1) SPACE-CHARGE

Introduction

by the guide fields of the magnetic lattice effect is important also for $v \rightarrow c$ shifts the betatron frequencies (tunes). motion, however the indirect wall effect does.

For the **direct space charge effect** the conducting vacuum chamber is neglected, E and B-fields are obtained directly. The E-field is repelling and defocuses while the Lorentz force of the B-field focuses. The balance between them becomes more perfect as the particle velocity v approaches c.

The many charged particles in a high intensity Conducting boundaries modify the field giving beam represent a space-charge and produce an indirect space-charge effect which is calelectromagnetic self-fields which affect the culated with image charges. Here the balance beam dynamics being otherwise determined between E and B-effects is perturbed and this

and RF-system. Assuming weak self-fields For a rigid, **coherent**, oscillation of the beam we treat their effects as a perturbation and as a whole, the direct-space charge represents concentrate on the transverse case where this an internal force which does not influence this

Direct space-charge effect

Fields and forces

Continuous (unbunched) beam of circular cross section. Fields inside beam, $\rho \leq a$, relevant radius a, uniform charge/current densities η , $\vec{J}=\eta\beta c$ for direct space-charge, only charges with total charge per unit length $\lambda = \pi a^2 \eta$ and cur- $\rho' \leq \rho$ contribute. Force on a particle rent $I = \beta c \lambda$, produces cylindrically symmetric fields $\vec{E}=[E_{\rho},\,0,\,0]$ and $\vec{B}=[0,\,E_{\phi},\,0]$ at radial distance ρ :

$$\operatorname{curl} \vec{B} = \mu_0 \vec{J}$$

$$\oint \vec{B} \cdot d\vec{s} = \iint \operatorname{curl} \vec{B} \cdot d\vec{S}_J$$

 $d\vec{s} = \rho[0, d\phi, 0], dV = 2\pi\rho ds d\rho$. Integrate $\int_0^\rho \eta(\rho') d\rho'$

$$2\pi\rho\ell E_{\rho} = \pi a^{2}\ell\eta/\epsilon_{0} \quad \text{in} \quad 2\pi\rho B_{\phi} = \pi a^{2}\mu_{0}J_{s}$$

$$E_{\rho} = \frac{\eta\rho}{2\epsilon_{0}} = \frac{\lambda}{2\pi\epsilon_{0}} \frac{\rho}{a^{2}} \quad \text{out} \quad B_{\phi} = \frac{\beta\eta\rho}{2\epsilon_{0}c} = \frac{\mu_{0}I}{2\pi} \frac{\rho}{a^{2}}$$

$$2\pi\rho\ell E_{\rho} = \pi\rho^{2}\ell\eta/\epsilon_{0} \quad \text{out} \quad 2\pi\rho B_{\phi} = \pi\rho^{2}\mu_{0}J_{s}$$

$$E_{\rho} = \frac{\eta a^{2}}{2\epsilon_{0}\rho} = \frac{\lambda}{2\pi\epsilon_{0}} \frac{1}{\rho} \quad B_{\phi} = \frac{\beta\eta a^{2}}{2\epsilon_{0}c\rho} = \frac{\mu_{0}I}{2\pi} \frac{1}{\rho}$$

$$2\pi\rho B_{\phi} = \pi a^{2}\mu_{0}J_{s}$$

$$B_{\phi} = \frac{\beta\eta\rho}{2\epsilon_{0}c} = \frac{\mu_{0}I}{2\pi}\frac{\rho}{a^{2}}$$

$$2\pi\rho B_{\phi} = \pi\rho^{2}\mu_{0}J_{s}$$

$$B_{\phi} = \frac{\beta\eta a^{2}}{2\epsilon_{0}c\rho} = \frac{\mu_{0}I}{2\pi}\frac{1}{\rho}$$

$$\vec{F} = F_E + F_B = e \left(\vec{E} + [\vec{v} \times \vec{B}] \right)$$
$$= \frac{e\eta}{2\epsilon_0} (1 - \beta^2) \vec{\rho} = \frac{eI}{2\pi \epsilon_0 c\beta \gamma^2} \frac{\vec{\rho}}{a^2}.$$

Space-charge defocusing

Uniform space-charge force on particle is linear, radial, repulsive and defocuses beam in x- and y-plane, changing tunes Q_x , $/Q_y$, (taking y):

$$\vec{F} = F_E + F_B = e \left(\vec{E} + [\vec{v} \times \vec{B}] \right)$$
$$= \frac{e\eta}{2\epsilon_0} (1 - \beta^2) \vec{\rho} = \frac{eI}{2\pi \epsilon_0 c \beta \gamma^2} \frac{\vec{\rho}}{a^2}.$$

Force deflects by angle $\Delta y' = \propto y$

$$F_{y} \approx m_{0} \gamma d^{2} y / dt^{2} = m_{0} c^{2} \beta^{2} c^{2} dy' / ds$$

$$\frac{dy'}{y} = d \left(\frac{1}{f}\right) = \frac{eI ds}{2\pi \epsilon_{0} a^{2} m_{0} c^{3} \beta^{3} \gamma^{3}} = \frac{2r_{0} I ds}{ec \beta^{3} \gamma^{3} a^{2}}$$

$$r_{0} = \frac{e^{2}}{4\pi \epsilon_{0} m_{0} c^{2}} = \frac{1.54 \cdot 10^{-18} \text{ m protons}}{2.82 \cdot 10^{-15} \text{ m electrons}}$$

 $y' = \mathrm{d}y/\mathrm{d}s \approx y/(\beta c) \ll 1$, focusing strength 1/f, classical particle radius r_0 . Tune change by element of length Δs , strength 1/f.

$$dQ_y = \frac{\beta_y(s)}{4\pi} d\left(\frac{1}{f}\right) = \frac{-r_0 I}{2\pi c e \beta^3 \gamma^3} \frac{\beta_y(s) ds}{a^2(s)}$$
$$\Delta Q_y = \frac{-r_0 I}{2\pi c e \beta^3 \gamma^3} \oint \frac{\beta_y(s) ds}{a^2(s)} = \frac{-r_0 I R}{c e \beta^3 \gamma^3 \mathcal{E}_y}$$

using invariant emittance $\mathcal{E}_y \approx a^2/\beta_y$. Tune shift by local space-charge depends on \mathcal{E}_y , not on β_y and a separately. Small β_y gives small a and strong force but reduced effect.

Approx.: $\mathcal{E}_y \approx a^2/\beta_y$; no change of β_y .

Elliptic beam cross section

Uniform η and elliptic cross section with half-axes $a,\ b$ give fields and forces inside (L. Teng)

$$\vec{E} = [E_x, E_y] = \frac{I}{\pi \epsilon_0 (a+b)\beta c} \left[\frac{x}{a}, \frac{y}{b} \right]$$

$$\vec{B} = [B_x, B_y] = \frac{\mu_0 I}{\pi (a+b)} \left[-\frac{y}{b}, \frac{x}{a} \right]$$

which satisfies $\operatorname{div} \vec{E} = \eta/\epsilon_0$, $\operatorname{curl} \vec{B} = \mu_0 \vec{J}$.

$$\vec{F} = e \left[\vec{E} + \left[\vec{v} \times \vec{B} \right] \right] = \frac{I \left[(x/a), (y/b) \right]}{\pi \epsilon_0 \beta c \gamma^2 (a+b)}$$

This force is $F_x \propto x, \, F_y \propto y$ and gives linear defocusing in the two directions.

$$\Delta Q_x = \frac{-r_0 I}{\pi e c \beta^3 \gamma^3 \mathcal{E}_x} \oint \frac{a}{a+b} ds$$

$$\Delta Q_y = \frac{-r_0 I}{\pi e c \beta^3 \gamma^3 \mathcal{E}_x} \oint \frac{b}{a+b} ds$$

Since a/b depends on s the local tune shift contribution depends also weakly on s.

Bunched beams

Current I(s) depends on longitudinal distance s from bunch center. Relativistic field has small opening angle $\approx 1/\gamma$ and depends on local I(s) if this changes little over $\Delta s = a/\gamma$

$$\Delta Q_y \approx -\frac{r_0 RI(s)}{ec\mathcal{E}_y \beta^3 \gamma^3}, \quad \Delta Q_x \approx -\frac{r_0 RI(s)}{ec\mathcal{E}_x \beta^3 \gamma^3},$$

Tune shift depends on particle position s in bunch giving to a tune spread, and, through synchrotron oscillations, to a tune modulation.

Non-uniform distribution

General charge distribution is not uniform, has radial dependence $\eta(\rho)$ giving non-linear force, making tune shift depend on betatron oscillation amplitude and leading to a tune spread.

Indirect space-charge effect — influence of the chamber wall

Conducting boundary imposes $E_{\parallel}=0$ with only E_{\perp} . To calculate field we introduce image charge $-\lambda$ at distance h behind wall which cancels E_{\parallel} on surface. Have fields:

direct \vec{E}_d , image \vec{E}_i , surface $\vec{E}_{d\parallel}=-\vec{E}_{i\parallel}$, $\vec{E}_{\parallel}=0$ inside: $\vec{E}=\vec{E}_d+\vec{E}_i$, div $\vec{E}_d=\eta/\epsilon_0$, div $\vec{E}_i=0$

Conducting plates at $\pm h$. To get there $E_{\parallel}=0$, need image charges of beam and of images. Field close to beam, first order in x,y (quadrupole field) of n-th image pair at $\pm 2nh$ and sum over n

$$\begin{split} E_{iny} &= \frac{(-1)^n \lambda}{2\pi \epsilon_0} \left(\frac{1}{2nh + y} - \frac{1}{2nh - y} \right) \approx -\frac{\lambda y}{4\pi \epsilon_0 h^2} \frac{(-1)^n}{n^2} \\ E_{iy} &= \sum_{1}^{\infty} E_{iny} = \frac{\lambda y}{4\pi \epsilon_0 h^2} \frac{\pi^2}{12}, \quad \text{div} \vec{E_i} = 0 \rightarrow E_{i_x} = -\frac{\lambda x}{4\pi \epsilon_0 h^2} \frac{\pi^2}{12}, \\ F_x &= \frac{2e\lambda x}{2\pi \epsilon_0} \left(\frac{1}{2a^2 \gamma^2} - \frac{\pi^2}{48h^2} \right), \quad F_y &= \frac{2e\lambda y}{2\pi \epsilon_0} \left(\frac{1}{2a^2 \gamma^2} + \frac{\pi^2}{48h^2} \right) \\ \Delta Q_{x/y} &= -\frac{2r_0 IR \langle \beta_{x/y} \rangle}{ec\beta^3 \gamma} \left(\frac{1}{2a^2 \gamma^2} \mp \frac{\pi^2}{48h^2} \right), \quad \text{with } I = \lambda \beta c. \end{split}$$

B field not affected, no relativistic E/B-force compensation.

Incoherent and coherent motion

Direct space-charge effect

For incoherent motion particles have space-charge tune shift

coherent motion

incoherent motion

$$\Delta Q_{\text{inc.}} = -\frac{r_0 I R \beta_y}{cea^2 \beta^3 \gamma^3}$$

In coherent motion space-charge force is intern, moves with beam, no effect on center-of-mass motion $\Delta Q_{\rm COh}\,=0$

Indirect space-charge effect

Space-charge field with a conducting wall at distance h was obtained by image line charge at h behind wall. A coherent beam motion by \bar{y} moves first images to $\pm 2h - \bar{y}$ with a field at the beam

$$E_{c1y} = \frac{-\lambda}{2\pi\epsilon_0} \left(\frac{1}{2h + 2\bar{y}} - \frac{1}{2h - 2\bar{y}} \right).$$

Equidistant 2nd images cancel, general

$$E_{cny} = -\frac{(-1)^n \lambda \bar{y}}{4\pi \epsilon_0 h^2} \left(\frac{1}{n^2} - \frac{(-1)^n}{n^2} \right) \qquad \text{-2h} \qquad \text{-2h}$$

$$Q_{ycoh.} - Q_{yinc.} = \frac{2r_0 IR\langle \beta_y \rangle}{ec\beta^3 \gamma} \left(\frac{1}{2a^2 \gamma^2} - \frac{\pi^2}{24h^2} \right).$$

Problems caused by space-charge in rings

In rings space-charge can shift tunes into resonances where Q=N/M is a simple rational fraction. Dipole imperfection deflects particle each turn in phase if Q= integer and for a quadrupole error this happens if Q= half integer. Since space-charge shifts coherent and incoherent tunes differently and produces spread it may be difficult to avoid all resonances.

Related effects

Beam-beam effect: electric and magnetic forces ad. lons and electron clouds: don't move, no B-force.

Direct space-charge tune shift and spread at different γ during acceleration (shaded areas), CERN booster, E. Brouzet, K.H. Schindl.

2) IMPEDANCES AND WAKE FUNCTIONS

Resonator

For space charge a perfectly conducting wall of uniform cross section and electrostatic methods were used. General cross sections have resonances described by an impedance.

Beam induces wall current $I_w = -(I_b - \langle I_b \rangle)$

Cavities have narrow band oscillation modes which can drive coupled bunch instabilities. Each resembles an \mathbf{RCL} - $\mathbf{circuit}$ and can, in good approximation, be treated as such. This circuit has a shunt impedance R_s , an inductance L and a capacity C. In a real cavity these parameters cannot easily be separated and we use others which can be measured directly: The $\mathbf{resonance}$ frequency ω_r , the $\mathbf{quality}$ factor Q and the $\mathbf{damping}$ rate α :

$$\omega_r = \frac{1}{\sqrt{LC}}, \quad Q = R_s \sqrt{\frac{C}{L}} = \frac{R_s}{L\omega_r} = R_s C \omega_r$$

$$\alpha = \frac{\omega_r}{2Q}, \quad L = \frac{R_s}{Q\omega_r}, \quad C = \frac{Q}{\omega_r R_s}.$$

Driving this circuit with a current I gives the voltages and currents across the elements

$$\begin{split} V_R &= V_C = V_L = V, \ I_R + I_C + I_L = I \\ \dot{I} &= \dot{I}_R + \dot{I}_C + \dot{I}_L = \dot{V}/R_s + C\ddot{V} + V/L. \\ \text{Using } L &= R_s/(\omega_r Q), \ C = Q/(\omega_r R_s) \ \text{gives} \\ \text{differential eqn.} \ \ddot{V} + \frac{\omega_r}{Q}\dot{V} + \omega_r^2 V = \frac{\omega_r R_s}{Q}\dot{I} \end{split}$$

Homogeneous solution is damped oscillation

$$V(t) = e^{-\alpha t} \left(A \cos \left(\omega_r \sqrt{1 - \frac{1}{4Q^2}} t \right) + B \sin \left(\omega_r \sqrt{1 - \frac{1}{4Q^2}} t \right) \right), \quad \alpha = \frac{\omega_r}{2Q}$$

Wake/Green – function, pulse response $I(t) = q\delta t$, charge q gives capacity voltage

$$V(0^+) = \frac{q}{C} = \frac{\omega_r R_s}{Q} q \text{ using } C = \frac{Q}{\omega_r R_s}$$

Energy stored in C = energy lost by q

$$U = \frac{q^2}{2C} = \frac{\omega_r R_s}{2Q} q^2 = \frac{V(0^+)}{2} q = k_{pm} q^2$$

parasitic mode loss factor $k_{pm} = \omega_r R_s/2Q$ Capacitor discharges first through resistor

$$-\dot{V}(0^{+}) = \frac{\dot{q}}{C} = \frac{I_R}{C} = \frac{V(0^{+})}{CR_s} = -\frac{2\omega_r k_{pm}}{Q}q.$$

$$V(0^{+}), \ \dot{V}(0^{+}) \to A = 2qk_{pm}, \ B = \frac{-A}{\sqrt{4Q^2 - 1}}$$

$$e^{-\alpha t} \left(A \cos \left(\omega_{r} \sqrt{1 - \frac{1}{4Q^{2}}} t \right) \right)$$

$$+ B \sin \left(\omega_{r} \sqrt{1 - \frac{1}{4Q^{2}}} t \right) \right), \quad \alpha = \frac{\omega_{r}}{2Q}$$

$$V(t) = 2qk_{pm}e^{-\alpha t} \left(\cos \left(\omega_{r} \sqrt{1 - \frac{1}{4Q^{2}}} t \right) \right)$$

$$- \frac{\sin \left(\omega_{r} \sqrt{1 - \frac{1}{4Q^{2}}} t \right)}{\sqrt{4Q^{2} - 1}} \right) \approx 2qk_{pm}e^{-\alpha t} \cos(\omega_{r}t).$$

Impedance

A **harmonic** excitation of circuit with current $I = \hat{I} \cos(\omega t)$ gives differential equation

$$\ddot{V} + \frac{\omega_r}{Q}\dot{V} + \omega_r^2 V = \frac{\omega_r R_s}{Q}\dot{I} = -\frac{\omega_r R_s}{Q}\hat{I}\omega\sin(\omega t).$$

Homogeneous solution damps leaving particular one $V(t) = A\cos(\omega t) + B\sin(\omega t)$. Put into differential equation, separating cosine and sine

$$-(\omega^2 - \omega_r^2)A + \frac{\omega_r \omega}{Q}B = 0$$
$$(\omega^2 - \omega_r^2)B + \frac{\omega_r \omega}{Q}A = \frac{\omega_r \omega R_s}{Q}\hat{I}.$$

Voltage induced by current $\hat{I}\cos(\omega t)$ is

$$V(t) = \hat{I}R_s \frac{\cos(\omega t) + Q\frac{\omega^2 - \omega_r^2}{\omega_r \omega}\sin(\omega t)}{1 + Q^2\left(\frac{\omega^2 - \omega_r^2}{\omega_r \omega}\right)^2}$$

Cosine term is **in phase** with exciting current, absorbs energy, **resistive**. Sine term is **out of phase**, does not absorb energy, **reactive**. Voltage/current ratio is **impedance** as **function of frequency** ω

$$Z_r(\omega) = R_s \frac{1}{1 + Q^2 \left(\frac{\omega_r^2 - \omega^2}{\omega_r \omega}\right)^2}$$

$$Z_i(\omega) = -R_s \frac{Q^{\frac{\omega^2 - \omega_r^2}{\omega_r \omega}}}{1 + Q^2 \left(\frac{\omega^2 - \omega_r^2}{\omega_r \omega}\right)^2}.$$

Resistive part $Z_r(\omega) \geq 0$, reactive part $Z_i(\omega)$ positive below, negative above ω_r .

$$\hat{I}\cos(\omega t) \to V = \hat{I}[Z_r\cos(\omega t) - Z_i\sin(\omega t)]$$
$$\hat{I}\sin(\omega t) \to V = \hat{I}[Z_r\sin(\omega t) + Z_i\cos(\omega t)]$$

Complex notation

Excite:
$$I(t) = \hat{I}\cos(\omega t) = \hat{I}\frac{\mathrm{e}^{j\omega t} + \mathrm{e}^{-j\omega t}}{2}$$
 with $0 \le \omega \le \infty$
$$I(t) = \hat{I}\mathrm{e}^{j\omega t}/2 \text{ with } -\infty \le \omega \le \infty$$

$$Z(\omega) = R_s \frac{1 - jQ \frac{\omega^2 - \omega_r^2}{\omega \omega_r}}{1 + Q^2 \left(\frac{\omega^2 - \omega_r^2}{\omega \omega_r}\right)^2} = Z_r + jZ_i$$

$$\approx R_s \frac{1 - j2Q\Delta\omega/\omega_r}{1 + 4Q^2 \left(\Delta\omega/\omega_r\right)^2} \text{ for } Q \gg 1$$

$$\omega \approx \omega_r, |\omega - \omega_r|/\omega_r = |\Delta\omega|/\omega_r \ll 1.$$
Resonator impedance properties:

at
$$\omega = \omega_r \to Z_r(\omega_r)$$
 max., $Z_i(\omega_r) = 0$
 $0 < \omega < \omega_r \to Z_i(\omega) > 0$ (inductive)
 $\omega > \omega_r \to Z_i(\omega) < 0$ (capacitive)

General impedance or wake properties

$$Z_r(\omega) = Z_r(-\omega) , Z_i(\omega) = -Z_i(-\omega)$$

 $Z(\omega) = \int_{-\infty}^{\infty} G(t) e^{-j\omega t} dt$

$$Z(\omega) \propto$$
 Fourier transform of $G(t)$ for $t < 0 \rightarrow G(t) = 0$,

no fields before particle arrives, $\beta \approx 1$.

Typical impedance of a ring

Aperture changes form cavity-like objects with ω_r , R_s and Q and impedance $Z(\omega)$ developed for $\omega < \omega_r$, where it is inductive

$$Z(\omega) = R_s \frac{1 - jQ \frac{\omega^2 - \omega_r^2}{\omega \omega_r}}{1 + \left(Q \frac{\omega^2 - \omega_r^2}{\omega \omega_r}\right)^2} \approx j \frac{R_s \omega}{Q \omega_r} + \dots$$

Sum impedance at $\omega \ll \omega_{rk}$ divided by mode number $n = \omega/\omega_0$ is with inductance L

$$\left|\frac{Z}{n}\right|_0 = \sum_k \frac{R_{sk}\omega_0}{Q_k\omega_{rk}} = L\omega_0 = L\frac{\beta c}{R}.$$

It depends on impedance per length, ≈ 15 Ω in older, 1 Ω in newer rings. The shunt impedances R_{sk} increase with ω up to cutoff frequency where wave propagation starts and become wider and smaller. A broad band resonator fit helps to characterize impedance giving Z_r , Z_i , G(t) useful for single traversal effects. However, for multi-traversal instabilities narrow resonances at ω_{rk} must be used.

3) LONGITUDINAL INSTABILITIES **Longitudinal dynamics**

A particle with momentum deviation Δp has different orbit length L, revolution time T_0 and frequency ω_0

$$\frac{\Delta L}{L} = \alpha_c \frac{\Delta p}{p} = \frac{\alpha_c \Delta E}{\beta^2 E}$$

$$\frac{\Delta T}{T} = -\frac{\Delta \omega_0}{\omega_0} = \left(\alpha_c - \frac{1}{\gamma^2}\right) \frac{\Delta p}{p} = \eta_c \frac{\Delta p}{p}$$

with momentum compaction $\alpha_c = 1/\gamma_T^2$, slip factor η_c . At transition energy $m_0c^2\gamma_T$ the ω_0 dependence on Δp changes sign

$$E > E_T \to \frac{1}{\gamma^2} < \alpha_c \to \eta_c > 1, \ \frac{\Delta \omega_0}{\Delta E} < 0 \qquad \qquad \delta E = e \hat{V} \sin(h\omega_0(t_s + \tau)) - U$$

$$E < E_T \to \frac{1}{\gamma^2} > \alpha_c \to \eta_c < 1, \ \frac{\Delta \omega_0}{\Delta E} > 0. \qquad \text{ity, τ= deviation from it, synchronous phase}$$

$$\text{For $\gamma \gg 1 \to \Delta p/p \approx \Delta E/E = \epsilon$, $\eta_c \approx \alpha_c$.}$$

$$\phi_s = h\omega_0 t_s. \text{ For $h\omega_0 \tau \ll 1$ we develop}$$

RF-cavity of voltage \hat{V} , frequency $\omega_{\text{RF}} =$ $h\omega_0$, SR energy loss U the energy gain or loss of a particle in one turn $\delta\epsilon = \delta E/E$ is

$$\delta E = e\hat{V}\sin(h\omega_0(t_s + \tau)) - U$$

 t_s = synchronous arrival time at the cav- $\phi_s = h\omega_0 t_s$. For $h\omega_0 \tau \ll 1$ we develop

$$\delta E = e\hat{V}\sin(\phi_s) + h\omega_0 e\hat{V}\cos\phi_s \tau - U.$$

For $\delta E/E \ll 1$ use smooth approximation Combining these into a second order equation $E \approx \delta E/T_0$, $\dot{\tau} = \Delta T/T_0 = \eta_c \Delta E/E$

$$\dot{E} = \frac{\omega_0 e \hat{V} \sin \phi_s}{2\pi} + \frac{\omega_0^2 h e \hat{V} \cos \phi_s}{2\pi} \tau - \frac{\omega_0}{2\pi} U.$$

Use $T_0 = 2\pi/\omega_0$, relative energy $\epsilon = \Delta E/E$

$$\dot{\epsilon} = \frac{\omega_0 e \hat{V} \sin \phi_s}{2\pi E} + \frac{\omega_0^2 h e \hat{V} \cos \phi_s}{2\pi E} \tau - \frac{\omega_0}{2\pi} \frac{U}{E}.$$

Energy loss U may depend on E

$$U(\epsilon, \tau) \approx U_0 + \frac{\partial U}{\partial E} \Delta E$$

giving for the derivative of the energy loss

$$\dot{\epsilon} = \frac{\omega_0^2 h e \hat{V} \cos \phi_s}{2\pi E} \tau - \frac{\omega_0}{2\pi} \frac{\partial U}{\partial E} \epsilon$$

$$\dot{\tau} = \eta_c \epsilon$$

where we used that for synchronous particle $\epsilon = 0$, $\tau = 0$ we have $U_0 = eV \sin \phi_s$

$$\ddot{\tau} + \frac{\omega_0}{2\pi} \frac{\partial U}{\partial E} \dot{\tau} + \omega_{s0}^2 \tau = 0,$$

$$\omega_{s0}^2 = \frac{-\omega_0^2 h \eta_c e \hat{V} \cos \phi_s}{2\pi E}, \quad \alpha_s = \frac{1}{2} \frac{\omega_0}{2\pi} \frac{\partial U}{\partial E}$$

$$\omega_{s1}^2 = \omega_{s0}^2 - \alpha_s^2 \approx \omega_{s0}^2$$

$$\ddot{\tau} + 2\alpha_s \dot{\tau} + \omega_{s0}^2 \tau = 0$$

$$\tau = \hat{\tau} e^{-\alpha_s t} \cos(\omega_{s1} t), \quad \epsilon = \hat{\epsilon} e^{-\alpha_s t} \sin(\omega_{s1} t)$$

From $\dot{\tau} = \eta_c \epsilon$ we get $\hat{\epsilon} = \omega_{s0} \hat{\tau} / \eta_c$.

To get real ω_{s0} we need $\cos \phi_s \leq 0$ above transition where $\eta_c > 0$ and vice versa.

To get a stable (decaying) solution we need an energy loss which increases with E

$$\alpha_s = \frac{\omega_0}{4\pi} \frac{\partial U}{\partial E} = \frac{\omega_0}{4\pi E} \frac{\partial U}{\partial \epsilon} > 0.$$

Induced voltage and energy loss by a stationary bunch

Circulating symmetric bunch (N_b particles) has current

$$I(t) = \sum_{-\infty}^{\infty} I(t - kT_0)$$

$$I(t) = I_0 + 2\sum_{-\infty}^{\infty} I_p \cos(p\omega_0 t), \quad I_p = \int_0^{T_0} I(t) \cos(p\omega_0 t) dt$$

In impedance $Z(\omega)$ it induces voltage

$$V(t) = 2\sum_{i} I_{p} \left[Z_{r}(p\omega_{0}) \cos(p\omega_{0}t - Z_{i}(p\omega_{0}) \sin(p\omega_{0}t)) \right]$$

Energy lost per particles and turn $U=\int_0^{T_0}\!I(t)V(t)dt/N_b$

$$U = \frac{2T_0}{N_b} \sum_{1}^{\infty} I_p^2 Z_r(p\omega_0) = \frac{2e}{I_0} \sum_{1}^{\infty} I_p^2 Z_r(p\omega_0)$$

using /

$$\int_0^{T_0} \cos(p'\omega_0 t) \sin(p\omega_0 t) dt = 0, \quad I_0 = eN_b/T_0$$

$$\int_0^{T_0} \cos(p'\omega_0 t) \cos(p\omega_0 t) dt = \begin{cases} T_0/2 & \text{for } p' = p \\ 0 & \text{for } p' \neq p \end{cases}$$

Robinson instability

Qualitative treatment

Important longitudinal instability of a bunch interacting with an narrow impedance, called **Robinson** instability. In a qualitative approach we take single bunch and a narrow-band cavity of resonance frequency ω_r and impedance $Z(\omega)$ taking only its resistive part Z_r . The revolution frequency ω_0 depends on energy deviation ΔE

$$\frac{\Delta\omega_0}{\omega_0} = -\eta_c \frac{\Delta p}{p}.$$

While the bunch is executing a coherent dipole mode oscillation $\epsilon(t) = \hat{\epsilon} \cos(\omega_s t)$ its energy and revolution frequency are modulated. Above transition ω_0 is small when the **energy is high** and ω_0 is **large** when the energy is small. If the cavity is tuned to a resonant frequency slightly smaller than the RF-frequency $\omega_r < p\omega_0$ the bunch sees a higher impedance and loses more energy when it has an energy excess and it loses less energy when it has a lack of energy. This leads to a **damping** of the oscillation. If $\omega_r > p\omega_0$ this is reversed and leads to an **instability**. Below transition energy the dependence of the revolution frequency is reversed which changes the stability criterion.

$$\epsilon = \hat{\epsilon} e^{-\alpha_s t} \sin(\omega_s t), \text{ damping if } \alpha_s > 0$$

$$\alpha_s = \frac{\omega_{s0} p I_p^2 (Z_r(\omega_{p+}) - Z_r(\omega_{p-}))}{2I_0 h \hat{V} \cos \phi_s}$$

 $\gamma > \gamma_T, \cos \phi_s < 0$, stable $Z_r(\omega_{p-}) > Z_r(\omega_{p+})$ Damping rate $\propto Z_r$ difference at side-bands.

$$\begin{array}{ll} \text{RF-cavity:} & \frac{\alpha_s}{p=h} \approx \frac{I_0(Z_r(\pmb{\omega_{p+}}) - Z_r(\pmb{\omega_{p-}}))}{2\hat{V}\cos\phi_s} \\ \text{general:} & \frac{\alpha_s}{\omega_{s0}} = \sum\limits_{p} \frac{pI_p^2(Z_r(\pmb{\omega_{p+}}) - Z_r(\pmb{\omega_{p-}}))}{2I_0h\hat{V}\cos\phi_s} \\ \end{array}$$

Qualitative understanding

Cavity field induced by the two sidebands

Narrow band → long memory, vice-versa

Potential well bunch lengthening

At low frequency wall is inductive with $L\omega_0 = |Z/n|_0$:

$$E_z = -\frac{\mathrm{d}L}{\mathrm{d}z}\frac{\mathrm{d}I_w}{\mathrm{d}t} = \frac{\mathrm{d}L}{\mathrm{d}z}\frac{\mathrm{d}I_b}{\mathrm{d}t}$$
$$V = -\int E_z dz = -L\frac{\mathrm{d}I_b}{\mathrm{d}z}$$

We take a parabolic bunch form

$$I_b(\tau) = \hat{I} \left(1 - \frac{\tau^2}{\hat{\tau}^2} \right) = \frac{3\pi I_0}{2\omega_0 \hat{\tau}} \left(1 - \frac{\tau^2}{\hat{\tau}^2} \right)$$
$$\frac{\mathrm{d}I_b}{\mathrm{d}\tau} = -\frac{3\pi I_0 \tau}{\omega_0 \hat{\tau}^3}, \ I_0 = \langle I_b \rangle,$$

$$V = \hat{V}(\sin\phi_s + h\omega_0\cos\phi_s\tau) + \frac{3\pi I_0 L\tau}{\omega_0\hat{\tau}^3}$$

$$E_z = -\frac{\mathrm{d}L}{\mathrm{d}z}\frac{\mathrm{d}I_w}{\mathrm{d}t} = \frac{\mathrm{d}L}{\mathrm{d}z}\frac{\mathrm{d}I_b}{\mathrm{d}t}$$

$$V = \hat{V}(\sin\phi_s + h\omega_0\cos\phi_s\tau) + \frac{3\pi I_0 L\tau}{\omega_0\hat{\tau}^3}$$

$$V = \hat{V}\left[\sin\phi_s + \cos\phi_s h\omega_0\left(1 + \frac{3\pi |Z/n|_0 I_0}{h\hat{V}\cos\phi_s(\omega_0\hat{\tau})^3}\right)\tau\right]$$

$$V = \hat{V}\left[\sin\phi_s + \cos\phi_s h\omega_0\left(1 + \frac{3\pi |Z/n|_0 I_0}{h\hat{V}\cos\phi_s(\omega_0\hat{\tau})^3}\right)\tau\right]$$

$$\omega_{s0}^{2} = -\frac{\omega_{0}^{2}h\eta_{c}e\hat{V}\cos\phi_{s}}{2\pi E}$$

$$\omega_{s}^{2} = \omega_{s0}^{2}\left[1 + \frac{3\pi|Z/n|_{0}I_{0}}{h\hat{V}_{RF}\cos\phi_{s}(\omega_{0}\hat{\tau})^{3}}\right]$$

$$\frac{\Delta\omega_{s}}{\omega_{0}} = \frac{\omega_{s} - \omega_{s0}}{\omega_{s0}} \approx \frac{3\pi|Z/n|_{0}I_{0}}{2h\hat{V}_{RF}\cos\phi_{s}(\omega_{0}\hat{\tau}_{0})^{3}}$$

Only incoherent frequency ω_s of single particles is changed (reduced $\gamma > \gamma_T$, increased $\gamma < \gamma_T$), not coherent dipole (rigid bunch) frequency ω_{s1} . The two get separated.

Decreasing ω_s reduces longitudinal focusing, increases bunch length $\hat{\tau}$. Relative energy spread $\hat{\epsilon} = \hat{\tau}\omega_s/\eta_c$ is given for electrons by synchrotron radiation, for protons the product (emittance) $\hat{\tau}\hat{\epsilon}$ =const.

electron
$$\frac{\Delta \hat{\tau}}{\hat{\tau}_0} = -\frac{\Delta \omega_s}{\omega_{s0}}$$
, proton $\frac{\Delta \hat{\tau}}{\hat{\tau}_0} = -\frac{\Delta \omega_s}{2\omega_{s0}}$

From observed bunch lengthening impedance is estimated.

Frequency measurement would be better, but ω_s is invisible and ω_{s1} doe not move, however, quadrupole mode can be used

$$\frac{\omega_{s2} - 2\omega_{s0}}{2\omega_{s0}} = \frac{\Delta\omega_{s2}}{\omega_{s2}} \approx \frac{1}{4} \frac{\Delta\omega_{s}}{\omega_{s0}}.$$

Separation of coherent and incoherent frequencies

The wall inductance, and most reactive impedances, separate coherent and incoherent frequencies. A swing with a non-rigid frame can illustrate this mechanism. A coherent, center-of-mass, motion moves the frame and changes the frequency, this is not the case if oscillate at a different phases, leaving th incoherent frequency unchanged. For spacecharge this causes mainly problems with resonances, here a loss of a stabilization mechanism, called Landau damping, is more important. A spread in individual particle frequencies produces phase mixing which reduces the center-of-mass, coherent, amplitude and gives some stabilization. A separation between coherent and incoherent frequencies makes this ineffective.

4) TRANSVERSE INSTABILITIES **Transverse impedance**

Field excited by $Ix = D = D\cos(\omega t)$

$$\frac{\partial E_z}{\partial x} = -kIx, \ E_z(x) = -kIx^2$$

$$Z_L(x) = -\int E_z dz/I = -E_z \ell/I = k\ell x^2$$

$$| Ix(\omega)|$$

$$\int \vec{B} d\vec{a} = -\int \vec{E} d\vec{s}, \ \dot{B}_y x\ell = E_z \ell = -k\ell Dx$$
 In ring of global and vacuum chamber radii
$$\dot{B}_y = -k\hat{D}\cos(\omega t), \ B = -k\hat{D}\sin(\omega t)/\omega$$
 field B out of phase with $D = Ix$
$$\hat{B}_y = -k\hat{D}/\omega, \ \text{Lorentz force } \hat{F} \approx -ec\hat{B}_y$$

$$Z_T = -\frac{F_x \ell}{e\hat{D}} = \frac{ck\ell}{\omega} = \frac{cZ_L}{x^2\omega} = \frac{c}{2\omega} \frac{d^2Z_L}{dx^2}, \ \left[\frac{\Omega}{\mathsf{m}}\right].$$
 From area available for the wall current we expect $Z_L \propto 1/b$, therefore $Z_T \propto 1/b^3$.

Used special case to define transverse impedance and its relation to second derivative of the longitudinal impedance of same mode. In General we have the impedances long.: integrated field/current; trans.: integrated defl. field/ dipole moment On resonance, E_z is in, B_y out of phase of I. General deflecting mode, using $x = \hat{x}e^{j\omega t}$

$$Z_T(\omega) = j \frac{\int \left(\vec{E}(\omega) + [\vec{v} \times \vec{B}(\omega)] \right)_T ds}{Ix(\omega)}$$

Relation Z_L to Z_T of different modes: In ring of global and vacuum chamber radii R and b the impedances, averaged for $\operatorname{\mathbf{dif}}$ ferent modes, have semi-empirical ratio

$$Z_T(\omega) \approx \frac{2R}{b^2} \frac{Z_L(\omega)}{\omega/\omega_0}$$

Transverse instability of a single, rigid bunch

into field $-B_y$, then into E_z and after into B_y . $\omega_0(\mathrm{integer} \pm q)$ by a stationary observer.

turn bunch traverses in situation 'A', $t=T_r/4$) traverses next in situation 'B', $t=T_r3/4=$ with velocity in -x-direction and gets by B_y $T_r(1-1/4)$ with negative velocity and force in force in +x-direction which damps oscillation. same direction, increases velocity, instability.

A bunch p traverses a cavity with off-set x, The bunch oscillates with tune Q having a excites a field $-E_z$ which converts after $T_r/4$ fractional part q=1/4 seen as sidebands at

A) Cavity is tuned to upper sideband. Next B) Cavity is tuned to lower sideband, bunch

damping rate
$$a = \frac{e\omega_0\beta_x}{4\pi m_0c^2\gamma I_0} \sum_{\omega>0} \left(I_{p+}^2 Z_{Tr}(\omega_p^+) - I_{p-}^2 Z_{Tr}(\omega_p^-)\right), \; \omega_{p\pm} = \omega_0(p\pm q).$$

Transverse instability of many rigid bunches

$$\omega_{p\pm} = \omega_0(pM \pm (n+q))$$

Non-rigid bunch - head-tail modes, Q'=0

Particle distribution in a bunch

Phase-space distr. ψ rotates with ω_s , not visible, but projection $\lambda(\tau) = \int \psi(\tau, \Delta E) \mathrm{d}E$ or current $I = q\beta c\lambda$. Study motion by selecting particles with fixed synchr. osc. amplitude $\hat{\tau}$ rotating in phase-space, moving from head to tail and vice versa while executing at same time vertical betatron oscillation $y = \hat{y}\cos(Q_y\omega_0t)$. With $Q' \approx \mathrm{d}Q/(\mathrm{d}E/E) = 0$ tune is constant during synchrotron motion.

Mode m=0, all in phase, rigid bunch

Mode m=1, head and tail in opposite phase, not rigid

A very high impedance can couple these modes and give a Transverse Mode Coupling Instability, TMCI. Head-tail mode m=0 for $Q' \neq 0$ Synchrotron oscillation in ΔE affect transverse motion via chromaticity Q' = dQ/(dp/p). For $\gamma > \gamma_T$ has excess energy moving from head to tail and lack going from tail to head. For Q' > 0, phase advances in first, lags in second step; vice versa for Q' < 0 or $\gamma < \gamma_T$. Figure shows motion for $T_\beta = T_s/8$, for Q' = 0 and Q' < 0 in 4 steps of $T_\beta/8$.

CERN booster; Gareyte, Sacherer.

Model of head-tail instability

Above transition energy:

Q'=0: Going from head to tail or vice versa has same phase change. Phase lag and advance interchange, giving neither damping nor growth.

Q'<0: Going from head to tail there is a loss in phase, going from tail to head a gain (picture), giving a systematic phase advance between head and tail and in average growth.

Q'>0: Going from head to tail there is a phase gain, going back a loss, giving a systematic phase lag between head and tail and in average damping.

Below transition this situation is reversed. Head tail spectrum:

Tail has phase lag, amplitude increasea

Tail has phase advance, amplitude decreasea

A merry-go-round, having vertically moving horses, can illustrate transverse modes: Coupled bunch modes, real space $y = f(\theta, t)$ Head-Tail modes, phase-space $y = f(\Delta E, \tau, t)$

Summary

Robinson and generalized to nearly all cases by Frank Sacherer.

Present instability treatment, invented by K. This demands resistive impedance at upper, Z^+ , and lower, Z^- , side-band to fulfill stability conditions:

	above transition	below transition
longitudinal, stability	$Z_r^+ < Z_r^-$	$Z_r^+ > Z_r^-$
transverse $Q' = 0$, stability	$Z_{Tr}^+ > Z_{Tr}^-$	$Z_{Tr}^+ > Z_{Tr}^-$
transverse head-tail, stability	Q' > 0	Q' < 0

Ken Robinson

Frank Sacherer

