Resonances

Introduction: driven oscillators and resonance condition
smooth approximation for motion in accelerators

field imperfections and normalized field errors
perturbation treatment

Poincare section

stabilization via amplitude dependent tune changes
sextupole perturbation & slow extraction

chaotic particle motion



|ntroduction: Damped Harmonic Oscillator

B equation of motion for a damped harmonic oscillator:
LCW(t) + @, Q7 S w(t) + @, - W(t) =0

Q Isthe damping coefficient
—— (amplitude decreases with time)

o, IS the Eigenfrequency of the HO

B example: weight on aspring (Q = o)
77
K

| aEWO+kew =0 —wt)=a-sn(Vk tig,)



| ntroduction: Driven Oscillators

B an external driving force can ‘ pump’ energy into the system:
d2 -1 ( 2 F
“FW)+ @, Q- FwW(t)+ @, - w(t) = E-cos(a)-t)

B genera solution:
J W(t) = W, (t) + W (t)

B stationary solution:
w, (t) =W(w) - codw -t —a(w)]

— where ‘@’ Isthe driving angular frequency!
and W(w) can become large for certain frequencies!



| ntroduction: Driven Oscillators

B stationary solution

stationary solution follows the frequency of the driving
force:

w, (t) =W(w) codw -t —a(w)]

o) |
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®
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Bl oscillation amplitude can become large for weak damping



|ntroduction: Pulsed Driven Resonances Example

B higher harmonics:

B example of abridge:

2nOI harmonic: 3nd harmonic: 4th harmoniC'
\ r ,';E r : = - C oy

‘ =
;‘ ,.-r
4 i

B peak amplitude depends on the excitation frequency and damping



| ntroduction: Instabilities

Bl resonance catastrophe without damping:

W (@) =W(0). L
\/[1—(@)2]2+<JL>2
a)o Qa)o

B weak damping: resonancecondition: @

-l
O&

AR K

Tacoma Narrow bridge
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excitation by strong wind on the Eigenfrequencies



Smooth Approximation: Resonances In
Accelerators

Bl revolution frequency:

— periodic kick
Q — excitation with f

ﬁ F (Oyg, = 2n 1Erev)

Bl betatron oscillations: Eigenfrequency: w, = 2r f,

D —
Q=0w,/ 0,
—— driven oscillator
ﬁ 3 — weak or no damping!

(synchrotron radiation damping (single particle) or Landau damping distributions)



Smooth Approximation: Free Parameter

B co-moving coordinate system:

=» choose the longitudinal
coordinate as the free
T\ parameter for the equations
S
X

of motion
B equations of motion:
d _ds d . ds _
dt — ot ds with: a =V



Smooth Approximation: Equation of Motion |

B Smooth approximation for Hills equation:

K(s) = const d 2

w(s)+K(s) w(s)=0 — i 2w(s.)+a)O -W(s)=0

(constant B-function and phase advance aong the storage ring)

W(s) = A-cos(@, - S+ ¢,) w,=2r-Q,/L
(Q isthe number of oscillations during one revolution)

Bl perturbation of Hills equation:
G2 w(s) + @y’ - W(s) = F (W(s),9) /(v- )

In the following the force term will be the Lorenz force of a L o=
charged particlein amagnetic field: F=q-vxB



Field Imperfections: Origins for Perturbations

linear magnet imperfections: derivation from the design dipole
and quadrupol e fields due to powering and alignment errors

time varying fields: feedback systems (damper) and wake
fields due to collective effects (wall currents)

non-linear magnets. sextupole magnets for chromaticity
correction and octupole magnets for Landau damping

beam-beam interactions: strongly non-linear field!

non-linear magnetic field imperfections:. particularly difficult
to control for super conducting magnets where the field quality
IS entirely determined by the coil winding accuracy



Field Imperfections: L ocalized Perturbation

B periodic deltafunction:

for‘s =5,

0, (s—5) { i §5L (s—s,)ds=1
B equation of motion for a single perturbation in the storage ring:
d32 w(s)+a)0 -W(S)=0,(s—5,)-|-F(w,s)/(v- p)

Fourier expansion of the periodic delta function:

d52 W(S) + (Uo -W(S) = i cos(r -2z -s/L)-F(w,s)/(v- p)

—— infinite number of driving frequencies



Field Imperfections. Constant Dipole

: : . F VB |
B normalized field error: =q- 1B >q- B/p=k,
V- p V- p
B equation of motion for single kick:

e <
S S_Szzw(s) +a)02 -W(S) = % Zcos(r -27-SlL)

0)0227['Q0/L >Q _ r
0 j—

. resonance condition: @, =r-2r/L

— | avoid integer tunes!

—— remember the example of asingle dipole imperfection
from the ‘Linear Imperfection’ lecture yesterday!



Field Imperfections. Constant Quadrupole

uations of motion:
. < & X9 +m,” X(8) =k, X(S)

y(s)=0

y

ith: =
Wi K, = p ~

. g—;x(s) +(w2-k) x(s)=0

— change of tune but no amplitude growth due to resonance
excitations!



Field Imperfections. Single Quadrupole Perturbation

B sssumey=0andB,=0:  F(9)/(v-p)=0d.(s—%) 1 -k-X

. 3_322 X(S) + wx,02 -X(S) = % rZlcos(Zﬂ- r-s/L)-x(s)

[X(s) =A-cos(w,-9)] —. :Iz—kﬁ icos(Zn-r-s/Lia)o-s)-x(s)

[=—oc0

B resonance condition: @, ,=r-27/L+ @, ,—2=ERL 5Q =1/2

avold half integer tunes plus resonance width from tune modulation!

Bl exact solution: variation of constants =» see the lecture yesterday



Field Imperfections. Time Varying Dipole Perturbation

B timevarying perturbation:
F () = Fy - CoS{@g 1) — = F, - OS2 s/ L) /(v p)

: dsZ W(S)+a)o W(S) “:O ZCOS(ZE [r —wklck/a)rev] S/ L) /(V p)

resonance condition:;

=27-Q,/L
:27['(ria)kick/wrev)/|— D=2 > k|ck rev (Qoir)

—— | avoid excitation on the betatron freguency!

(the integer multiple of the revolution frequency corresponds to the modes of the bridge
In the introduction example)



Field Imperfections. Several Bunches
- F(t) - B COS( a)kICk t) a)kICk =

rev'

T

machine circumference

- F(t) B Cos(wkmk t) wklck

rev

N A ,
N

—> higher modes analogous to bridge illustration




Field |mperfections. Multipole Expansion
B Taylor expansion of the magnetic field:

_ o0 . \n . o"1B
B, +iB, =Y - f - (x+iy) with: fo= =
n=0
multipole | order| B, B,
dipole 0 0 Bo
quadrupole | 1 f-y f,- X
sextupole | 2 f,-X-y = fz-(xz—yz)
octupole | 3 1.1, (3yx* — y?) 1.1, (x° —3xy°)
B normalized multipole gradients:
FOI-P= =g TS ey el T




Field Imperfections. Dipole Magnets
B dipole magnet designs:

L EP dipole magnet: LHC dipole magnet:
conventional magnet design air coil magnet design relying
relying on pole face accuracy on precise current distribution

of a Ferromagnetic Yoke

CROSS SECTION OF THE DIPOLE MAGNET WITH THE VACUUM CHAMBER

tressing Support Thermal

Pres.
/ rods bars /" insulati
£/ /
B




Field Imperfections. Multipole lllustration

B upright and skew field errors

1

upright: T
n=0 ([\

P,
n=1 4
R

n=2

skew:
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P
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Field Imperfections. Multipole lllustrations
B quadrupole and sextupole magnets

L EP Sextupole

|SR quadrupole




Field Imperfections. Super Conducting M agnets

B timevarying field errorsin super conducting magnets
Luca BotturaCERN, AT-MAS




Perturbation Treatment: Resonance Condition

B equations of motion:

(n™ order Polynomial in x and y for nt" order multipole)

dszw(s)+a)o -W(s)=¢- Zanmr X -y™-cos(2z-r-s/L)

| +m<n,
r

. with:  W=X,Y
B perturbation treatment:

W(S) =W, + & W, + W, + ...+ O(£") a)O:TﬂQO

with: Wy (S) =W, - cos(27- Q,- S/L + ¢,)
W= X:

e Lxr @t x =Y a0 1Qu + Qo+ 1] )

I <l,m<m



Perturbation Treatment: Tune Diagram |

B resonance condition:

—p I.QX-I—m.Qy:r

B tunediagram: Q

up to 11 order (ptl <12)

there are resonances
everywhere!

(the rational numbers
lie dens within the
real number)

21w 4 ~ 27
T(I °Qx+m°Qy+r):T'Qx,y

avoid rationa tune values!

0.8 | E&




Perturbation Treatment: Tune Diagram ||

B regionswith few resonances:

- Q +m-Q, =r avoid low order resonances!
gth 4th& 8th 11th 7th
— < 12" order for a 03 |
proton beam Q

without damping 028 @ﬁ
—— <39 Bhorder for g, ﬁ '

el ectron beams with

dampl ng 0.24
Bl coupling resonance:
regions without low 022 |
order resonances ﬁﬁ
arerelatively small! 0.2 , |
0.2 0.22 0.24 0.26 0.28 0.3

Qx



Perturbation Treatment: Single Sextupole Perturbation

Bl perturbed equations of motion: F(s)/(v- p) =36, (5—)-1k,-X°
EN d—le(s)+a)2-x1(s):1-lk -xoz-i iCOS(Zﬂ'-I‘-S/L)
ds? 0 2 2 | —
with:  X,(s) = A-cos(@,,-S+¢,) and @, =27-Q,,/L

> & 5 (9)+(21Q,0 /L) %(5) = 5t - A ZZCos(Zﬂrs/L)

rg ALY cos(27-[r £2Q,,]- /L)



Perturbation Treatment: Sextupole Perturbation

B resonance conditions:
—  2Q,=271-(1)——Q =T

27Q,, =27 (r +2Q, ) —=225Q ,=r/3

r+2QX,0 .
>QX,0 =r

— avoid integer and r/3 tunes!

B perturbation treatment:

contrary to the previous examples no exact solution exist!
thisis a consequence of the non-linear perturbation
(remember the 3 body problem?)

=» graphic tools for analyzing the particle motion




Poincare Section: Definition

B Poincare Section:

X’/(l)f)

><\
_

>

L ©®

>

S/

B resonance in the Poincare section:

9 A¢turn — Zﬂ- ) Q

record the particle
coordinates at one
location in the
storage ring

t X w,

X
fixed point condition: Q = n/r Kj 1

points are mapped onto themselves after ‘r’ turns




Poincare Section: Linear Motion

B unperturbed solution:
x(S=VR-cos(g) Wwith ~g=a,

ds
, d .
X = ¥=—VR@,sin(9)
ds
Bl phase space portrait: t X' w,

= themotionlieson an ellipse

=> linear motion is described by

asimple rotation Y,
=» consecutive intersectionslie VR

on closed curves




Poincare Section: Non-Linear Motion

Bl momentum change due to perturbation: 35@ ds
V- p

Bl singlen-polekick: A)(:E-Ik X"
nl

Bl phase space portrait with single sextupole: | X'l @,

> A=k,
2

= Ssextupole kick changesthe

amplitude and the phase —

\
advance per turn! \

AQturn oc X2 R+




Poincare Section: Stability?
Bl instability can be fixed by ‘detuning’:

= oveal stability depends on the balance between amplitude
Increase per turn and tune change per turn:

AQun(X) =  motion moves eventually off resonance

AR, (X) =  motion becomes unstable

Bl sextupole kick:
amplitudes increases faster then the tune can change

= overal| instability!



Poincare Section: |llustration of Topglo
(/0/
(/
B small amplitudes: =» regular motion

B largeamplitudes. =» instability & particle loss

X
o

B fixed points and seperatrix  border between stable and unstable
motion =» chaotic motion



Poincare Section: Simulatiosn for a Sextupol e Perturbation

Bl Poincare Section right after )g_m
the sextupole kick

4e-06 ¢

= for small amplitudesthe A
intersections still lieon closed 206 |
curves =» regular motion! TS

=» separatrix location dependson  -ieos |
the tune distance from the exact .., .
resonance condition (Q < n/3)

“3e-06 - - - - - e
0008 -0.006 -0.004 -0.002 0 0002 0.004 0.006

X

for large amplitudes and near the separatrix the intersections
fill areas in the Poincare Section =» chaotic motion;
=> no analytical solution exist!



Stabilization of Resonances
Bl instability can be fixed by stronger ‘ detuning’:

> If the phase advance per turn changes uniformly with
Increasing R the motion moves off resonance and stabilizes

B octupole perturbation: F(s)/(v- p)‘

B perturbation treatment:  X() = Xo(9) + & X,(9) +

> LX) %9 =1k,

2

> X,=A-cos(@, S+@,) =X = 7-[1+ cos(2a, - S+ 2¢,)]

a4 Z—M. :Az'lks. =y
o x(9)+[(21Q 0/ 1) =2 x (9 == 2 cos(2a,-9)




=) an octupole perturbation generate 1«06 |
phase independent detuning and
amplitude growth of the same

= amplitude growth and detuning

Stabilization of Resonances

resonance stability for octupole:

order

are balanced and the
overall motion is stablel
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=» thisisnot generally true in case of several resonance driving
terms and coupling between the horizontal and vertical motion!

0.005



Chaotic Motion

B octupole + sextupole perturbation: X
2e-06
= theinterference of the octupole se.os |
and sextupol e perturbations
generate additional resonances
=>»additional island chainsin
the Poincare Section!

le-06
Se-07 r
[} L.

-5e-07
=> intersections near the resonances . |
lie no longer on closed curves =
local chaotic motion around
the separatrix & instabilities 0006 0004 0002 0 0002 0004 0006
=>slow amplitude growth (Arnold diffusion) X

-1.5e-06

= neighboring resonance islands start to ‘overlap’ for large
amplitudes =» global chaos & fast instabilities



Chaotic Motion
B ‘Russian Doll’ effect: ,

X 2e06

1.5e-06 |
le-06 |
3e-07 +
-5e-07 |

-1e-06

-1.5e-06

2e-06 - - ' - -
0006 -0.004 -0.002 0 0002 0004 0.006

X X

=» magnifying sections of the Poincare Section reveals always the same
pattern on afiner scale =» renormalization theory!



Summary

Bl field imperfections drive resonances

B higher order than quadrupole field imperfections generate
non-linear equations of motion (no closed analytical solution)

(three body problem of Sun, Earth and Jupiter)
=» solutions only via perturbation treatment
B Poincare Section as agraphical tool for analyzing the stability
Bl slow extraction as example of resonance application in accelerator

Bl island chains as signature for non-linear resonances

Bl island overlap asindicator for globally chaotic & unstable motion



