
Beam Transfer Lines
• Distinctions between transfer lines and circular machines
• Linking machines together
• Trajectory correction• Trajectory correction
• Emittance and mismatch measurement
• Blow-up from steering errors, optics mismatch and thin screens
• Phase-plane exchange

Brennan Goddard
CERN



Injection, extraction and transfer

CERN Complex• An accelerator has limited 
dynamic range.

• Chain of stages needed to 
h hi hreach high energy

• Periodic re-filling of 
storage rings, like LHC
External experiments like• External experiments, like 
CNGS 

Transfer lines transport the
beam between accelerators,
and onto targets, dumps,
instruments etc.

LHC: Large Hadron Collider
SPS: Super Proton Synchrotron
AD: Antiproton Decelerator
ISOLDE: Isotope Separator Online Device
PSB: Proton Synchrotron Booster
PS P t S h tPS: Proton Synchrotron
LINAC: LINear Accelerator
LEIR: Low Energy Ring
CNGS: CERN Neutrino to Gran Sasso



Normalised phase space
• Transform real transverse coordinates x, x’ by
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Normalised phase space

Real phase space Normalised phase space
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General transport

y

s

Beam transport: moving from s1 to s2 through n elements, each with transfer matrix Mi
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Circular Machine

Circumference = L
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• The solution is periodic p
• Periodicity condition for one turn (closed ring) imposes α1=α2, β1=β2, D1=D2

• This condition uniquely determines α(s), β(s), μ(s), D(s) around the whole ring



Circular Machine

• Periodicity of the structure leads to regular motion
– Map single particle coordinates on each turn at any location 

– Describes an ellipse in phase space, defined by one set of α and β
values ⇒ Matched Ellipse (for this location)
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Circular Machine

• For a location with matched ellipse (α, β), an injected beam of 
emittance ε, characterised by a different ellipse (α*, β*) generates 
(via filamentation) a large ellipse with the original α β but larger ε(via filamentation) a large ellipse with the original α, β, but larger ε

x’

α, β

x’

α, β

xx

Turn 1 Turn 2

After filamentation

εο, α∗ , β∗

After filamentation

εο, α∗ , β∗

ε > εο, α, βε > εο, α, β
Turn 3 Turn n>>1

Matched ellipse 
determines beam shape



Transfer line
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• No periodic condition existsp
• The Twiss parameters are simply propagated from beginning to end of line
• At any point in line, α(s) β(s) are functions of α1 β1



Transfer line
• On a single pass there is no regular motion 

– Map single particle coordinates at entrance and exit.

– Infinite number of equally valid possible starting ellipses for single particleInfinite number of equally valid possible starting ellipses for single particle
……transported to infinite number of final ellipses…
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Transfer Line
• Initial α, β defined for transfer line by beam shape at entrance

x’ x’α∗, β∗x’ x’α∗, β∗

α, βα, β

x xx x

Gaussian beam
Non-Gaussian beam
(e.g. slow extracted)

Gaussian beam
Non-Gaussian beam
(e.g. slow extracted)

• Propagation of this beam ellipse depends on line elementsPropagation of this beam ellipse depends on line elements

• A transfer line optics is different for different input beams



Transfer Line

350

• The optics functions in the line depend on the initial values

Design β functions in a transfer line

200

250

300

[m
]

- Design βx functions in a transfer line
− βx functions with different initial conditions

50

100

150

B
et

aX
 [

1500 2000 2500 3000
0

50

S [m]

• Same considerations are true for Dispersion function:Same considerations are true for Dispersion function:
– Dispersion in ring defined by periodic solution → ring elements 

– Dispersion in line defined by initial D and D’ and line elements



Transfer Line

• Another difference….unlike a circular ring, a change of an element 
in a line affects only the downstream Twiss values (including 
di i )

300

350

dispersion)
- Unperturbed βx functions in a transfer line
− βx functions with modification of one quadrupole strength

150

200

250

B
et

aX
 [m

]

10% change in 
this QF strength

1500 2000 2500 3000
0

50

100

1500 2000 2500 3000
S [m]



Linking Machines

• Beams have to be transported from extraction of one machine to 
injection of next machine
– Trajectories must be matched, ideally in all 6 geometric degrees of freedom 

(x,y,z,θ,φ,ψ)

• Other important constraints can includeOther important constraints can include
– Minimum bend radius, maximum quadrupole gradient, magnet aperture, 

cost, geology 



Linking Machines

Extraction

Matched Twiss at extraction propagated 
to matched Twiss at injection

Transferα1x, β1x , α1y, β1y
αx(s), βx(s) , αy(s), βy(s)

s

α2x, β2x , α2y, β2y

Injection
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Linking Machines
• Linking the optics is a complicated process

– Parameters at start of line have to be propagated to matched parameters 
at the end of the line

– Need to “match” 8 variables (αx βx Dx D’x and αy βy Dy D’y)

– Maximum β and D values are imposed by magnet apertures

Other constraints can exist– Other constraints can exist 
• phase conditions for collimators,

• insertions  for special equipment like stripping foils

– Need to use a number of independently powered (“matching”) 
quadrupoles

– Matching with computer codes and relying on mixture of theory, 
i i t iti t i l dexperience, intuition, trial and error, …



Linking Machines
F l t f li i lif th bl b d i i th• For long transfer lines we can simplify the problem by designing the 
line in separate sections
– Regular central section – e.g. FODO or doublet, with quads at regular 

i ( b di di l ) ith t d i ispacing, (+ bending dipoles), with magnets powered in series

– Initial and final matching sections – independently powered quadrupoles, 
with sometimes irregular spacing.
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Trajectory correction

• Magnet misalignments, field and powering errors cause the 
trajectory to deviate from the design

• Use small independently powered dipole magnets (correctors) toUse small independently powered dipole magnets (correctors) to 
steer the beam

• Measure the response using monitors (pick-ups) downstream of the 
corrector (π/2 3π/2 )corrector (π/2, 3π/2, …)

Corrector dipole Pickup Trajectory

QF QF

π/2

QF

QD QD

QF

• Horizontal and vertical elements are separated

• H-correctors and pick-ups located at F-quadrupoles (large βx )

V t d i k l t d t D d l (l β )• V-correctors and pick-ups located at D-quadrupoles  (large βy)



Trajectory correction

• Global correction can be used which attempts to minimise the RMS 
offsets at the BPMs, using all or some of the available corrector 
magnets.

• Steering in matching sections, extraction and injection region 
requires particular care

D and β functions can be large → bigger beam size– D and β functions can be large → bigger beam size

– Often very limited in aperture

– Injection offsets can be detrimental for performance 



Trajectory correction

Uncorrected trajectory.

y growing as a result 
f d i thof random errors in the 

line. 

The RMS at the BPMs 
is 3.4 mm, and ymax is , ymax
12.0mm

Corrected trajectory.

The RMS at the BPMs 
is 0.3mm and ymax is 
1mm



Trajectory correction

• Sensitivity to BPM errors is an important issue
– If the BPM phase sampling is poor, the loss of a few key BPMs can 

allow a very bad trajectory, while all the monitor readings are ~zero

Correction with some 
monitors disabled

y j y, g

With poor BPM phase 
sampling the correction 
algorithm produces a 
trajectory with 185mmtrajectory with 185mm 
ymax

Note the change of vertical scale



Steering (dipole) errors

• Precise delivery of the beam is important.
– To avoid injection oscillations and emittance growth in rings

– For stability on secondary particle production targetsFor stability on secondary particle production targets

• Convenient to express injection error in σ (includes x and x’ errors)

Δ [ ] √ √ 2 2 β 2

Δa

Δa [σ] = √((X2+X’2)/ε) = √((γx2 + 2αxx’+ βx’2)/ε)

X

'X

Septum

X
Bumper
magnets kicker Mis-steered 

injected beam



Steering (dipole) errors

• Static effects (e.g. from errors in alignment, field, calibration, …) are 
dealt with by trajectory correction (steering).

B t there are also d namic effects from• But there are also dynamic effects, from:
– Power supply ripples

– Temperature variations

– Non-trapezoidal kicker waveforms

• These dynamic effects produce a variable injection offset which can 
vary from batch to batch or even within a batchvary from batch to batch, or even within a batch.

• An injection damper system is used to minimise effect on emittance



Blow-up from steering error
• Consider a collection of particles with amplitudes A

• The beam can be injected with a error in angle and position.

• For an injection error Δa (in units of sigma = √βε) the mis-injected• For an injection error Δay (in units of sigma = √βε) the mis-injected 
beam is offset in normalised phase space by d = Δax√ε

'X Mi i j t dMatched X Misinjected
beam

Matched
particles

X

A

d



Blow-up from steering error
• The new particle coordinates in normalised phase space are

θcosnew dXX 0 +=

θsinnew dXX '
0
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Mi i j t dMatched 'X

• For a general particle distribution, 
where A denotes amplitude in

Misinjected
beam

Matched
particles
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where A denotes amplitude in 
normalised phase space A
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Blow-up from steering error
S if l i th di t
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Blow-up from steering error

A numerical example….

Consider an offset Δa of 0.5 sigma for g
injected beam

Misinjected beam
( )0 2/1 Δεε += 2anew

'X

0ε1.125=
X

0.5√ε
√ε

X

Matched
Beam 



Blow-up from betatron mismatch

• Optical errors occur in transfer line and ring, such that the beam can be 
injected with a mismatch.

• Filamentation will produce an 
emittance increase.

• In normalised phase space, consider Mismatched
beam'Xp p ,

the matched beam as a circle, and the 
mismatched beam as an ellipse.

beamX

X

Matched
beam



Blow-up from betatron mismatch
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Blow-up from betatron mismatch

Mismatched( ) ( )11
2

11
2

−−+=−++= HHAbHHAa      ,

From the general ellipse properties

'X
beam

b

22

where

X

a
b

( )

⎟
⎞

⎜
⎛

+⎟⎟
⎞

⎜⎜
⎛

+

+=

2

2

1211

2
1

ββααββ

βγ newnewH

A
X

⎟
⎟

⎠
⎜
⎜

⎝
+⎟⎟

⎠
⎜⎜
⎝

−+=
1

2

2

1
21

1

2

2

1

2 ββ
αα

ββ A

λAa

Matched
Beam generally

giving

( ) ( )11
2

1111
2

1 −−+=−++= HHHH
λ

λ      ,

λ
λ

⋅=
=

A
A

b
a

)cos(1),sin( 1new1new φφ
λ

φφλ +=+⋅= A'XAX



Blow-up from betatron mismatch
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Blow-up from betatron mismatch
A numerical example….consider b = 3a for the mismatched ellipse
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Emittance and mismatch measurement
• A profile monitor is need to measure the beam size

– E.g. beam screen (luminescent) provides 2D density profile of the beam

• Profile fit gives transverse beam sizes σ• Profile fit gives transverse beam sizes σ.

• In a ring, β is ‘known’ so ε can be calculated from a single screen



Emittance and mismatch measurement

• Emittance and optics measurement in a line needs 3 profile 
measurements in a dispersion-free region

• Measurements of σ0 σ1 σ2 plus the two transfer matrices M01 andMeasurements of σ0,σ1,σ2, plus the two transfer matrices M01 and 
M12 allows determination of ε, α and β

M
s0 s2s1

M 32→M21→M
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Emittance and mismatch measurement
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Emittance and mismatch measurement

Some (more) algebra with above equations gives
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And finally we are in a position to evaluate ε and α0
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Comparing measured α β0 with expected values gives numerical

W00 2
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Comparing measured αo, β0 with expected values gives numerical 
measurement of mismatch



Blow-up from thin scatterer
S tt i l t ti i d i th b• Scattering elements are sometimes required in the beam
– Thin beam screens (Al2O3,Ti) used to generate profiles.

– Metal windows also used to separate vacuum of transfer lines from 
vacuum in circular machines.

– Foils are used to strip electrons to change charge state

• The emittance of the beam increases when it passes through dueThe emittance of the beam increases when it passes through, due 
to multiple Coulomb scattering.
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βc = v/c, p = momentum, Zinc = particle charge /e, L = target length, Lrad = radiation length



Blow-up from thin scatterer

Ellipse after
scattering

Each particles gets a random angle change 
θs but there is no effect on the positions at 
the scatterer
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Blow-up from thin scatterer
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Ellipse after
filamentation
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Need to keep β small to minimise blow-up (small β means large spread in 
angles in beam distribution, so additional angle has small effect on distn.)



Blow-up from charge stripping foil
F LHC h i Pb53+ i t i d t Pb82+ t 4 25G V/ i• For LHC heavy ions, Pb53+ is stripped to Pb82+ at 4.25GeV/u using a 
0.8mm thick Al foil, in the PS to SPS line 

• Δε is minimised with low-β insertion (βxy ~5 m) in the transfer liney

• Emittance increase expected is about 8%
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Emittance exchange insertion
• Acceptances of circular accelerators tend to be larger in horizontal 

plane (bending dipole gap height small as possible)

• Several multiturn extraction process produce beams which have p p
emittances which are larger in the vertical plane → larger losses

• We can overcome this by exchanging the H and V phase planes 
(emittance exchange)(emittance exchange)

Low energy machine After multi-turn 
Aft itt High energy machine

y

extraction After emittance
exchange

x

In the following, remember that the matrix is our friend…



Emittance exchange
Phase-plane exchange requires a transformation of the form:
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A skew quadrupole is a normal quadrupole rotated by an angle θ. 

The transfer matrix S obtained by a rotation of the normal transfer matrix Mq:
1S = R-1MqR

where R is the rotation matrix  
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( i lf f h t R d b h ki th t i t f d t(you can convince yourself of what R does by checking that x0 is transformed to 
x1 = x0cosθ +y0sinθ, y0 into -x0sinθ +y0cosθ, etc.)



Emittance exchange
⎞⎛

For a thin-lens approximation
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Emittance exchange
The transformation required can be achieved with 3 such skew quads in a lattice, 

of strengths δ1, δ2, δ3, with transfer matrices S1, S2, S3

A B

Skew quad Skew quad Skew quad

δ1 δ2 δ3

The transfer matrix without the skew quads is C = B A . 
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Emittance exchange
With the skew quads the overall matrix is M = S3B S2A S1
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Equating the terms with our target matrix form
⎟⎟
⎟

⎠
⎜⎜
⎜

⎝ 00
00

4241

3231

mm
mm

a list of conditions result which must be met for phase-plane exchangea list of conditions result which must be met for phase plane exchange.



Emittance exchange
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The simplest conditions are c12 = c34 = 0.The simplest conditions are c12  c34  0. 

Looking back at the matrix C, this means that Δφx and Δφy need to be integer 
multiples of π (i.e. the phase advance from first to last skew quad should be 180º, 
360º, …))
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Emittance exchange
Several solutions exist which give M the target form. 

One of the simplest is obtained by setting all the skew quadrupole strengths the 
same, and putting the skew quads at symmetric locations in a 90º FODO 
l ttilattice

A B (=A)

δ δ δ
From symmetry A = B, and the values of α and β at all skew quads are identical.
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The matrix C is similar, but with phase advances of 2Δφ



Emittance exchange

⎞⎛ βα 00

Since we have chose a 90º FODO phase advance, Δφx = Δφy = π/2, and 
2Δφx = 2Δφy = π which means we can now write down A,B and C:
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Summary
• Transfer lines present interesting challenges and differences from 

circular machines
– No periodic condition mean optics is defined by transfer line element 

strengths and by initial beam ellipse

– Matching at the extremes is subject to many constraints

– Trajectory correction is rather simple compared to circular machineTrajectory correction is rather simple compared to circular machine

– Emittance blow-up is an important consideration, and arises from 
several sources

Phase plane rotation is sometimes required skew quads– Phase-plane rotation is sometimes required - skew quads 
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– The effect of alignment and gradient errors on the trajectory and optics

– Trajectory correction algorithms

– SVD trajectory analysis

– Kick-response optics measurement techniques in transfer lines

– Optics measurements including dispersion and δp/p with >3 screensOptics measurements including dispersion and δp/p with >3 screens 
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