, however,

quadrupole mode can be used

(.USQ - 2(,03() AWSQ 1Aw3

2WSO Ws2 4 Ws0




Separation of coherent and incoherent fre-
quencies

The wall inductance, and most reactive im-
pedances, separate coherent and incoherent
frequencies. A swing with a non-rigid frame
can illustrate this mechanism. A coherent,
center-of-mass, motion moves the frame and
changes the frequency, this is not the case
if oscillate at a different phases, leaving th
incoherent frequency unchanged. For space-
charge this causes mainly problems with res-
onances, here a loss of a stabilization mech-
anism, called Landau damping, is more im-
portant. A spread in individual particle fre-
quencies produces phase mixing which re-
duces the center-of-mass, coherent, ampli-
tude and gives some stabilization. A sepa-
ration between coherent and incoherent fre-

quencies makes this ineffective.
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4) TRANSVERSE INSTABILITIES
Transverse impedance

x ~_, |long. — transverse
Z - ES é_ES
< < +
e © © +e
a____;_» \\‘__6_.,?
e e e

—

@ByQ ©

o 4

SRR

—

Field excited by Iz = D = D cos(wt)

aEZ:—kI:U E.(z) = —kIz®
(?:1:

Zi(w)=— | Budz/I = —E-0/T = k("

/Bda——fEdS Byal = E.L = —k(Dg
B,=—kD cos(wt), B = —kDsin(wt)/w
field B out of phase with D = Iz
B,=—kD/w, Lorentz force F' ~ —ecB,

P Fxﬁ_ckﬁ_cZL_idQZL Q
77D w 220 2w dz?’ |m
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Used special case to define transverse im-
pedance and its relation to second deriva-
tive of the longitudinal impedance of same
mode. In General we have the impedances
long.: integrated field /current; trans.: in-
tegrated defl. field/ dipole moment On
resonance, F, is in, B, out of phase of I.
General deflecting mode, using © = Z¢/“!

E(w 7 % Blw ds
st <1 )

Relation Z; to Zr of different modes:

In ring of global and vacuum chamber radii
R and b the impedances, averaged for dif-
ferent modes, have semi-empirical ratio
2R ZL(w)

b w/wy

From area available for the wall current we

ZT<W> ~

" expect Z, o< 1/b, therefore Zp 1/63.



Transverse instability of a single, rigid bunch

t=0 t=1T,/4

\N/

T P
A bunch p traverses a cavity with off-set z,

excites a field —F, which converts after T, /4
into field —B,, then into £, and after into B,

A) Cavity is tuned to upper sideband. Next
turn bunch traverses in situation ‘A", t = T, /4)
with velocity in —z-direction and gets by B,
force in +x-direction which damps oscillation.

ew
damping rate a = 0Ps >
drmoc?yly w>0
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E. Y Y Y
~ o T ~ o A X ~ . T ~ B
\\ + \\ \\ EZ \\\
~ o p ~ - é] ~ . - E\
_ e[t x _ e[t x
/Q ///_’ \\// -
//\ e B T P ’7- //

t="T,/2 t =3T./4

The bunch oscillates with tune () having a
fractional part ¢ = 1/4 seen as sidebands at

wo(integer £ ¢) by a stationary observer.
_E.

B) Cavity is tuned to lower sideband, bunch
traverses next in situation 'B’, t = T,3/4 =
T.(1—1/4) with negative velocity and force in
same direction, increases velocity, instability.

([5+ZTr(w;) — [5_ZTr(wp_)> , Wyr = wo(p £ q).



Transverse instability of many rigid bunches

M  bunches can oscillate
in M independent modes
n = MA@/2m, phase A¢
between them seen in global
view. Locally, bunches pass
with increasing time delay
shown as bullets fitted by up-
per (solid) and lower (dashed)
side-band frequency. Higher
frequencies can be fitted and
spectrum repeats every 4wy.

wpr = wo(pM £ (n + q))

Spectrumn =3, ¢ =1/4
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global view - snap shot

local view - seen by impedance

Cunch 17234 1273471723 & Thunch
1 2 T 4 1 a] { i VN A
| N B 1Y 7
6 t 2 é turn
Ap=0,n=0,q=1/4 (|)g ,1 QSPGC r“”; 4 /
W/ Wy
bunch 1 2341234123 4 1bunch
0 1 3t
A¢:W/.2 — (I) 12 ; Ie;pectrun:1 - urn
0
bunch 1 2 3/\ 4 },\2 3 /4 % 2 3 4/ }bunch
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Non-rigid bunch - head-tail modes, ) =0

Particle distribution in a bunch

Phase-space distr. 1) rotates with wy, not vis-
ible, but projection A\(7) = [¢(1, AE)dE or
current I = gfBcA. Study motion by select-
ing particles with fixed synchr. osc. ampli-
tude T rotating in phase-space, moving from
head to tail and vice versa while executing at
same time vertical betatron oscillation y =
y cos(Qyuuot). With Q' = dQ/(dE/E) = 0

tune is constant during synchrotron motion.

cas08trans-04

Mode m=0, all in phase, rigid bunch

Mode m=1, head and tail in opposite
phase, not rigid

heade

4 ﬁ\OSC. B —__-* tall

A very high impedance can couple

these modes and give a Transverse
Mode Coupling Instability, TMCI.



Head-tail mode m=0 for ()’ # 0
Synchrotron oscillation in AE' affect
transverse motion via chromaticity
Q" = dQ/(dp/p). For v > ~yr has
excess energy moving from head to
tail and lack going from tail to head.
For )’ > 0, phase advances in first,
lags in second step; vice versa for
Q) < 0 or~v < ~7. Figure shows
motion for T = T;/8, for Q' = 0
and Q" < 0 in 4 steps of T5/8.

e et - | s o TS

CERN booster; Gareyte, Sacherer.
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Model of head-tail instability

Above transition energy:

Q)" = 0: Going from head to tail or vice versa
has same phase change. Phase lag and advance
interchange, giving neither damping nor growth.

()’ < 0: Going from head to tail there is a loss
in phase, going from tail to head a gain (pic-
ture), giving a systematic phase advance be-
tween head and tail and in average growth.

Tail has phase lag, amplitude increasea

Q)" > 0: Going from head to tail there is a head

phase gain, going back a loss, giving a system- 5w
atic phase lag between head and tail and in av-

erage damping. :
Below transition this situation is reversed.

Head tail spectrum: Tail has phase advance, amplitude decreasea

tail

y[p o | F wake force

——————————————————————————
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A merry-go-round, having vertically moving
horses, can illustrate transverse modes:
Coupled bunch modes, real space y = f(0, t)
Head-Tail modes, phase-space y = f(AE, 7, t)

Summary

Present instability treatment, invented by K. This demands resistive impedance at upper,
Robinson and generalized to nearly all cases by Z*, and lower, Z—, side-band to fulfill sta-

Frank Sacherer. bility conditions:
above transition | below transition
longitudinal, stability Zt < Z- Z5 > 7
transverse ()’ = 0, stability Zh > 75 Zh > 75
transverse head-tail, stability Q' >0 Q <0
Frank
Ken Sacherer

Robinson
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