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Why do we need computations and simulations 7 |

To explore new fields

To answer scientific or technical questions

To make design choices

To go from a theoretical to ”real” machine
—»> To deal with the ”far from ideal” world

(B. Holzer)



Why do we need computations and simulations 7 |

Why especially important nowadays ?
» Larger equipment, more people, more money
» Many more applications
» Safety issues

» Complex control and operation

Eventually have to get the details right



‘Where are computational tools needed ? I

Studies of Beam Dynamics
» Design and simulation of an accelerator

» Control and operation

/ Design of accelerator equipment \
» Magnets, RF cavities ...

\ » Vacuum components, cryogenics )




‘Steps of accelerator design I

Define basic parameters i

v

Design machine layout and optics

!

Analysis of local and global properties
Evaluation of performance

v

Stability of beams

!

Geometry and construction




‘Accelerator physics programs needed'

Initial parameter calculation
Optics and lattice design program
Geometry
Single- and multi-particle dynamics modelling
Analyse and understand the behaviour
—»> Probably several programs needed

—> Probably written by other people (i.e. not you)



Working with accelerator physics programs'

Computer programs are only as good as the
underlying concepts (and the way they are
used):

» May only work on certain class of idealized
problems

» May be optimized for special purpose

» If something cannot be computed, does not
mean that it does not exist

Plenty of possible traps A\



Working with accelerator physics programs'

Do we need to understand what they are doing
(algorithms, technicalities, basic concepts) 7

Using any program you must ask yourself:
» Is the problem well defined ?
» Is the description (model) adequate 7
» What are the effects of approximations, etc. 7

» Do I use the appropriate program 7

To get the right conclusions = Yes !



Objectives of these lectures: I

Introduction to selected methods and programs

Make you aware of possible problems and
limitations to help understand the results
correctly

Get you acquainted with the terminology and
to speak the same language

Introduce some modern concepts and
techniques

Restrict myself to circular machines



‘Steps of accelerator design I

Define basic parameters e

Design machine layout and optics

Analysis of local and global properties
Evaluation of performance

Stability of beams

!

Geometry and construction




Accelerator design with an optics program'

It needs: Description of machine in standard
format
It does: Optics calculations
=» Linear and non-linear optics computations
=» Parameter matching
—> Linear corrections (orbit, coupling, 5, ..)

=» Non-linear and chromatic corrections



‘How is an accelerator described to a computer ? I

Not like: ,
d°x
@ + K(S) r = 0

CERN Acceleratar Complex




‘How is an accelerator described to a computer ? I

The challenge:
=P PDescribe a machine with several thousand elements

=p Describe a complicated structure

CERN Acceleratar Complex




‘How is an accelerator described to a computer ? I

The main questions:

=» What kind of elements (magnets, etc.) are in the

accelerator ?
=P Where are these elements in the accelerator 7

=P How do the elements act on a particle ?

Other issues:
=P Simplicity, speed, accuracy ...

=P Description usually serves multiple purpose: optics
calculation (3, ..), simulations (tracking), civil

engineering



Where to put the elements in an accelerator 7 I

> Take a simple structure:

> How to describe the position of the elements ?



Where to put the elements in an accelerator 7 I

> Cartesian coordinates in space 77



Where to put the elements in an accelerator 7 I

d?x
@ + K(S)SE = 0

> Usually use s (pathlength) along ”reference path”

» ”Reference path” defined geometrically by straight
sections and bending magnets



Where to put the elements in an accelerator 7 I

><

d?x
@ + K(S)SE = 0

> Usually use s (pathlength) along ”reference path”

> Specify coordinates at centre of the element ...



Where to put the elements in an accelerator 7 I

d?x
@ + K(S)SE = 0

> Usually use s (pathlength) along ”reference path”

> Specify coordinates at entry of the element ...



‘How does an accelerator look like to a computer ? I

—> Bending and focusing is (in general) not a
continuous function of s

—> A (finite) sequence of machine elements M at
longitudinal positions s;, s,, s3,...:

M MM M MM M M M W,



Are there problems with this description 7 I

/\ Path length s for positioning may have
problems:

» Elements shared by several beams (colliders,
switching magnets in beam lines ...)

» Same element at different ”path length”
(microtron etc.)



How does an element look like to a computer ? I

You need to describe what happens to the particle in M

Assume each element M (e.g. magnet) acts on the beam
locally in a deterministic way, functionally independent
of other elements

o
11y
M o
.’ll

< g <5

In general: z5 # 23




What is M 7 It can represent:'

Single machine elements:

» magnet: dipole, quadrupole
» RF cavity

Single machine elements (not only magnets):
» collimators, targets, obstacles

» vacuum chamber
» drift




‘How iIs an element described ? I

Let z1, z5 describe a quantity (coordinates, beam sizes
...) before and after the element

Take an machine element (e.g. magnet) and build a
mathematical model M
=» M describes the element in terms of this quantity
=» In general: z5 = M o z;
=» M is a so-called map
= Very important: no need to know what happens in

the rest of the machine !!

The complete sequence of MAPS connects the pieces
together to make a ring (or beam line)



Coordinates used I

4 coordinates needed for 2 transverse dimensions
Describe the deviations from the reference path

Coordinate vector:

» 7 = (z, pr, y, py) or
» 7 = (z, 2/=2%, vy, y’:g—g) (see B. Holzer)

Coordinate vector follows the reference path along s



Coordinates used I

Yy




Coordinates used I

4 coordinates needed for 2 transverse dimensions
Coordinate vector:

>z = (z, pr, y, py)  or:

5 o)
»>7=(z, /=9, y y=%

A another trap: how are the variables defined, which

variables are used 7

> p, and p, are canonical variables, are 2’ and y' 7
/ /I

> L :px/pz or x —px/pO ?

> What if the beam has a momentum spread
A(p.)/ps # 07




‘MAPS transform coordinates through an element I

We use coordinate vector: 27 = (z, z' = g—*’g, y, Yy = g_?;)

M transforms the coordinates zi(s;) at position s; to

new coordinates z5(s;) at position s;:
[ o) ()
x’ x’

Y Y

\v /. \v /.




. or OPTICAL functions

6 optical functions used for 2 dimensions:

[ 5. ) [ 6. )

Xy g

a(52) = ; =M o ; =M o
y y
Qy Qy

\Vy) \”Vy)

52 S1



How does M look like ?

The map M describes local properties of a
machine element and can be:

» Any ”description” to go from z; to z;

» Must be derived from physics, i.e. equation of
motion

» Sounds maybe complicated, but we should try
to develop tools that have obvious extensions to
more complicated situations

» Is this description unique for a given element ?



‘Is M unique for a given element ?I

( cos(kL)
—ksin(kL)
0

\ 0

Zo =€

sin(kL)
k

COS

(—L:5 (2% —y?)+5 (@ +y?):) 2

(kL
0
0

)

0 0 )

0 0
cosh(kL) —Smhk(kL)
ksinh(kL) cosh(kL) )

<1

> Absolutely not: the representation depends on the

purpose, can be very different in different programs




What can M be ?

This ”description” can be:
» A simple linear matrix or transformation

» A non-linear transformation (Taylor series,
Lie Transform ...)

» High order integration algorithm

» A computer program, subroutine etc.
Let us look at linear theory first !

(i.e. Transverse Dynamics, B. Holzer)



Simple examples (linear, one dimensional)
(Matrix formulation for linear” elements)

Xz mi1 mi9 X
— O
33/ maq mo9 :1:’
S92 S1
2 2
I6; myq —2my1ma2 mig o
« — —IM11M21  M11M9o2 + M12M21 —M121M29 © 87
2 —9 2
v maq ma21M22 mao Y

S$2

=» The maps become so-called ”transport matrices”

* The changes depend on = or z’ only

S1



(Interlude: >-matrix)

The transformation of the optical functions can

also be written using the >-matrix formalism:

1
g, = Mo, oM
i.e. for example in the linear case:
6] —Q _ mi1 Mi2 . B —Q . mi1  Mm21
—a v ) Mm21 Moo —a v ) mia M2z
=»> Allows formal extension to higher order effects

(e.g. synchrotron radiation)

=»> Prove that it is equivalent to previous formula



Transformation of coordinates (one dimension)
Drift space of length L. = sy — s;:

— X(5,)X(s,)

[X(s4),X(sy)

S, s=s,+L



Transformation of beam ellipse

Drift space of length L = s, — s;:

6 1 —2L L2 6 ﬁ() — 2LO£0 —+ LQ’)/O
« = 0 1 —L o o = ag — Lo
Y 0 0 1 Y Yo
S92 S1 52



Simple examples (one dimensional)

Focusing quadrupole of length L and strength K:

T B cos(L-K) =+ -sin(L-K) ) T
'’ . N K -sin(L-K) cos(L-K) '’ .

2 1

Quadrupole with short length L (i.e.: 1> L?. K?)

) ey b))

52 S1



Initial steps for optics calculation

The optics program reads the sequence of
elements of a machine (their order, their
positions ..)

It reads properties of the elements, i.e. type
(dipole, quadrupole, drift ...)

It reads strength of the elements
It sets up the maps (matrices)

=» A ”standard” for the input language exists,
plus converters (do not forget this issue !)




Simplest machine description (MADX format)

// description of elements and their strengths
// dipoles and quadrupoles only ...

mb: dipole, 1=6.0, angle=0.03570;

qf: quadrupole, 1=3.0, kl= 0.013426;

qd: quadrupole, 1=3.0, k1=-0.013426;

// centre position of elements in the ring

start: at=0;

qf.1: gf, at=1.5000e+00;
mb: mb, at=9.0000e+00;
mb: mb, at=1.9000e+01;
qd.1: qd, at=2.6500e+01;
mb: mb, at=3.4000e+01;
mb: mb, at=4.4000e+01;
qf.2: gqf, at=5.1500e+01;

end: at=2.2000e+03;



Putting the ”pieces” together

Starting from a position s; and applying all maps
(for N elements) in sequence around a ring with
circumference C to get the One-Turn-Map (OTM)

for the position s; (for one dimension only):

T T
( / ) = ./\/l1 O MQ o ... O MN O ( / )
€T €T
so + C
T T
— ( , ) — Mm'ng(SO) O ( , )
€T T
so + C

S0



Combining maps together I

Mf,mmg(So): M1 o MQ o ... O MN

» Need to combine the N maps together
» The results is a map for one turn
» How to combine maps ?

» Start with the simplest example:



Composition of elements (FODO cell)

(here: simple matrix multiplications)

L/2 L/2




Composition of elements (FODO cell)

(here: simple matrix multiplications)

L/2 L/2
f —f f
1+ & L+L&
Mt = s L
572 5F T 4f°



Combining maps together I

For our FODO ring with N cells:
Mm'ng(SO) — Ml O MQ © ... O MN — Mc]:\;ll

» Simple matrix multiplications for regular ring

» If maps are more complicated ? (see later)

» What is the physical picture of M,;,,(so) ?



Mring

Z2

SO



Why are we interested in M,,, 7

The map M,;,, is extremely important:
» A computer does not know Hill’s equation

» Courant-Snyder ansatz (formalism) assumes
motion is linearly stable, periodic, confined,
and has a closed orbit.

» A priori we do not know that ...

» The OTM M,,,, contains all information
about global behaviour in the ring, i.e.

stability, tune, 3, closed orbit etc.

No need for assumptions



What else can we do with M,;,, 7

Ming (or M) allow to derive global quantities

» In the Courant-Snyder analysis of linear
systems M,,;,, corresponds to a matrix

» ”Straightforward” to formally extend it to
complicated (e.g. non-linear) problems

» Allow the analysis of imperfections (and their
correction !)

» Additional tools and concepts needed
(invariants, fixpoints, normal forms etc.)

Demonstrate the Courant-Snyder analysis first



(Interlude: Fixed Points)

Some points in phase space z; are repeated after
n completed turns (remember resonances !)

Ming © 21 = 22 = 2
Defines a Fixed Point of order n
Fixed Point of order 1 is the closed orbit

Stability requires existence of such a fixed point

Closed orbit is found (or not !) in optics
programs by searching for the first order fixed
point (i.e. Zi at sg)



Analysis of the One-Turn-Map (Matrix)

Start simple: all maps are matrices (i.e. only
linear elements)

Usually the case for initial design
=»> The One-Turn-Map is a One-Turn-Matrix:

i ™mi1 M9 i
— O
/ /
i m m i
s & C 21 22

=» After all multiplications we get the
One-Turn-Matrix which depends on the
starting point s.

S0



Find the tune Q I

We can find the tune QQ from the One-Turn-Matrix
M,.ing(50) by computing the eigenvalues of M., (50):

det(/\/lm-ng(so) — )\) =0

gives

A = cos(27(Q)) £ 1 - sin(27w Q)
(verify with the One-Turn-Matrix you know from
previous lecture !)



Analysis of the One-Turn-Matrix

What else can we do with the One-Turn-Matrix ?

We can express the One-Turn-Matrix M,.;,,(sp) in
terms of Courant-Snyder parameters:

We know that M,;,,(so) for one dimension must be:

M ing(S0) = ( cos 1 + (o) sin f B(sg) sin )

—(Sp) sin cos 1t — (Sg) sin p

and we also know that (for a ring):

a(so+C) = al(sy), P(so+C) = 06(s0), Y(so+C) = (so)



Get optical functions

Comparison of:

(mn m12>M1 o My o ... o My

Tm21 22
and :
cos it + a(Sg) sin B(sg) sin
—(Sp) sin cos 1t — a(Sg) sin p )

i

gives optical functions at position sj:
—>  ((s9), «a(sg), 7(so) (depend on position s\)
—> /; is independent of sy:  (27Q)



We have now: I

Values for 3., 5,, o, ... etc. at the position s

Tunes for both planes, closed orbit

The next step:

Starting from initial optical (Twiss) functions
at sy, transforming 3., 3,, a,, ... through the
lattice gives functions at all positions s.

Question: what are the (-functions etc. of a
linear accelerator or a beam line 777



Get the optical functions around the ring'

2 2
o] mi —2my11mi2 mis 15
« — —MmM11M21  M11M22 + M12M21 —1M12M22 © «
2 2
Y M3y —2ma21M22 Mo gl

Successive application of matrices give Twiss
functions at each element around the ring and at
each position s =»



‘Optical functions (horizontal j3): I

20 K Horizonral beta function

8S85.
SO.
75.
70.
65.
60.
55.
S50.
45.
“40.
35.
30.

NI AN I I I S I T T B |

25. T T T T T T T T T T T
1000. 1200. 1400. 1600. 1800. 2000. 2200.
Momenturm offset = 0.00 %o
s (1)



Q0.
8S85.
SO.
75.
70.
65.
60.
55.
S50.
45.
“40.
35.
30.

Optical functions (vertical ():

1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1

Vertical beta function

1 l 1 l 1 l 1 l 1 l 1 l 1

1 1

1

Momenturm offset =

71000.  1200.  1400.

0.00 %

71600.

1800.

2000.

2200.
s (r2)



Extension to two dimensions I

Can be written as separate equations:
X 11 M9 X
— O
33/ o1 1Moo CC/
Y I L LY 5 Y )
Y M43 1Miyy Y

1

S1



Extension to two dimensions I

» Extend vectors for coordinates or optical
parameters

» Extend transfer maps/matrices

[z ) (mnmm 0 0 ) (f\

ZE/ o1  1TN99 0 0 X

Y 0 0  mas3 msay Y

\y/)SQ \ 0 0 muys m44) \y’)

S1



Extension to two dimensions (coupling)'

The horizontal and vertical motion can be
coupled:

=» Additional elements in matrix

( L \ ( M1 Miaz2 1g3 1ig \ ( L \
' mMa1 Mo TN23 1124 '
— O
Y M3y Mgz M3z Mg Y
\ Y’ )52 \ Mg Ty M43 TTyy ) \ Y’ )31

Q: what about the #-functions now 77



Going to three dimensions I

Formally extended by adding two new variables:
A
- (X7 X’y y, ¥y, As, TP)

=» As = cAt: longitudinal displacement with respect to
reference particle

— %: relative momentum difference with respect to

reference particle



Going to three dimensions I

=» With (x, x’, y, y’, As, %)

Ap
D )s \777,62 me2 g3 TMeq mes m66)
2

{ L \ (mn Mmi2 M1z Mi4 M5 m16\ { L \
' ma1 M22 MM23 M24 125 1MM26 '
Y | Mms2 Mm32 Mm33 M34 M35 M36 Y
Y’ Mya2  Myg2 M43 Mygq  N45 146 y'
CAt m32 m39 m33 134 1My Msg CAt

S1



Going to three dimensions

Formally extended by adding two new variables:
- (x,x’,y, ¥, As, %)
=» As = cAt: longitudinal displacement with respect to
reference particle

—p %: relative momentum difference with respect to

reference particle

A Not all programs use this, but rather canonical variables
—> (X7 p:z:/psa Y, py/psa _CAtv Pt = %)
AA ps may be: ps=pg or ps=po(l+ds)=mBss

04: difference between reference momentum and

design momentum



Off momentum effects

Correct Hamiltonian for a magnetic element:

H=—(1+ %M(l +0)? —a” —y? + V(,y)

» Non-linear terms due to kinematics: (1 + 0)?,
(even with quadrupoles only !)

» After expansion and keep second order (e.g.
large machines):

(CIZ’2 € y/2)
2(1 + 6)

H = + Viz,y)



Off momentum effects

Strengths £ of elements modified by non-zero
5§ = &p

p

A
k= k/(1 + ?p) —k/(1 + 0)
Closed orbit and tune are usually different for

non-zero %

—»> Dispersion
=» Chromatic effects

/\ Beware of small rings or large o



Matching optical functions

Modify machine optics to get desired properties
around the machine or in specific places

For example you may want special conditions
» for equipment: RF, collimators, diagnostics

» for experiments: in colliding beam machines
Algorithms to adjust parameters and layout

=»> This process is called MATCHING !

—> Available in most optics programs (for lines and
circular machines)



General purpose optics programs

Always allow to:

» Compute optical parameters (Twiss
functions)

» Match the required properties

Often allow to:
» Simulate machine imperfections

» Correct imperfections



Popular Optics Programs

BeamOptics (based on Mathematica)
TURTLE (Beam lines)

WINAGILE (WINDOWS, interactive,
originally for teaching)

TRANSPORT (General purpose, third-order
matrix)

DIMAD (Second-order matrix, tracking)

TEAPOT (General purpose, thin element
approximation)




Popular Optics Programs (cont.)

COSY (Multi purpose, high order maps,
differential algebra)

SYNCH (General purpose)

MAD (versions: 8,9,X) (Multi purpose optics
and tracking)

SAD (Multi purpose optics and tracking)
MARYLIE (Lie algebra, tracking)

PTC (MAP based, object oriented)
MADX-PTC (combined MADX-PTC)




Which Optics Program should I use ?

Very application dependent, you have:
=p Beam line
= Large ring
= Small ring

= Large momentum offset or changing momentum (e.g.
FFAG, acceleration)

= Linear accelerator
= Unconventional geometry

= Collider (one or more rings/lines)



Which Optics Program should I use ?

Very application dependent, you want to do:
= Design linear optics

= Linear optical matching

= Introduce and correct imperfections

= Non-linear optical matching

= Particle tracking

=p Evaluate the dynamic aperture

= Study collective effects



(Interlude: Course on optics design)
—> Intermediate level CAS 2003, 2005, 2007 (and
maybe 2009) offers a course on optics design

Purpose is to develop a realistic accelerator
optics

Includes correction elements, optical
matching, dispersion suppressors ...

MAD is used for practical implementation

—> The course is available on CD-ROM (on
request) or from the web



(Reminder: Symplecticity)
Not all possible maps are allowed !

Requires for a matrix M =M’ . 5. M =S

[0
—1
0 1
\ 0 0 —1 0 )
It basically means: M is area preserving and

lim M" = finite — det M =1

n—aoeo

with:

0 0)
0O O
0

o O =




Introducing non-linear elements

Effect of a (short) quadrupole depends linearly on
amplitude (re-written from the matrix form):

(2 (=) ([ o )

' ' ki - xg,

Y Y 0

\v /), \v ), \ kv

= Z(sy) = M - Z(s1)

=» M i1s a matrix



Non-linear elements (e.g. sextupole)

Effect of a (thin) sextupole with strength k; is:

52

[ 2 )

ZC/

Y

\ V")

- Z(s9) = M o Z(s1)

-»> M is not a matrix, i.e. cannot be expressed by

matrix multiplication

S1




Non-linear elements

Cannot be written in linear matrix form !
We need something like:

21(82) =x(s2) = Ryi-x + R +Ris-y+ ...
+T111 - 27 + Thag - w2’ + Thog - 27+
+Tvg - avy +Tha - vy + ...

+ U111 - 2° + Uqqo - 222" + ...

and the equivalent for all other variables ...




Higher order (Taylor -) MAPS:
We have (for: j = 1...4):

ZRijk 81 + ZZTjkle 81 <l 81)

k=11=1

Let's call it : Ay = [R,7] (second order map A,)

Higher orders can be defined as needed ...

./43 — [R, T, U] — —|—S: S: S: Ujkgmzk(sl)zl(sl)zm(sl)

k=1 [l=1 m=1




Second order MAPS concatenation

Assume now 2 maps of second order:
Ay = [RAT4] and By, = [RB,TP]

the combined second order map
CQ — ./42 O BQ 1S CQ — [RC,TC] with:

RC _ RA’ RB

and (after truncation of higher order terms !!):




Symplecticity for higher order MAPS

Truncated Taylor expansions are not matrices !!

It is the associated Jacobian matrix 7 which

must fulfil the symplecticity condition:

i
024

k
027

J must fulfil: J'-S.-7=S8

Tik =

In general: J;, # const =»> for truncated
Taylor map can be difficult to fulfil for all z



Symplecticity for higher order MAPS

try truncated Taylor map in 2D, second order:

/ 2 / /2

X Ri1x9 + Rioxy + Ti1125 + Th12x0xy + L1207
/ / 2 / /2
T Ro1xo + Rooxy + Io112§ + T212707 + 12227

The Jacobian becomes:

Ri1 + 2T11120 + Th12%), Rio + Ti1070 + 2T192%),
Ro1 + 2751120 + To12%), Rag + To12x0 + 2T590x),

j:

symplecticity condition requires that:
det 7 = 1 for all zy and all x|



Symplecticity for higher order MAPS

This is only possible for the conditions:

Ry11R22 — RiaRo1 =1
R111%12 + 2R20T111 — 2R121211 — R211112 =0
2R11T222 + Ro2T112 — Ri2T212 — 2R2171122 = 0
> 10 coeflicients, but 3 conditions

> number of independent coefficients only 7 !

> Taylor map requires more coeflicients than necessary

> e.g. 4D, order 4: coefficients 276 instead of 121



Using higher order MAPS

Needed to study long term stability and derive
dynamics quantities

Basic questions:
» Is it sufficiently high order (i.e. accurate) ?
» Is it sufficiently symplectic ?

» How do we generate a high order map
efficiently (accurate and symplectic) ?

A\ Many programs and algorithms available, not
all are always appropriate



Various types of higher order MAPS

Choice depends on the application
» Taylor maps (large number of coefficients)

» Lie transformations (minimum number of
coefficients)

» Truncated power series algebra (TPSA), can
also generate Taylor map from tracking

» Symplectic integration techniques (see later)

» ...

A The catch: which is the truncation order 77



‘Single particle dynamics in a nutshell'

Try to compute a (one turn) MAP
It contains everything
Its analysis will tell you what you need to know

It doesn’t matter how you got it (analytically,
tracking ..) !

Benchmark against simulation, i.e. element by
element tracking, to ensure that
approximations do not affect physics



You can derive: I

Tunes (we already did)

Betatron functions (we already did)

Stability borders, dynamic aperture (within
limits)

Detuning with amplitudes

Invariants of the motion

Fixpoints, closed orbit, resonance strength

More difficult: long term stability of the beam !



‘Steps of accelerator design I

Define basic parameters e

v

Design machine layout and optics

v

Analysis of local and global properties
Evaluation of performance

Stability of beams

Geometry and construction




‘Simulation of an accelerator'

Purpose is to imitate the behaviour of a particle or a

beam in an accelerator

Use local properties of the machine element to describe
its interaction with a particle

The aim is to derive the global behaviour
> Long term stability
> Lifetime

>

An exact simulation code is the most reliable "map”



Evaluation by simulation (1)'

Single particle behaviour

Usually concerns long term behaviour such as
beam loss, effect of the accelerator components
on a single particle

=» Non-linear elements

—»> Machine imperfections (e.g. field, alignment
errors)

—> External distortions (e.g. scattering)



Evaluation by simulation (2)'

Multi particle behaviour

Usually concerns collective behaviour: coherent
motion, emittance increase, damping etc.

=»> The effect of the accelerator components on
an ensemble of particles (e.g. impedances)

=» Interactions of particles between each other.
These are usually dictated by the properties
of the accelerator (e.g. space charge,
beam-beam effects ...)



Most popular: single particle tracking'

=» The motion of a test particle through the elements of a
machine is simulated for a large number of turns —

”tracking”
Use appropriate coordinates, start with z;.

In each element (or part of the machine), the
coordinates are transformed by 2,1 = M o z,

M must be symplectic of course

=» We follow the evolution of the coordinates z,, 11, not of
the maps M

=» We must distinguish thick and thin elements



Thick versus thin magnets'

Real magnets have a finite length, i.e. thick
magnets

Thick magnet: field and length used to
compute effect, i.e. the map

Consequence: they are not always linear
elements (also not dipoles, quadrupoles)

For thick, non-linear magnets closed solution
for maps often does not exist !



Thick versus thin magnets'

Thin "magnet”: let the length go to zero, but
keep field integral finite (constant)

Thin dipoles and quadrupoles are linear
elements

Thin elements are much easier to use ...



Tracking through thin elements'

________ AX’ AX

\\\AX,

No change of amplitudes r and y

The momenta 2’ and 3’ receive an amplitude
dependent deflection (kick)

= ¢ — 2 + Axandy — ¢ + AY



‘Tracking through thin elements'

These programs are so-called kick-codes
Kick can be non-linear

Always symplectic ! (homework)
Usually rather fast on computers

Most tracking programs are of this type



Using thin elements'

Can we approximate a thick element by thin
element(s) ?

» Yes, when the length is small or does not
matter

» Yes, when we can model the thick magnet
correctly

» What about accuracy, symplecticity etc. 77

» Demonstrate with some simple examples



Simple example (1D, see B. Holzer)'

Focusing quadrupole of length L and strength K:
T cos(L - K) ~ -sin(L - K) T
— O
' —K -sin(L-K) cos(L-K) '
s1+L

Quadrupole with short length L (i.e.: 1> L?. K?)

T B 1 0 . X
x’ 31+L_ —K?. L(= —%) 1 ' .

1



Thick — thin quadrupole I

cos(L - K) ~ -sin(L - K) )

K

M3—>s—i—L — .
( —K -sin(L-K) cos(L-K)

» Exact map (matrix) for quadrupole

» For efficiency:
» Can we avoid trigonometric functions ?
» What do we lose ?

» (What follows is valid for all elements)




‘Accuracy of thin lenses I

cos(L - K) ~ -sin(L - K) )

Ms—>s—|—L — _
( —K -sin(L-K) cos(L-K)

» Start with exact map

» Taylor expansion in ”small” length L:

1 0 0 1 K2
LY. + L. + L*. 2 A R
0 1 ~-K? 0 0 &



Accuracy of thin lenses (B)I

> Keep up to first order term in L

(10 1 0 1
Ms—>s—|—L:L ) + L -
0 1 ~-K* 0
1L ;
M3—>s—|—L: +O(L)
~-K?- L 1

» Precise to first order O(1)
> det M # 1, non-symplectic




Accuracy of thin lenses (C)I

1L )
~K?.L 1

1 L

Ms—>s—|—L —
—K?. L 1-K?L?

> Precise to first order O(1)
» ”symplectified” by adding term — K21’

(it is wrong to O(2) anyway ...)



‘Accuracy of thin lenses I

> Keep up to second order term in L

1 - 2K?L? L

+O(L%)
~K?-L 1-4K?L?

Ms—>s—|—L —

» Precise to second order O(2)

> More accurate than (C), but not symplectic



Accuracy of thin lenses (D)I

> Symplectification like:

1 1
~-IK?12 L-1K?LP

+O(L?)
~K*-L 1-3K*L?

Ms—>s—|—L —

» Precise to second order O(2)

> Fully symplectic



‘Accuracy of thin lenses I

» Is there a physical picture behind the
approximations 7

» Yes, geometry of thin lens kicks ...

» A thick element is split into thin elements with
drifts between them



Thick — thin quadrupole I

K2 |

L

quadrupole of
finite length

options: HEREN



‘ Thick quadrupole .. I




First order .. I

L

> One thin quadrupole ”kick” and one drift combined

> Resembles ”symplectification” of type (C)

1 0 1 L 1 L
~K?2.L 1 0 1 ~K?2. L 1—-KZ?L2




\ Second order .. I

K L

o — | ——— —

L/2 L/2

> One thin quadrupole ”kick” between two drifts

> Resembles more accurate, symplectic model of type (D)

1 <L 1 0 1 L - 1K’ L-iK?L°
0 1 ~K*-L 1 0 1 ~-K?-L 1-iK°L?




0.0004

0.0003

0.0002

0.0001

What is the point 777

-0.0001

-0.0002 -

-0.0003

-0.0004

T T
exact quadrupole map

1.5

ol

1
0.5 1

> Phase ellipse - quadrupole exact solution

1.5



Quadrupole non-symplectic solutionl

0.0004

exact quladrupole mallp
non-symplectic O(1)

0.0003
0.0002

0.0001

-0.0001
-0.0002 -

-0.0003

-0.0004
-2

1 1 1 1 1 1
-1.5 -1 -0.5 [0} 0.5 1 1.5 2

> Non-symplecticity: particles spiral towards outside



Quadrupole symplectic O(1) Solutionl

0.0004

exact quladrupole mép
symplectic map O(1)

0.0003
0.0002

0.0001

-0.0001 |
-0.0002 -

-0.0003

-0.0004 L L L
-2 0.5 1 1.5 2

ol

1 1 1
-1.5 -1 -0.5

> symplecticity: but phase space ellipse not accurate



Quadrupole symplectic O(2) Solutionl

0.0004

exact quladrupole mép
symplectic map O(1)
symplectic map O(2

0.0003 |- . ygp |p @

0.0002

0.0001

-0.0001 |
-0.0002 -

-0.0003 |} R

-0.0004 L L L
-2 0.5 1 1.5 2

ol

1 1 1
-1.5 -1 -0.5

> symplecticity: phase space ellipse accurate enough



‘Can we do better ?I

> Try a model with 3 kicks:
c kL

1
r
T

> with:
a ~ 0.6756, b ~ -0.1756, ¢ ~ -1.7027, d ~ 1.3512
» we have a O(4) integrator ...

» (a O(6) integrator would require 9 slices ...)



‘Using thin elements in tracking'

Can we use this for studying long term
behaviour ?

» Symplecticity is important
» If map is approximate:

-» Phase space slightly distorted
—»> Long term stability conserved

» Needs to be verified !




‘Accuracy of thin lenses I

What about other (e.g. non-linear) elements ?

assuine a general case:

using the thin lens approximation gives:

L
r'(L) =~ @y + Lf(zo + S o)

r(L) ~ o+ (h+ (D)

> This is also called ”leap frog” algorithm /integration
> It is symplectic !!




‘Accuracy of thin lenses I

Accuracy of ”leap frog” algorithm/integration”

the Taylor expansion gives:

1 1
v(L) = zo+ xoL + §f(a;0)L2 + éng’(:vo)LS + ...
the ”leap frog” algorithm gives:
1 1
v(L) = xo+xyL+ §f(a;0)L2 - Z:Cf)f’(:vo)LB -

» Errors are O(L?)



‘Accuracy of thin lenses I

For bar/coffee discussions:

why did I write:

and not:



‘Accuracy of thin lenses I

Assume a (one-dimensional) sextupole with:
assume:
= k-ax?

using the thin lens approximation (type D) gives:

1 1,1 1, 1
v(L) = xo+xyL+ §kasz2 + i(g)kazoxf)LB + g(ﬁ)k:{;{flfl
1,1
/(L) = xf+ kil + kxoxyl? + Z(g)kngB

Map for thick sextupole in thin lens approximation,
accurate to O(L?)



\ Some comments: I

We have interleaved kicks with drifts

Is that always necessary ?
» No !
» Can be any map with an exact expression
» In most cases the exact map is a linear map

(matrix)

We have derived element maps for tracking
from the equation of motion using this
technique =» can track now



‘ Analysis tools I

Fourier analysis, diffusion coefficients, chaos
detection ...

Phase space plots from (simple) tracking;:

» Start with a ”particle” with initial
coordinates r and x’ at a position s

» Pass through the One-Turn-Map (for
position s, !)

» Plot the new = and 2’ coordinates at position
so after every turn



‘A simple example I

Linear transformation plus a constant deflection
(i.e. orbit kick from displaced quadrupole)

(x) (cos(u) sin(u)) (x)+<0>
'’ - —sin(p) cos(p) ! b

S0 n

= 27Q, = 27-0.19,
constant b is a free parameter

—>Find the fixed point(s) (closed orbit)



‘A simple example I

Example on non—linear One Turn Map Example on non—linear One Turn Map
x 10 - x 10 -
o a = 0.00 o a = 0.00
.. Eb=0.00 s Eb=1.50
[ et ettt F ssesenes
Eoo et e e L oo’ '-u...
s L R -.. s L -....- -....
F o . L s ."-
L K ., L s ",
L o L s °,
25 s kY 25 | § 3
N o . E H ]
L : . L H H
e . H H
r : H [ H H
. H
o : : o 3 H
L . . L s S
H . s S
r S : [ *, s
-25 | K s -2.5 | %, K4
% . ."., K
-5 [ -5 R -
........
...............
75 — 75 —
-10 - -10 -
o b b b b b b b b b o b b b b b b b b b
-10  -75 -5 -2.5 0 2.5 5 7.5 10 -10  -75 -5 -2.5 0 2.5 5 7.5 10
Transverse phase space X Transverse phase space X

Start at different amplitudes and ”observe” x and x’ at

position s



A (still) simple example I

Linear transformation plus a quadratic non-linearity (e.g.

(thin) sextupole) plus a constant deflection

x cos(p)  sin(p) | 0

T —sin CcOS T ax
-~ (1) (1) N )

o= 27Q,; = 27-0.22,
constants a and b are free parameters

=% Find the fixed points (how many do you see 7)



A (still) simple example ..

Example on non—linear One Turn Map Example on non—linear One Turn Map
x 10 x 10 =
o a = 0.00 o a=0.12
26 [0 =000 75 £ = 0.30 i
............ b o® y ),p/’-
e, -
5 5 | Par® {;/(:’
,"‘1
25 - 25 - ? 3
s ¥
» &
7%
o b o b \.I ¥ 5
3 ‘-‘
-25 = -25 =
5 - 5 - -{j-«.‘
.... ™ o
................. e
75 75
10 = 10 =
1 1 1 1 1 [ 1 1 1 1 1 1 1 1 1 1 1
10 75 5 -2.5 0 2.5 5 7.5 10 10 75 5 -2.5 0 2.5 5 7.5 10
Transverse phase space X Transverse phase space X

Motion at different amplitudes distorted: sextupole
driving a 5th order resonance

Stability region reduced by non-linear effect



‘Analysis of tracking results'

» Inspection of phase space structure
» Regular motion and stability boundary
» Identification of chaotic motion

» Tracking results (algorithms, output) can be
used to ”construct” analytical, approximate
Taylor map for the ring: TPSA (Berz, Forest,
1989), Requires numerical differentiation =
Differential Algebra (Berz, 1988)



‘Single particle tracking codes I

Several optics programs can also perform single
particle tracking

Many optics programs have thick to thin
element converters

Specialized codes exist (SIXTRACK, PTC, ...)

Some codes have analysis tools (normal forms,
chaos detection etc.)

For predicting reliably long term behaviour
essential !



‘Complications: light particles'

Light particles (e, e’ etc.) emit synchrotron
radiation and motion is damped

=» Stochastic component

—> No symplecticity, no invariants (but
equilibrium parameters, e.g. emittance)

Synchrotron motion must be simulated

Computation of damping properties



Simulation of multi particle effects'

Often requires the simulation of a beam:
simulate many (up to 10°) particles
simultaneously and study their behaviour:

— Beam shape (density distribution)
— Centre of mass motion of all particles

Must be self-consistent: changes of the beams
must be taken into account

Fields generated by the beam need to be
computed



‘Complications: many particles'

Particles have different amplitudes
Particles have different tunes
Particles have different momenta !

Definition of emittance becomes more
complicated



Strategy for multi-particle simulations (1)'

Generate and simulate many particles
(10* — 10° per beam) simultaneously

Every particle interacts with the machine
elements individually

The whole ensemble interacts with the machine
elements

Every particle interacts with other particles !

=» Feed back into motion of individual particles



Strategy for multi-particle simulations (2)'

All particles must be treated in parallel

—> For realistic LHC: 107 to 10® particles to
simulate

=» Already for storage requires ~ 10 Gb memory

—» Parallel processing needed for reasonable
computing time

Often requires (intelligent) simplifications



Simulation of interactions with environment'

This means: interaction of the individual particles
and the whole beam with:

Machine elements (e.g. magnets, RF, ...)
Wake fields

Impedances

Electron cloud

Intercepting elements (e.g. collimators, ...)

=» Strategies have changed with fast computers ...



‘Simulation of interactions with itself I

Particles inside a beam interact with other
particles from the same beam:

Space charge effects
Intra-beam scattering

Multi-bunch effects



‘Simulation of interactions with other beams'

So-called beam-beam effects
Other beam acts like a (very) non-linear lens

Incoherent beam-beam effects (on each
individual particle)

Coherent beam-beam effects (on ensemble of
particles)

=»> Requires the knowledge of fields generated by
the other beam



‘Matrix formulation (linear models)'

One-Turn-Maps can be written for two bunches or two
beams (e.g. 1 and 2)

= Here only 1 dimension for illustration

(:131\ (mll M2 0 O\ (xl\

33/1 mo1 122 0 0 33,1

Lo O O 33 34 i)

\xé )n+1 \ 0 0 143 m44) \33’2)




‘Matrix formulation (linear models)'

One-Turn-Maps can be written for two bunches or two
beams (e.g. 1 and 2)

= Additional elements couple two beams

(371\ (mll mi2 113 m14\ (5171\

/ /
Iy ma1  MM22 123 1M24 Iy
o O
X2 ms31 132 1133 1134 L2
/ /
K Lo ) \ 41 My TN43  1N4g4 ) \ Lo )
n—+1 n

=» Allows computation of eigenmodes, eigenfrequencies of
multi bunch systems



Field computation I

Some simulations require the computation of fields (or

forces) produced by a beam from Poisson equation

(here 2-dimensional):

AV = —4x - ,0(33,3])
The density of the beam is p(z,y)

For simple distributions (Gaussian, uniform ...) can be

solved analytically

In general (i.e. in the interesting cases !) it is done

numerically



Some basic methods.

Particle - particle methods: compute field between
each particle pair and add up (not practical for
large number of particles, sometimes used in
celestial mechanics)

Particle - mesh methods: distribute particles on a
mesh (grid) and solve the Poisson equation for
discrete points

Multipole methods: develope potentials/fields as
multipole expansion

=» Choice depends on application and parameters



Example: Centre of mass motion as function of time

0.1 T T T 0.025 T T T
XK(N)>g-<x(n)>  + <X(N)>4-<x(n)>5
0.08 t & A(np>qr<x(n)>y x| <X(n)>q+<x(n)>y ———
X
006 002
T 0047
=
'?Ez 002 0015 |
T g
el N
g 002 0.01 r
20041
-0.06 0.005 ¢
-0.08 ¢ i
_01 1 1 1 0 ”»/’/ ‘\\h—, 1 o\ 1
0 5000 10000 15000 20000 0.105 0.125 0.145 0.165
n O

=»> From beam-beam simulations: Bunch
oscillations and frequency spectrum




Example: Beam size as function of time'

2 X 10_8 T T T T K T

1.8x10°8 | .

—

_6 X 10‘8 | “"ww_‘m....ﬂ‘. "': —

—

4x10° L “ i pe=61011 m3 .

-

2x10°8 L i

Vertical Emittance [m]

1 X 10_8 B . ,-w.‘.-..c": —

8 x 1070 Ly e pe =3 101! m3|

o 0.01 0.02 0.03 0.04 0.05 0.06
Time [s]

=% From electron-cloud simulation (courtesy: E. Benedetto)



\ Alternatives I

Sometimes multi-particle simulations are too
time consuming

Numerical solution of the Vlasov-equation
=» FE.g. finite difference methods

—> Intermediate level school (Sevilla, 2001)



Example: Beam size as function of time

0] 5000 10000 15000 20000

=P Beam-beam simulation: numerical solution of Vlasov

equation gives evolution of beam sizes



‘Multi particle simulation codes I

Many codes exist, always specialized:
=»> (Collective instabilities
=»> Beam-beam effects
=»> Electron cloud effects

-» etc. ...

Often compact and linked to optics codes



‘(Personal) Comments on simulations:'

Here I gave only a selective overview of what
can be done

Techniques and tools in dedicated schools and
courses (some in Intermediate CAS Course)

What can be done has changed a lot in the last
decade

It is easy to write a program !

Analysis and interpretation is usually the
difficult part



What can go wrong ?I

Wrong or missing physics in the program
Numerical problems
Different results on different computers
Programming bugs ...
Biased analysis

—»> Be aware of the limitations of the program

—» Make sure it is reproducible




‘Control and operation I

Basic aim: optimize performance

As operator or accelerator physicist:
Provide and improve model of machine
Measure and interpret beam parameters
Correct and control beam parameters

Conduct machine experiments



‘Control and operation of an accelerator'

Basic problem: measure and control beam
parameters

Control (orbit, chromaticities ..) depend on
machine model which may be incomplete

Feedback from measurements improves the
model and simulations

Should use the same strategies and methods as
during design (Remember: matching !)

-» May be an iterative process



‘Control and operation of an accelerator'

Very similar to simulation or design of a
machine except:

—> Interface to hardware and control (e.g. power
converters)

—> Beam instrumentation !
—> Communication (networks, etc.)

=» [ssues such as: timing, alarms, interlocks,

Treated in dedicated workshops and schools



‘Summary: what is needed ?I

Appropriate description of the accelerator

Tools to get a One-Turn-Map to derive global
quantities

Simulation tools to study long term behaviour
» Single particles
(dynamic aperture, life time ..)
» Multi particles

(collective effects, emittance, coherent
motion ...)



backup slides



backup slides

» Lie transforms (principles and

examples)
» Normal forms (principles and examples)

» Truncated Power Series Algebra
(TPSA) (principles and examples)

» Differential algebra (principles and

examples)



Hamiltonian ..

kine)n\zatic di]jgle quadrupole sextupole
Py TP k k k
=2V kexd 4+ 22?4 (2? — ?) + = (2 — 3xy?)
o1 +0) 5 2 > 3
dispersive v
focusing

> Useful formalism when invariants are investigated

> Perturbative formalism can lead to complete nonsense,

if wrongly interpreted ...

> Very useful in the context of Lie transformations



Lie transformations
Introduce Poisson bracket:

N~ (0f 69 Sf &g
[f,g]—Z(a_qi(s_m_é_mc?_q)

1=1

Here the variables ¢;,p; are canonical variables, f and g are
functions of ¢; and p,.

Is ‘'H is the Hamiltonian of a system, then:
[fa H] =0

implies that f is an invariant of the motion !

This is classical mechanics ...



Lie transformations

We can define:

frg=1f.9]
where : f : is an operator acting on the function g.
We can define powers as:

CfPg=f:Cf:9)=[f[fg] etc

in particular:
P | .
el = g (: )

il
i=0 -



Lie transformations

Lie transforms acting on functions like x,p (canonical

momentum, instead of z’):

N
|
-

:p? = —2p P p

or more complicated:

. . 1 1
eIV 2y = g §L :p? i+ §L2(: p? )’x+ .
= x+ Lp
. : 1
e.—LpQ/Q,p = p— 5[/ :p2 p_l_

This is the transformation of a drift space of length L !!




Lie transformations

e (x,p)o = (x,p)

Lie transforms describe how to go from one point
to another.

Homework try:

or.



Why all that 7?7
concatenation very easy:

6:h: _ 6:f:e:g: _ 6:f—i—g:

when f and ¢ commute.

» Otherwise formalism exist

h:

» Exponential form e is always symplectic

the one turn map is the exponential of the
effective Hamiltonian:

M. = 6:_0Heff:
ring



Why all that 777

when f,, f3, f4, are 2nd, 3rd, 4th order polynomials
(factorization theorem):

ezf: _ €:f2:€:f3:€:f4:
» Each term is symplectic

» Truncation at any order does not violate
symplecticity

Lie transformations are the natural extension of
linear to non-linear formalism !



Example: thick sextupole

The map of an element of length L and the Hamiltonian H

1S:
00

L 1 @
e L'H':Za(—L:H:)
i=0

The Hamiltonian of a thick sextupole is:

1 1
H = Sk(@® = 3zy%) + 5 (0} +p;)
we search for:
e Ly and e HHip, et



Example: thick sextupole

we can compute:

: H 'z
to get:
H 'z =—p,
 H 2= —k(2? — y?)
: H Pz = 2k(xp, — ypy)
and get:

e 1 1
e ity = ¢ 4 p, L — §kL2(a:2 —y?) — gkL3(:pr — Ypy) + ...

(more accurate than ”leap frog” thin lens approximation !



Why all that 777

Very useful to find invariants!!

Homework =+ what is:

a) the invariant

b) the transformation

with the effective Hamiltonian h (1D):

b Cf. ) 2 2.
e.h. _ e.fQ. — o 5 (Yz°+2axp+Bp*):



Hints

with a second order polynomial as h:

b Cf. 1 2 2y.
€°h° _ e.fg. — & 5 (az”+2bxp+cp?):

the solution for the matrix form is:

1 0 sin(vac — b?) b ¢
R = cos(/ ac — b?) +
0 1 vac—b? —a —b

> (can also be used to find f; from matrix form, a
quadratic form f; always corresponds to a matrix)



Normal forms

If M is our usual one-turn-map:

N = AMA™!
We can choose A to get:
N = e
with:
= (e + wypr +wyps ) hy + (wy +wlpr +wlp)hy
+ (a-h2+0b-hyhy+c-h2+d-p2) +..
and

he = (2® +p2)/2, hy=(y*+p})/2, pr=(p:—py)/(®c)



Why is THAT interesting 7

The map N sends circles into circles

The function h contains:
> w,,w, are the tunes

» w),w), are the chromaticities

» w),w) are the second order chromaticities

> a, b, c,d anharmonicities, i.e. amplitude dependence of

tunes



Why is THAT interesting 7

The quantities /, , = Ah, , are invariant i.e.:

» ML, = I,

> They generalize Courant-Snyder invariants to the

non-linear case



Truncated Power Series Algebra

Input X,... —= Algorithm

——= Qutput y,...

> What if we can somehow calculate the derivatives of the

output with respect to input 77

> Then we have the Taylor series, i.e. the Taylor map!

> Algorithm can be formula or subroutine or program ..

> Formula =» by hand

> Subroutine or program etc. = by numerical

differentiation




Numerical differentiation

The problem getting the derivative of f(x) at a:
fla+e€) — fla)

€

f'(a) =

» Need to subtract almost equal numbers and
divide by small number.

» For higher orders f”, f.., accuracy hopeless !

» We can use Differential Algebra (DA) (Berz,
1988)



4

Differential Algebra

. Define a pair (qo,q1), with qg, ¢ real numbers

. Define operations like:

(o, q1) + (ro,71) = (90 + 70,91 + 71)

C- (QO7Q1> — (C'QO7C'C]1>

(90,q1) - (ros71) = (qo - 70,90 - 1 + q1 - T0)

. And some ordering:
(q0,q1) < (ro,r1) if qo<ro or (qo=ro

(qo,q1) > (ro,71) if qo>ro or (go=ro

. This implies something strange:

(0,0) < (0,1) < (r,0)

and ¢ <71)

and q1 > 1)



Differential Algebra

This means that (0,1) is between 0 and ANY real number
=» infinitely small !!!

We call this therefore ”differential unit” d = (0, 1).

Of course (¢,0) is just the real number ¢ and we define
”real” and ”differential part” (a bit like complex

numbers..):

go = R(qo,q1) and ¢ =D(qo,q1)

With our rules we can further see that:

(1,0) - (90,q1) = (g0, q1)

_ 1 611)
1

qdo, 41 — T T o
( ) (CJO q%



Differential Algebra

For a function f(z) without proof:

D[f(z +d)] = D[f((x,0) 4 (0,1))] = f'(x)

An example instead:

1
_ .2 =
fla) =+ -
then using school calculus:
1
fi(z) =2z — )
For x = 2 we get then:
9 15
2) = —, f'(2) = —



Differential Algebra

For x in:

1
f(w):l‘%r;

we substitute: x — (x, 1) = (2, 1) and use our rules:

f[(27 1)] — (27 1>2 + (27 1)_1
— (474>+<%7_i>
9 15

= G D=0, r@)

The computation of derivatives becomes an algebraic

problem, no need for small numbers, exact !



Differential Algebra
If we had started with:

r = (a,1,0,0,0...)

we would get:



Differential Algebra
If we had started with:

r = (a,1,0,0,0...)
we would get:
f(@) = ( f(a), f'(a), f'(a), f"(a),.. f"(a))
can be extended to more variables zx, y:
xr = (a,1,0,0,0...)

y = (b,0,1,0,0...)

and get (with more complicated multiplication rules):

51 81 8f 8
Y Y 27 ) *°° (:’C7y)
ox’” dy oz’ dxoy

F((@+ de),y + dy)) = (f,



What is the use of that:

Input X,.. —= Algorithm ——= Outputy,...

Push f(x) = (a,1,0,0,0...) through the algorithm (no matter
what it is), using our rules and we get all derivatives
around a, i.e. we get the Taylor coefficients and therefore
the map !

The maps are provided with the desired accuracy and to

any order.



Concatenation of Lie transformations

To concatenate two Lie-transforms, use BCH
(Baker-Campbell-Hausdorff) formula (without proof):
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when ¢ is not too large we can write the concatenation
easier as:
el g9 = ght = exp[ f—l—(l_.‘];_':f>g—|—0(g2) ]



Concatenation of Lie transformations

Example: linear transfer (f;) plus local, non-linear kick
F(x) (in action and angle variables A, ®):

fo = —5(E +8p2) = —pA

h = —/LA + Z Cn (A> il emq) — —/LA + Z Cn(A> .nlun,u e(in@—l—i%

now h is the invariant of motion.



