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Introduction: Damped Harmonic Oscillator
equation of motion for a damped harmonic oscillator:

0)()()( 212 =⋅+⋅⋅+ − twtwQtw dd ωω 0)()()( 002 =++ twtwQtw dtdt
ωω

Q is the damping coefficient 

ω is the Eigenfrequency of the HO

(amplitude decreases with time)

ω0 is the Eigenfrequency of the HO

example: weight on a spring (Q =     )∞p g p g (Q )

0)()(2 tktd )i ()( φ+tkt
k

0)()(2 =⋅+ twktw
dt
d )sin()( 0φ+⋅⋅= tkatw



Introduction: Driven Oscillators
an external driving force can ‘pump’ energy into the system:
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stationary solution:
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where ‘ω’ is the driving angular frequency!
d ( ) b l f i f i !and W(ω) can become large for certain frequencies!



Introduction: Driven Oscillators

stationary solution

stationary solution follows the frequency of the driving
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stationary solution follows the frequency of the driving 
force:
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oscillation amplitude can become large for weak damping



Introduction: Pulsed Driven Resonances Example
higher harmonics:

example of a bridge:example of a bridge:

2nd harmonic: 3nd harmonic: 4th harmonic:

peak amplitude depends on the excitation frequency and damping



Introduction: Instabilities
resonance catastrophe without damping:
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Tacoma Narrow bridge
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excitation by strong wind on the Eigenfrequencies



Smooth Approximation: Resonances in 
Acceleratorscce e o s

revolution frequency:
i di ki kperiodic kick

excitation with frev

F (ωrev = 2π frev)

betatron oscillations: Eigenfrequency: ω0 = 2π fβ

Q = ω / ω

driven oscillator

Q = ω0 / ωrev

F weak or no damping!
(synchrotron radiation damping (single particle) or Landau damping distributions)



Smooth Approximation: Free Parameter

co-moving coordinate system:

choose the longitudinal
coordinate as the free
parameter for the equations

y
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equations of motion:
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Smooth Approximation: Equation of Motion I
Smooth approximation for Hills equation:Smooth approximation for Hills equation:
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K(s) = const

ds

(constant β-function and phase advance along the storage ring)

ds
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(Q is the number of oscillations during one revolution)

perturbation of Hills equation:
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in the following the force term will be the Lorenz force of a 
charged particle in a magnetic field: BvqF
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Field Imperfections: Origins for Perturbations

linear magnet imperfections: derivation from the design dipole 
and quadrupole fields due to powering and alignment errors

time varying fields: feedback systems (damper) and wake 
fields due to collective effects (wall currents)f ff ( )

non-linear magnets: sextupole magnets for chromaticity 
correction and octupole magnets for Landau dampingcorrection and octupole magnets for Landau damping

beam-beam interactions: strongly non-linear field! 

non-linear magnetic field imperfections: particularly difficult 
to control for super conducting magnets where the field qualityto control for super conducting magnets where the field quality 
is entirely determined by the coil winding accuracy



Field Imperfections: Localized Perturbation

periodic delta function:

1{ for ‘s’ = s0

∫δ
0
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otherwise
and 1)( 0 =−∫ dsssLδ

equation of motion for a single perturbation in the storage ring:
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Fourier expansion of the periodic delta function:
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Field Imperfections: Constant Dipole
r

normalized field error:
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equation of motion for single kick:
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avoid integer tunes!

remember the example of a single dipole imperfection 
from the ‘Linear Imperfection’ lecture yesterday!



Field Imperfections: Constant Quadrupole
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change of tune but no amplitude growth due to resonanceg p g
excitations!



Field Imperfections: Single Quadrupole Perturbation

assume y = 0 and Bx = 0: xklsspvsF L ⋅⋅⋅−=⋅ 10)()/()( δ
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resonance condition: ωx,0 = r ⋅ 2π /L ± ωx,0
ω0 = 2π ⋅Q0 / L⎯ → ⎯ ⎯ ⎯ ⎯ Q0 = r /2

avoid half integer tunes plus resonance width from tune modulation!

exact solution: variation of constants see the lecture yesterday



Field Imperfections: Time Varying Dipole Perturbation

time varying perturbation:
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resonance condition:
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avoid excitation on the betatron frequency!

(the integer multiple of the revolution frequency corresponds to the modes of the bridge 
in the introduction example)



Field Imperfections: Several Bunches
:);cos()( revkickkick tBtF ωωω ≈⋅⋅=
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machine circumference
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higher modes analogous to bridge illustration



Field Imperfections: Multipole Expansion
Taylor expansion of the magnetic field:Taylor expansion of the magnetic field:
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Field Imperfections: Dipole Magnets
dipole magnet designs:

LEP dipole magnet: LHC dipole magnet:

conventional magnet design
relying on pole face accuracy
f F i Y k

p g

air coil magnet design relying
on precise current distribution

p g

of a Ferromagnetic Yoke



Field Imperfections: Multipole Illustration
upright and skew field errorsupright and skew field errors

upright: skew:
1
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Field Imperfections: Multipole Illustrations
quadrupole and sextupole magnetsquadrupole and sextupole magnets

LEP Sextupole

ISR quadrupole



Field Imperfections: Super Conducting Magnets
time varying field errors in super conducting magnetstime varying field errors in super conducting magnets

Luca Bottura CERN, AT-MAS
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Perturbation Treatment: Resonance Condition
equations of motion:
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Perturbation Treatment: Tune Diagram I
resonance condition: QQQl 22 )~~( ++ ππ

avoid rational tune values!

resonance condition: yxyx QrQmQl
LL ,)( ⋅=+⋅+⋅⋅

rQmQl yx =⋅+⋅

tune diagram:
1

Qy

0.6

0.8up to 11 order (p+l <12)

0.4

0.6

 there are resonances
everywhere!

0.2

(the rational numbers
lie dens within the
real number)

0
0 0.2 0.4 0.6 0.8 1

 

real number)

Qx



Perturbation Treatment: Tune Diagram II
regions with few resonances:

avoid low order resonances!

regions with few resonances:

rQmQl yx =⋅+⋅
th11th4th & 8th9th

Qy

0.3< 12th order for a
proton beam

i h d i

7th11th4th & 8th9th

0.26

0.28without damping

< 3rd 5th order for

0.24

0.26

 electron beams with
damping

coupling resonance:

regions without low
order resonances

0.22

order resonances
are relatively small!

Qx
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0.2 0.22 0.24 0.26 0.28 0.3

 



Perturbation Treatment: Single Sextupole Perturbation

perturbed equations of motion: 2
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Perturbation Treatment: Sextupole Perturbation

rQrQ xox =⎯→⎯⋅= 0)(22 ππ

resonance conditions:
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avoid integer and r/3 tunes!
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perturbation treatment:

contrary to the previous examples no exact solution exist!
this is a consequence of the non-linear perturbation

(remember the 3 body problem?)( y p )

graphic tools for analyzing the particle motion



Poincare Section: Definition

Poincare Section:
record the particle
coordinates at one

0/ ωx′

coordinates at one
location in the
storage ring

y

s

x

i h i i

x 0/ωx′
3

resonance in the Poincare section:

QΔφ 2 φΔ

x
Qturn ⋅=Δ πφ 2 turnφΔ

12fixed point condition: Q = n/r 2fixed point condition: Q  n/r

points are mapped onto themselves after ‘r’ turns



Poincare Section: Linear Motion

)cos()( φ⋅= Rsx

unperturbed solution:

with ωφ =d
)cos()( φ⋅= Rsx
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with 0ωφ =
ds

ds

phase space portrait: 0/ωx′

the motion lies on an ellipse
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linear motion is described by 
a simple rotation

i i i liconsecutive intersections lie
on closed curves

R



Poincare Section: Non-Linear Motion
momentum change due to perturbation: ds
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phase space portrait with single sextupole: 0/ωx′
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advance per turn!
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Poincare Section: Stability?
instability can be fixed by ‘detuning’:

overall stability depends on the balance between amplitudey p p
increase per turn and tune change per turn:

)(xQturnΔ motion moves eventually off resonance

sextupole kick:

)(xRturnΔ motion becomes unstable

p

amplitudes increases faster then the tune can change

overall instability!



Poincare Section: Illustration of Topology
/′

Poincare section: 0/ωx′

2

Q < r/3
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regular motionsmall amplitudes: gp

large amplitudes: instability & particle loss

fixed points and seperatrix border between stable and unstable
motion chaotic motion



Poincare Section: Simulatiosn for a Sextupole Perturbation

Poincare Section right after
the sextupole kick

x’

for small amplitudes the
intersections still lie on closed
curves regular motion!

separatrix location depends on
the tune distance from the exact
resonance condition (Q < n/3)

xfor large amplitudes and near the separatrix the intersections

resonance condition (Q < n/3)

fill areas in the Poincare Section chaotic motion; 
no analytical solution exist!



Stabilization of Resonances
instability can be fixed by stronger ‘detuning’:instability can be fixed by stronger detuning :

if the phase advance per turn changes uniformly with 
i i R th ti ff d t bili

octupole perturbation:

increasing R the motion moves off resonance and stabilizes
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perturbation treatment:
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Stabilization of Resonances

resonance stability for octupole: x’

an octupole perturbation generates 
phase independent detuning and p p g
amplitude growth of the same 
order

amplitude growth and detuning
are balanced and the

ll ti i t bl !

x

overall motion is stable!

this is not generally true in case of several resonance drivingthis is not generally true in case of several resonance driving
terms and coupling between the horizontal and vertical motion!



Chaotic Motion
octupole + sextupole perturbation: x’

th i t f f th t lthe interference of the octupole
and sextupole perturbations
generate additional resonances

additional island chains in 
the Poincare Section!

intersections near the resonances 
lie no longer on closed curves 
local chaotic motion around

x

local chaotic motion around 
the separatrix & instabilities 

slow amplitude growth (Arnold diffusion)

neighboring resonance islands start to ‘overlap’ for large 
amplitudes global chaos & fast instabilities



Chaotic Motion
‘Russian Doll’ effect:Russian Doll  effect: x’

x’

xx

magnifying sections of the Poincare Section reveals always the same
pattern on a finer scale renormalization theory!



Summary

field imperfections drive resonances

higher order than quadrupole field imperfections generate

(three body problem of Sun Earth and Jupiter)

higher order than quadrupole field imperfections generate 
non-linear equations of motion (no closed analytical solution)

(three body problem of Sun, Earth and Jupiter)

solutions only via perturbation treatment

Poincare Section as a graphical tool for analyzing the stability

island chains as signature for non-linear resonances

slow extraction as example of resonance application in accelerator

island chains as signature for non linear resonances

island overlap as indicator for globally chaotic & unstable motion


