

D. Einfeld, CELLS

The Accelerator Complex of ALBA

CAS-School, November 2008

Contents:

Introduction

Dipole Magnets

Quadrupoles

Combined Function Dipols

Sextupoles

Higher Harmonics

Correctors

Girders

Cooling

ALBA

D. Einfeld, CELLS

CAS, Frascati, Nov. 2008

Internal Party

Magnets within an Accelerator Complex

Magnets within an Accelerator Complex

Main Components of a Magnet

BA

But first – nomenclature!

Magnetic Field: (the magneto-motive force produced by electric currents) symbol is <u>H</u> (as a vector); units are Amps/metre in S.I units;

Magnetic Induction or **Flux Density:** (the density of magnetic flux driven through a medium by the magnetic field)

symbol is $\underline{\mathbf{B}}$ (as a vector); units are Tesla (Webers/m²)

Note: induction is frequently referred to as "Magnetic Field".

Permeability of free space:

symbol is μ_0 ; $\mu_0 = 4\pi * 10^{-7}$ units are Henries/metre; **Permeability** (abbreviation of **relative permeability**): symbol is μ_r ; the quantity is dimensionless;

Calculation of the Magnetic Fields

Everything starts with the Maxwell Equations:

Calculation of the Magnetic Fields

In a material free region the magnetic fields can be calculated by a potential function V(x,y,z), which is determined by the Laplace equation:

$$\Delta V = 0 = \frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \varphi^2} + \frac{\partial^2 V}{\partial z^2}$$

With some mathematical manipulations one gets the following field components:

$$B_r = -\sum_n (A_n r^{n-1} \cos n\Theta + B_n r^{n-1} \sin n\Theta)$$

$$B_{\varphi} = -\sum_{n} \left(-A_n r^{n-1} \sin n\Theta + B_n r^{n-1} \cos n\Theta \right)$$

B_n: are the normal components,

A_n: are the skew components,

$$\begin{split} \mathbf{B}_{\mathbf{x}} &= \mathbf{B}_{\mathbf{r}} \cos \theta - \mathbf{B}_{\theta} \sin \theta, \\ \mathbf{B}_{\mathbf{y}} &= \mathbf{B}_{\mathbf{r}} \sin \theta + \mathbf{B}_{\theta} \cos \theta, \end{split}$$

Description of a Magnetic Field

In general for the magnetic field one has the following description:

$$B = B_{1} + B_{2} * x + B_{3} * x^{2} + B_{4} * x^{3} + B_{5} * x^{4} + B_{6} * x^{5} + B_{7}x^{6} + B_{8} * x^{7} + B_{9} * x^{8} + B_{10} * x^{9}$$

$$B = B_{0} + \frac{1}{1!} \cdot \frac{dB}{dx} x + \frac{1}{2!} \cdot \frac{d^{2}B}{dx^{2}} x^{2} + \frac{1}{3!} \cdot \frac{d^{3}B}{dx^{3}} x^{3} + \frac{1}{4!} \cdot \frac{d^{4}B}{dx^{4}} x^{4} + \frac{1}{5!} \cdot \frac{d^{5}B}{dx^{5}} x^{5} + \frac{1}{6!} \cdot \frac{d^{6}B}{dx^{6}} x^{6} + etc$$

$$B = B_{1} + B_{2} \cdot x + \frac{1}{2} \cdot B^{2} \cdot x^{2} + \frac{1}{6} \cdot B^{3} \cdot x^{3} + \frac{1}{24} \cdot B^{4} \cdot x^{4} + \frac{1}{120} \cdot B^{5} \cdot x^{5} + \frac{1}{720} \cdot B^{6} \cdot x^{6} + etc$$

 $B = B_1(2pole) + B_2(4pole) + B_3(6pole) + B_4(8pole) + B_5(10pole) + B_6(12pole) + etc$ Dipole Quadrupole Sextupole Octupole Decapole Dodecapole

Dipole, Quadrupole and Sextupole

ALBA

D. Einfeld, CELLS

Introducing Iron Yokes

What is the ideal pole shape?

Flux is normal to a ferromagnetic surface with infinite μ :

curl H = 0 therefore \int H.ds = 0; in steel H = 0; therefore parallel H air = 0 **therefore B is normal to surface.**

Flux is normal to lines of scalar potential, $(\underline{\mathbf{B}} = - \underline{\nabla}\phi)$; So the lines of scalar potential are the ideal pole shapes!

The Dipole Magnet

The dipole magnet has two poles, a constant field and steers a particle beam. The purpose of all bending magnets in a ring is to bend the beam by exactly 360 degrees. Using the right hand rule, the positive dipole steer the rotating beam toward the left.

The 'shim' is a small, additional piece of ferro-magnetic material added on each side of the two poles – it compensates for the finite cut-off of the pole, and is optimised to reduce the 6, 10, 14..... pole error harmonics.

Types of magnets

D. Einfeld, CELLS

More Types of Bending Magnets

Within the sector bending magnet the trajectory length for positive x will be larger and therefore the sector magnet is a focussing one.

Within the rectangular bending magnet it is vice versa and it is a defocusing one.

Dipole Excitation

According to Maxwell it is: $\oint \overline{H} \bullet \overline{dl} = \oint \overline{H} \bullet \overline{dl} + \oint \overline{H} \bullet \overline{dl} + \oint \overline{H} \bullet \overline{dl} = NI$ Path1 Path₂ Path3 Along Path 1 $|H| = \frac{B}{\mu_0}$ and H||l|Path 2 Through Iran Current=NI Therefore: $\oint_{Path1} \overline{H} \bullet \overline{dl} = \frac{Bh}{\mu_0}$ Path 1 B=Constant Path1 Path 3 B⊥to Line Along path 2, $|H| = \frac{B}{\mu \mu_0}$ For iron; $\mu \approx 1000$ $\oint_{Bath 2} \overline{H} \bullet \overline{dl} = |H|_{iron} l_{iron} \ll \frac{Bh}{\mu_0} \approx 0$ Therefore; Path₂

Dipole Excitation

 $B_{air} = \mu_0 NI / (h + I_{iron}/\mu)$; is the exact solutions

The same procedure can be used for the calculation of the excitation for the quadrupoles, sextupoles and correctors

Yoke - Permeability of low silicon steel

Without saturation the factor I_{iron}/μ should be much smaller as the half gap height h. For a synchrotron light bending magnet the length of the field line within half of the magnet is roughly 750 mm. At 1.5 T μ_r is roughly 1000, hence the factor I_{iron}/μ_r is roughly 1 mm, which makes roughly an saturation of 5 % to h=20 mm.

Excitation curve of the ANKA Bending magnet

Flux density	1.40 T	Strengt
Radius	5.956 m	Gradier
Deflection Angle	22.5 degree	Gap he
Magnetic length	2.340 m	Current
Iron length	2.274 m	Turns
Total length	2.47 m	Conduc

Strength	0.3411 m ⁻²
Gradient	2.84 T/m
Gap height	42 mm
Current	643 A
Turns	80
Conductor	13 * 13 mm ²

2 D Flux density distribution in the ALBA Dipole.

The flux of thestray field is roughly 30 % of the homogenous part. In order to have a constant flux density within the pole, the thickness of the pole has to be increase to the upper part. The thickness of the back leg must be the same or larger as the maximum width of the pole. If B<1 T an increase of the pole width is not needed.

Size of a Dipole.

The size of a dipole is given by the required so called "good field area" of the magnet. The good field area is given by the accelerator physicist. For example in a bending magnet for a synchrotron light source a good field area of roughly +/- 15 to 20 mm is required. In heavy ion - or other machines it can be completely different (much larger). To optimize the pole profile one uses to the end of the poles so called shims (as given below). The contour of the shims have to be determined with a 2D (Poisson) or 3D (TOSCA) code

For accelerators operating with a fixed energy the flux density B can be up to 1.5 T or larger. For ramping machines the flux density should not be larger as roughly 1 T in order to avoid saturation effects.

Shimming of Pole Profiles

To compensate for the non-infinite pole, shims are added at the pole edges. The area and shape of the shims determine the amplitude of error harmonics which will be present.

Dipole:

When high fields are present, chamfer angles must be small, and tapering of poles may be necessary

Size of Coils.

D. Einfeld, CELLS

Coil Geometry

Standard design is rectangular copper (or aluminium) conductor, with cooling water tube. Insulation is glass cloth and epoxy resin.

Amp-turns (NI) are determined, but total copper area (A_{copper}) and number of turns (N) are two degrees of freedom and need to be decided.

Current density: $j = NI/A_{copper}$ Optimum j determined from <u>economic</u> criteria.

Number of turns, N

The value of number of turns (N) is chosen to match power supply and interconnection impedances.

Factors determining choice of	N:
Large N (low current)	Small N (high current)
Small, neat terminals.	Large, bulky terminals
Thin interconnections-hence low T cost and flexible.	hick, expensive connections.
More insulation layers in coil, hence larger coil volume and increased assembly costs.	High percentage of copper in coil volume. More efficient use of space available
High voltage power supply H -safety problems.	ligh current power supply. -greater losses.

Current density - optimisation

Advantages of low j:

- **lower power loss** power bill is decreased;
- **lower power loss** power converter size is decreased;

Lifetime cost

- **less heat** dissipated into magnet tunnel. Advantages of high j:
- smaller coils;
- lower capital cost;
- smaller magnets.
 Chosen value of j is an optimisation of magnet capital against power costs

At ALBA we current densities of 3.5 to 5 A/mm²

D. Einfeld, CELLS

SR Dipole End Chamfer

- > Cut at 45° and then rotate the cut up to 20°
- ➤ Use OPERA-3D to model the magnet
- > Calculate $B_y(s)$ at different transversal trajectories
- > Beam Dynamics uses this field to do the machine simulation with a sliced magnet
- > The best chamfer is that which makes the effective length constant along the

transversal direction of the magnet.

D. Einfeld, CELLS

Layout of the ALBA combined Bending Magnet

Dimensions of the ALBA combined Bending Magnet

Number of magnets	8 / 32
Effective length (m)	1 / 2
Bending angles (°)	5 / 10
Curvature radius (m)	11.4592
Central gap (mm)	22.6
Central dipolar field (T)	0.873
Central Quadrupolar field (T/m)	-2.29
Central Sextupolar field (T/m ²)	-9.0

Booster Bending Dipoles (Opera – 2D models)

D. Einfeld, CELLS

Quadrupole Design.

The Quadrupole Magnet has four poles. The field varies *linearly* with the the distance from the magnet center. It focuses the beam along one plane while defocusing the beam along the orthogonal plane. An *F* or focusing quadrupole focuses the particle beam along the *horizontal* plane.

The field of the quadrupole has to be proportional to the distance from the centre (x or y). The excitation in general is given by:

 $B_0 = \mu_0 N^* I/g \text{ or } B(x) = \mu_0 N^* I/x$

This means the pole profile of a quadrupole is a hyperbolic one.

D. Einfeld, CELLS

Excitation current in Quadrupole

For quadrupoles the required excitation can be calculated by considering fields and gap at large x. For example:

Pole equation: $x^*y = R^2/2$; on x axes: $B_Y = g^*x$; where g is gradient (T/m).

At large x (to give vertical lines at B): N I = $(g^*x) (R^2/2x)/\mu_0$ or N*I = $g^*R^2/2 \mu_0$ (per pole). The magnetic flux at the pole tip is given by: $B_{pole} = 2^*\mu_0^*N^*I / R$. The gradient is given by: $g = 2^*\mu_0^*N^*I / R^2 = B_{pole} / R$ and $m = g/(\rho^*B)$ With R = 35 mm and $B_{pole} = 0.6$ T the gradient is roughly 17 T/m. Today one can go up with the gradient to 22 T/m

Dimensions of the ALBA Quadrupoles

Former Quadrupole Magnets

- 1 type of lamination, 2 coil pancakes
 (56 turns, 8×8 mm, Ø4.5 mm)
- Mechanically made of 2 pieces
- All opened magnets with spacers
- Iron Overall dimensions are 550x720 mm

Present Quadrupole Magnets

Number of magnets	112
Aperture	61 mm
Max. gradient	22.4 T/m
Max. current	185 A

- 2 types of laminations, 1 coil (46 turns, 8×8 mm, \varnothing 5 mm)
- Mechanically made of 4 pieces
- 100 closed magnets, 12 opened magnets
- Iron Overall dimensions are 600x600 mm

Symmetric Quadrupole

Magnetic field lines in a symmetric quadrupole

D. Einfeld, CELLS

Quadrupole Magnets (2D-OPERA models)

$$\frac{\Delta g}{g} \le \pm 4 \cdot 10^{-4} \qquad |\mathbf{x}| \le 24.5 \text{ mm}$$

D. Einfeld, CELLS

Quadrupole and Beam-Lines: Spacers

D. Einfeld, CELLS

Combined Quadrupoles for the ALBA Booster

Introduction of a sextupole field

Combined function Bending Magnet.

The combined function bending magnet combines the function of a bending magnet (bending a beam) and a quadrupole (focussing a beam) in one unit, the so called combined bending magnet. It is combined a "bending" in the horizontal direction with a "focussing" in the vertical direction. With combined bending magnet it is possible to build a compact machine, because some of the defocussing quadrupoles are not needed.

At Alba we used the combined bending magnet in the storage ring as well in the booster synchrotron.

Combined function Bending Magnet.

Source	Energy (GeV)	B _o (T)	G (T/m)	B _{max} (T)
ALS	1.9	1.279	5.133	1.58
Elettra	2.3	1.38	3.303	1.58
Boomerang	3.0	1.30	3.335	1.50
CLS	2.9	1.354	3.867	1.586
SPEAR III	3.3	1.4	3.60	1.62
ALBA	3.0	1.42	5.66	1.66

D. Einfeld, CELLS

Longitudinal Field Distribution

Gradient: Focusing strength

Sextupole: Change in chromaticity

D. Einfeld, CELLS

Parameters of the ALBA Bending Magnets

Storage Ring Bending Magent				
Magnetic properties Beam Energy (E) Central Field (Bo) Field gradient (Go) Sextupole component (B'') Effective length (Lo)	GeV T T/m T/(m^2) m	3 1.42 5.656 0 1.384		
Mechanical properties Bending radius (Ro) Bending angle (phi) Central Gap (h) Length of Fe-yoke L(Fe)	m degrees mm mm	7.047 11.25 36 1340		
Coil and conductor Number of coils Number of pancakes per coil Number of turns per pancake Concductor size Cooling channel diameter (D) Number of ampere turns per coil Current (I) Current density (j) Resistance at 23 degrees Inductivity Voltage drop Power	mm^2 mm A-turns A A/mm^2 Ohm mH V kW	2 4 10 16.3*10.8 6.6 21000 527 3.72		
Cooling Maximim DT Nominal input temperature Number of cooling circuits per coil Maximum pressure drop per magnet	Celsius Celsius bar	8.6 23 2 7		

Booster Bending Magents								
5 Degr. 10 De								
Magnetic properties Beam Energy (E) Central Field (Bo) Field gradient (Go) Sextupole component (B") Effective length (Lo)	GeV T T/m T/(m^2) m	3 0.8733 2.292 18 1	3 0.8733 2.292 18 2					
Machanical properties								
Bending radius (Ro) Bending angle (phi) Central Gap (h) Length of Fe-yoke L(Fe)	m degrees mm mm	11.4592 5 22.6 0.972	11.4592 10 22.6 1.972					
Coil and conductor Number of coils Number of pancakes per coil Number of turns per pancake Concductor size Cooling channel diameter (D) Number of ampere turns per coil Current (I) Current density (j) Resistance at 23 degrees Inductance Voltage drop Power	mm^2 mm A-turns A A/mm^2 mOhm mH V kW	2 1 12*12 5 7906 659 6.08 9.2 1.3 6.1 2	2 1 12*12 5 7906 659 6.08 18.2 2.6 31.8 3.94					
Cooling Maximim DT Nominal input temperature Number of cooling circuits per coil Maximum pressure drop per magne	Celsius Celsius bar	11 1 7	11 23 2 7					

Parameters of the ALBA Quadrupoles

Storage Ring Quadrupole Magents				Booster Qua	drupole I	Magent	S			
		Q200	Q260	Q280	Q500			QS180	QS340	QC340
Magnetic properties Beam Energy (E) Field gradient (Go) Sextupole component (B'') Effective length (Lo)	GeV T/m T/(m^2) m	3 19.8 0 0.23	3 21 0 0.29	3 21.4 0 0.31	3 21.9 0 0.53	Magnetic properties Beam Energy (E) Field gradient (Go) Sextupole component (B") Effective length (Lo)	GeV T/m T/(m^2) m	3 17.45 0 0.2	3 17.45 0 0.36	3 17.45 5 0.36
Mechanical properties Aperture radius Length of Fe-yoke L(Fe) Maximum length of magnet	mm m m	30.5 0.2 0.298	30.5 0.26 0.358	30.5 0.28 0.378	30.5 0.5 0.598	Mechanical properties Aperture radius Length of Fe-yoke L(Fe) Maximum length of magnet	mm m m	18 0.18 0.28	18 0.34 0.44	18 0.34 0.44
Coil and conductor Number of coils Number of turns per coil Concductor size Cooling channel diameter (D) Number of ampere turns per coil Current (I) Current density (j) Resistance at 23 degrees Inductivity Voltage drop Power	mm^2 mm A-turns A A/mm^2 mΩ mH V kW	4 46 8*8 5 7801 167.8 3.78	4 46 8*8 5 8274 178.7 4.02	4 46 8*8 5 8432 199.6 4.5	4 46 8*8 5 8629 187.4 4.22	Coil and conductor Number of coils Number of turns per coil Concductor size Cooling channel diameter (D) Number of ampere turns per coil Current (I) Current density (j) Resistance at 23 degrees Inductivity Voltage drop (resistive) Power	mm^2 mm A-turns A A/mm^2 mΩ mH V W	4 17 5*5 3 2250 132.4 3.78 34.6 3 4.6 606	4 17 5*5 3 2250 132.4 4.02 59 6 7.8 1034	4 17 5*5 3 2250 132.4 4.22 59 6 7.8 1034
Cooling Maximim DT Nominal input temperature Number of cooling circuits per coil Maximum pressure drop per magnet	Celsius Celsius bar	8 23 4 7	8 23 4 7	8 23 4 7	8 23 4 7	Cooling Maximim DT Nominal input temperature Number of cooling circuits per coil Maximum pressure drop per magne	Celsius Celsius bar	8 23 1 7	8 23 1 7	8 23 1 7

Sextupole Design.

The Sextupole Magnet has six poles. The field varies *quadratically* with the distance from the magnet center. It's purpose is to affect the beam at the edges, much like an optical lens which corrects chromatic aberration. Sextupole are needed for the compensation of the chromaticity to make in a small range the focusing of the machine energy independent. An *F* sextupole will steer the particle beam toward the center of the ring.

Note that the sextupole also steers along the 60 and 120 degree lines.

D. Einfeld, CELLS

Sextupole Excitation

Excitation current in a Sextupole

$$\oint \overline{H} \bullet \overline{dl} = NI \approx \frac{B'' R^3}{6\mu_0}$$

$$N^*I = B''^* R^3 / (6^* \mu_0)$$

$$B_{\text{Pole}} = B''^* R^2 / 2 \quad \text{and} \quad B'' = 2^* B_{\text{Pole}} / R^2$$

The magnetic flux at the pole tip is given by: $B_{pole} = 3^* \mu_0^* N^* I / R$. The differential gradient is given by: B'' = $6^* \mu_0^* N^* I / R^3 = 2^* B_{pole} / R^2$ With R = 35 mm and $B_{pole} = 0.4$ T the differential gradient is roughly 653 T/m².

Today one can go up with the gradient to 750 T/m²

Design of ALBA Sextupoles

Number of magnets

Max. differential gradient

Aperture

Max. current

Former Sextupole Magnets

Present Sextupole Magnets

Number of magnets	120
Aperture	72 mm
Max. differential gradient	600 T/m2
Max. current	200 A

- 2 sextupole cross section needed.
- Sextupolar field: 1 coil per pole (28 turns, 7×7 mm, Ø3.5 mm).
- Correctors: 2 coils per pole (10 & 6 turns, 7×7 mm, Ø3.5 mm).

- 1 sextupole cross section.
- Sextupolar field: 1 coil per pole
- (28 turns, 7×7 mm, \emptyset 3.5 mm).
- Correctors: 2 coils per pole (224 & 112 turns, 0.8×4.5mm solid conductor).

D. Einfeld, CELLS

120

76 mm

200 A

700 T/m²

ALBA Sextupole Magnets (2D-OPERA models)

Sextupolar field:

-0.02

S

BA

D. Einfeld, CELLS

-0.015

-0.01

-0.005

0

x [m]

0.005

0.015

0.02

0.01

Steering (2D-models)

All sextupoles will be equipped with steering coils for:

Horizontal Steering 0.8 mrad 2 coil types (1806 A-turn, 903 A-turn) By(x=0) = 0.0514 T

Vertical Steering 0.8 mrad 1 coil type (1520 A-turn) Bx(y=0) = 0.0499 T

Skew Quadrupole gx=0.2 T/m 1 coil type (225 A-turn)

D. Einfeld, CELLS

Parameters of the ALBA Sextupoles

Storage Ring Sextupole Magents						
		S-150	S-220			
Magnetic properties Beam Energy (E) Sextupole component (B'') Magnetic field at pole tip Effective length (Lo)	GeV T/(m^2) T m	3 700 0.51 0.175	3 700 0.51 0.245			
Mechanical properties Aperture radius Length of Fe-yoke L(Fe) Maximum length of magnet	mm m m	38 0.15 0.252	38 0.22 0.322			
Coil and conductor Number of coils Number of turns per coil Concductor size Cooling channel diameter (D) Number of ampere turns per coil Current (I) Current density (j) Resistance at 23 degrees Inductivity Voltage drop Power	mm^2 mm A-turns A A/mm^2 mΩ mH V kW	6 28 7*7 3.5 5400 192.9 4.9	6 28 7*7 3.5 5400 192.9 4.9			
Cooling Maximim DT Nominal input temperature Number of cooling circuits per coil Maximum pressure drop per magnet	Celsius Celsius bar	9 23 3 7	12 23 3 7			

Booster Sextupole Magents				
		S-200		
Magnetic properties Beam Energy (E) Sextupole component (B") Magnetic field at pole tip Effective length (Lo)	GeV T/(m^2) T m	3 400 0.065 0.2		
Mechanical properties Aperture radius Length of Fe-yoke L(Fe) Maximum length of magnet	mm m m	18 0.2 0.3		
Number of coils Number of turns per coil Concductor size Cooling channel diameter (D) Number of ampere turns per coil Current (I) Current density (j) Resistance at 23 degrees Inductivity Voltage drop (resistive) Power	mm [^] 2 mm A-turns A A/mm [^] 2 mΩ mH V W	6 50 2.8*1 310 6.2 2.21 886 34 5.5 33		
Cooling Maximim DT Nominal input temperature Number of cooling circuits per coil Maximum pressure drop per magne	Celsius Celsius bar			

Explanation for higher Harmonics

By cutting the pole profile in order to have space for the introduction of the coils the field distribution will be disturbed and higher multipoles will be introduced.

Higher Harmonics in Magnets

A dipole has overall 2 poles, which is n = 1A quadrupole has overall 4 poles, which is n = 2A sextupole has overall 6 poles, which is n = 3

Dipole: Introduction of 3 poles, that means overall 6 poles, which is n = 3Quadrupole: Introduction of 3 poles, that means overall 12 poles, which is n = 6Sextupole: Introduction of 3 poles, that means overall 18 poles, which is n = 9

Dipole: Introduction of 5 poles, that means overall 10 poles, which is n = 5Quadrupole: Introduction of 5 poles, that means overall 20 poles, which is n = 10Sextupole: Introduction of 5 poles, that means overall 30 poles, which is n = 15

Dipole: Introduction of 7 poles, that means overall 14 poles, which is n = 7Quadrupole: Introduction of 7 poles, that means overall 28 poles, which is n = 14Sextupole: Introduction of 7 poles, that means overall 42 poles, which is n = 21

Dipole: Introduction of 9 poles, that means overall 18 poles, which is n = 9 Quadrupole: Introduction of 9 poles, that means overall 36 poles, which is n = 18 Sextupole: Introduction of 9 poles, that means overall 54 poles, which is n = 27

Summary - 'Allowed' Harmonics

Summary of 'allowed harmonics' in <u>fully symmetric magnets:</u>

Fundamental geometry	'Allowed' harmonics
Dipole, n = 1	n = 3, 5, 7,
	(6 pole, 10 pole, etc.)
Quadrupole, n = 2	n = 6, 10, 14,
	(12 pole, 20 pole, etc.)
Sextupole, n = 3	n = 9, 15, 21,
	(18 pole, 30 pole, etc.)
Octupole, n = 4	n = 12, 20, 28,
	(24 pole, 40 pole, etc.)

Higher Harmonics in Magnets

Assembling of Quadrupoles

Each segment can be assembled with errors with three kinematic motions, x, y and e (rotation). Thus, combining the possible errors of the three segments with respect to the datum segment, the core assembly can be assembled with errors with 3x3x3=27 degrees of freedom.

This assembly has the advantage that the two core halves can be assembled kinematically with *only* three degrees of freedom for assembly errors. Thus, assembly errors are more easily measured and controlled.

Higher Harmonics in Magnets

Typical results from a quadrupole

QUADROPOLE REGISTRATION CERTIFICATE OF Q500CX_021_180A_02

Date: 10:08:	00 12.05.2008						
Quadropole	effective length (L):	50.00 cm. Coil rad	lius (R): 2.65 cm.	Horizontal shift:0.00	094 mm.		
Main current	t (I _M): 0.0000 A			Vertical shift: 0.0	0131 mm.		
Correction c	urrent: I = 0.0000 A			Angle of slope:0.00	001 rad.		
D:\Measurer	nents\==ALBA==	-04Junerupol	es\Fourth\Q500\021	Q500CX_021_180/	A_02.imt		
Harmonic	Magnetic field	amplitude		Magnetic fie	eld amplitude		Phase
(1)	at radius 1	.00 cm.		at reference ra	adius 2.500 cm.		(pad)
(1)	$A_n^2 + B_n^2$ (Gs)	relative	B _n (Gs)	A _n (Gs)	$A_n^2 + B_r^2 (Gs)$	relative	(iau.)
1	3.686146	0.001616	-2.15540	-2.99030	3.686146	0.000646	0.94624
2	2281.200	1.000000	-5703.00	-0.15592	5703.001	1.000000	0.00002
3	0.536546	0.000235	1.404338	3.045198	3.353416	0.000588	1.13869
4	0.084272	0.000037	1.312289	0.108339	1.316754	0.000231	0.08237
5	0.015485	0.000007	0.552235	0.246860	0.604900	0.000106	0.42037
6	0.009163	0.000004	0.890467	0.087789	0.894784	0.000157	0.09827
7	0.001125	0.000000	0.235104	-0.14181	0.274563	0.000048	-0.5427
8	0.001022	0.000000	-0.53130	0.326749	0.623742	0.000109	-0.5513
9	0.000060	0.000000	-0.07418	0.054630	0.092131	0.000016	-0.6347
10	0.000326	0.000000	1.230373	0.189723	1.244915	0.000218	0.15299
11	0.000038	0.000000	0.080772	0.351094	0.360266	0.000063	1.34467
12	0.000010	0.000000	0.066473	0.228560	0.238030	0.000042	1.28777
13	0.000006	0.000000	0.021216	0.380901	0.381491	0.000067	1.51515
14	0.000003	0.000000	0.390377	0.071631	0.396894	0.000070	0.18147
15	0.000001	0.000000	0.201315	0.075037	0.214845	0.000038	0.35678
16	0.000000	0.000000	-0.03192	0.144512	0.147997	0.000026	-1.3533
17	0.000000	0.000000	0.066092	0.200132	0.210763	0.000037	1.25183
18	0.000000	0.000000	0.186873	0.076697	0.202000	0.000035	0.38945
19	0.000000	0.000000	0.091177	0.083107	0.123369	0.000022	0.73913
20	0.000000	0.000000	0.063095	0.019988	0.066185	0.000012	0.30679

∆B/B, for n>2

5x10⁻⁵ 1x10⁻⁴ 2x10⁻⁴ 5x10⁻⁴ 1x10⁻³ 2x10⁻³ 3x10⁻³ MORE

 $\frac{\int \dot{H}_{i} dI}{I} = \frac{\int \dot{H}_{i} dI}{I} + \frac{\dot{H}_{i} dI}{I} : \text{where} \quad \frac{\int H_{i} dI}{I} = \sum \left(\frac{f}{f_{i}}\right)^{1} (A. \cos(n \phi) \cdot B. \sin(n \phi)) \quad \frac{\int H_{i} dI}{I} = \sum \left(\frac{f}{f_{i}}\right)^{1} (A. \sin(n \phi) \cdot B. \cos(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f}{f_{i}}\right)^{1} (A. \sin(n \phi) \cdot B. \cos(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f}{f_{i}}\right)^{1} (A. \sin(n \phi) \cdot B. \cos(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f}{f_{i}}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f}{f_{i}}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi) \cdot B. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(n \phi)) \quad \frac{f(h_{i} - h_{i})}{I} = \sum \left(\frac{f(h_{i} - h_{i})}{I}\right)^{1} (A. \sin(h_{$

Operator: Blinov Semenov

ALBA

D. Einfeld, CELLS

Correctors

•2 coils

174 turns/coil (solid conductor)

ALBA-Booster-Correctors

Bending angle	mrad	1
Bending field	Т	0.0503
Length of Fe yoke	mm	70
Gap	mm	35
Solid conductor size	mm ²	2
Number of ampere turns	amp-turn/coil	700
Number of turns per coil		174
Current	A	4
Dissipated power	W	20

D. Einfeld, CELLS

BA

D. Einfeld, CELLS

Calculation of the Power Consumption

- L_{Cu} = Average length of the conductor around the poles (m).
- N = Total number of turns around the poles.
- A_{cu} = Copper area (mm)
- **D** = Diameter of the cooling pipe within the conductor (mm)
- ρ = Specific resistance of the conductor ($Ω^*mm^2/m$)

D. Einfeld, CELLS

Calculation of the Power Consumption

- Θ = Excitation of the magnet (Θ = N^{*}I = B^{*}gap / μ_0).
- $I = Excitation-current (I = \Theta / N).$
- **J** = Current density in the conductor ($j = I/A_{Cu}$)
- Φ = Magnetic flux of the magnet (Φ = B*A).
- L = Inductivity of the magnet (L = N* Φ /I).

 R_{cu} = Resistance of the conductor ones around the poles (R_{cu} = ρ^*L_{cu}/A_{cu})

 R_{M} = Resistance of the coils around the poles (R_{M} = N* R_{Cu})

$$V_{Cu}$$
 = Voltage drop for one turn around the poles (V_{Cu} = I*R_{Cu})

$$V_{M}$$
 = Voltage drop for the magnet (V_{M} = I* R_{M} = V_{Cu} *N = N*I* R_{Cu})

 P_{M} = Power consumption of the magnet (P_{M} = I*V_M = I² *R_M = N*I²*R_{Cu})

$$P_{M} = N^{*}I^{2*}R_{Cu} = N^{*}(j^{*}A_{Cu})^{2*}R_{Cu} = N^{*}j^{2*}A_{Cu}^{*}\rho^{*}L_{Cu} \approx N^{*}j^{2*}A_{Cu}$$

Calculation of the Power Consumption

 P_{M} = Power consumption of the magnet (P_{M} = I*V_M = I² *R_M = N*I²*R_{Cu}) $P_{M} = N^{*}I^{2*}R_{Cu} = N^{*}(j^{*}A_{Cu})^{2*}R_{Cu} = N^{*}j^{2*}A_{Cu}^{*}\rho^{*}L_{Cu} \approx N^{*}j^{2*}A_{Cu}$ We can write the power consumption also in an other way $P_{M} = N^{*}j^{2*}A_{Cu}^{*}\rho^{*}L_{Cu} = (N^{*}I/A_{Cu})^{*}j^{*}A_{Cu}^{*}L_{Cu} = (N^{*}I)^{*}j^{*}L_{Cu}$ (N^{*}I) is the required excitation of the magnet, hence the power consumption is proportional to the current density and the length of the magnet The excitation currents are: $(N^*I)_{dipole} = B^*g / \mu_0$ $(N^*I)_{quadrup} = B'^*R^2/(2\mu_0)$ $(N*I)_{sextup.} = B''*R^3 / (6\mu_0)$

Design criteria's: The inductivity should be low (N : small, I : high) The power consumption should be low (g,R: small, R: small, and length: small)

D. Einfeld, CELLS

Coil Cooling

Concerning the cooling we have the following definitions: Q = Heat quantity M = Mass [gr] c = Specific heat capacity [cal / (gr*Kelvin)] $\Delta \delta$ = Temperature change [Kelvin] ρ = Specific gravity [gr / cm³] V = Volume [cm³] Caloric equivalent : 1cal = 4.186 VAs Q = M*c* $\Delta \delta$ [cal] = ρ *V*C* $\Delta \delta$ [cal]

According to the conversation of energy it must be: $(dQ/dt) = P_{electr} = P_M / number of cooling circuits_Pelectr. = \rho^*c^*\Delta\delta^*(\Delta V/dt)$

Calculation of the Cooling

 $P_{electr.}$ = ρ*c*Δδ*(ΔV/Δt)

Or the required flow rate:

 $\Delta V/\Delta t = \{ [P_{electr.}/W]/[\Delta \delta/K] \}^{(10^{-6}/4.186)} [m^{3}/s] \}$

 $\Delta V/\Delta t = \{ [Pelectr./W]/[\Delta \delta/K] \}^{0.2389^{+10^{-6}} [m3/s] \}$

 $\Delta V/\Delta t = \{ [Pelectr./W]/[\Delta \delta/K] \}^{1.433^{10-2}} [l/min]$

 $\Delta V/\Delta t = \{ [Pelectr./W]/[\Delta \delta/K] \} * 0.86 [l/h]$

The corresponding flow velocity is:

 $v = (\Delta V / \Delta t) / A_{cool}$,

 A_{cool} = cross section of the cooling pipe in the conductor.

 $v = {(\Delta V / \Delta t) / 10^{-6} m^3 / s} / {A_{cool} / mm^2} [m/s],$

Calculation of the Cooling

For an optimized cooling we need turbulent flow within the cooling pipes of the copper conductor. Turbulent flow does exist if the Reynolds's number (Re) is larger as 1160:

Re > 1160

Calculation of the Reynolds number:

r = Radius in the cooling pipe of the conductor

 ρ = Specific gravity (ρ from water = 1 gr/cm³)

v = velocity (cm/s)

 η = viscosity (η from water = 0.75 ... 1 mPas)

Introducing all the numbers one get:

Re = [r/mm]*[v/(m/s)]*10³

The corresponding critical velocity is:

v_c > 5.0 / (r/mm) [m/s]

Calculation of the Cooling

For an optimized cooling we need turbulent flow within the cooling pipes of the copper conductor. Turbulent flow does exist if the Reynolds's number (Re) is larger as 1160:

Re > 1160

Calculation of the Reynolds number:

r = Radius in the cooling pipe of the conductor

ρ = Specific gravity (ρ from water = 1 gr/cm³)

v = velocity (cm/s)

 η = viscosity (η from water = 0.75 ... 1 mPas)

Introducing all the numbers one get:

Re = [r/mm]*[v/(m/s)]*10³

Calculation of the Reynolds number

For an optimized cooling we need turbulent flow within the cooling pipes of the copper conductor. Turbulent flow does exist if the Reynolds number (Re) is larger as 1160:

Re > 1160

Calculation of the Reynolds number:

r = Radius in the cooling pipe of the conductor

 ρ = Specific gravity (ρ from water = 1 gr/cm³)

v = velocity (cm/s)

 η = viscosity (η from water = 0.75 ... 1 mPas)

Introducing all the numbers one get:

Re = [r/mm]*[v/(m/s)]*10³

The corresponding critical velocity is:

v_c > 5.0 / (r/mm) [m/s]

Calculation of the Pressure Drop

For a turbulent flow the pressure drop within a pipe is given by Blasius:

- r = Radius in the cooling pipe of the conductor
- **ρ = Specific gravity (ρ from water = 1 gr/cm³)**

```
v = velocity (cm/s)
```

```
\eta = viscosity (\eta from water = 0.75 ... 1 mPas)
```

Introducing all the numbers one get:

Re = [r/mm]*[v/(m/s)]*10³

The corresponding critical velocity is:

v_c > 5.0 / (r/mm) [m/s]

D. Einfeld, CELLS

Calculation of the Pressure Drop

According to the law of Blasius, the pressure drop in a pipe is the following:

$$\Delta P = \frac{0.1582}{2\sqrt[4]{2}} \bullet L \bullet \eta^{1/4} \bullet \rho^{3/4} \bullet \frac{v^{7/4}}{r^{5/4}}$$
$$\Delta P = 0.1582 \bullet L \bullet \eta^{1/4} \bullet \rho^{3/4} \bullet \frac{v^{7/4}}{(2r)^{5/4}}$$

$$\Delta P = 5.0 \bullet 10^{-5} bar \bullet (L/m) \bullet [v/m/s]^{1.75} \frac{1}{[2r/m]^{1.25}}$$

D. Einfeld, CELLS

CAS, Frascati, Nov. 2008

D. Einfeld, CELLS

D. Einfeld, CELLS