Injection and Extraction in Cyclotrons

CERN Accelerator School – Specialised Course Erice, March 12, 2017

Mike Seidel

Paul Scherrer Institut

Outline

• Cyclotron Basics

scaling and isochronicity, focusing, turn separation, classical cyclotrons and derived types

• Injection for Cyclotrons

internal source, electrostatic inflectors, horizontal injection, optics matching, bunching

• Extraction for Cyclotrons

electrostatic septum, stepwidth calculation, charge exchange extraction

The Classical Cyclotron

- → simplicity, compactness
- → continuous injection/extraction
- → multiple usage of accelerating voltage

wide spectrum of cyclotrons ...

compact and cost optimized for series production e.g. medical nuclide production → Internal source, extraction or internal target huge and complex for variable research purposes, e.g. R.I.B. production or high intensity \rightarrow External source, injection

CYCLONE 30 (IBA) : H- 15 à 30 MeV

RIKEN s.c. Ring Cyclotron- "as big as a house"

cyclotron basics: isochronicity and scalings

continuous acceleration \rightarrow revolution time should stay constant, though E_k , R vary

magnetic rigidity:

$$BR = \frac{1}{e} \, p = \beta \gamma \frac{m_0 c}{e}$$

orbit radius from isochronicity:

$$R = \frac{c}{\omega_c}\beta = R_{\infty}\beta$$

deduced scaling of B:

$$R\propto\beta; BR\propto\beta\gamma\longrightarrow B(R)\propto\gamma(R)$$

thus, to keep the isochronous condition, *B* must be raised in proportion to $\gamma(R)$; this contradicts the focusing requirements!

field index k: $k = \frac{R}{B} \frac{dB}{dR}$ $= \frac{\beta}{\gamma} \frac{d\gamma}{d\beta}$ $= \gamma^2 - 1$

cyclotron basics: stepwidth (nonrelativistic, B const)

 $qRB_z = \sqrt{2mE_k}$ $\frac{dR}{R} = \frac{1}{2} \frac{dE_k}{E_k}$ relation between "cyclotron energy and radius language" $\Delta E_k = \text{const}; B_z = \text{const}; E_k \propto R^2$ use: $R_{\infty} = R/\beta$ $\Delta R \propto \frac{R}{E_k} \propto \frac{1}{R}$ thus: radius increment per turn 0.5 0 decreases with increasing radius \rightarrow extraction becomes more and more difficult at higher energies

focusing in a cyclotron

centrifugal force mv²/r
Lorentz force qv×B
$$\vec{r} = mr\dot{\theta}^2 - qr\dot{\theta}B_z$$

focusing: consider small deviations x from beam orbit R (r = R+x):

$$\ddot{x} + \frac{q}{m}vB_{z}(R+x) - \frac{v^{2}}{R+x} = 0,$$

$$\ddot{x} + \omega_{c}^{2}(1+k)x = 0.$$

$$using: \omega_{c} = qB_{z}/m = v/R$$

$$r\dot{\theta} \approx v$$

$$k = \frac{R}{B}\frac{dB}{dR}$$
thus in radial $\omega_{r} = \omega_{c}\sqrt{1+k} = \omega_{c}\nu_{r}$

$$\nu_{r} = \sqrt{1+k}$$

$$\sum_{\substack{\text{using isochronicity}\\ \approx \gamma}}^{\text{using isochronicity}} \sin v_{z} = \sqrt{-k}$$

$$k<0 \text{ to obtain vertical focus.}$$

Classical vs Isochronous Cyclotron

classical cyclotron

Sector/AVF cyclotron

- insufficient vertical focusing
- limited energy reach

Azimuthally Varying Field vs. Separated Sector Cyclotrons

- AVF = single pole with shaping
- often spiral poles used
- internal source possible
- D-type RF electrodes, rel. low energy gain
- compact, cost effective
- depicted Varian cyclotron: 80% extraction efficiency; **not suited for high power**

- modular layout, larger cyclotrons possible, sector magnets, box resonators, stronger focusing, injection/extraction in straight sections
- **external injection** required, i.e. preaccelerator
- **box-resonators** (high voltage gain)
- high extraction efficiency possible: e.g. PSI: 99.98% = $(1 - 2 \cdot 10^{-4})$

classification of cyclotron like accelerators

next: injection for cyclotrons

- internal source, axial injection, horizontal injection
- electrostatic inflector, electrostatic deflectors
- transverse matching, bunching
- space charge

Injection – Overview

Injection Techniques

- internal source
- axial injection
 - mirrow inflector
 - spiral inflector
 - hyperbolic inflector
- radial injection
 - electrostatic septum
 - stripping injection

Aspects to be considered

- overall central region design
- radial centering
- matching of beam optics
- vertical centering
- bunching / long. capture
- minimize overall losses for high intensity application

Internal Ion Source

Example: Cold Cathode, Penning Ionisation Gauge (PIG)

internal ion source

\rightarrow example COMET (Accel/Varian)

- Hydrogen is injected and ionized through chimney
- first acceleration by puller, connected to one Dee (80kV)

external source: axial vs. horizontal injection

axial: suited for compact cyclotron with field covering entire plane

horizontal: suited for sector cyclotron with gaps between magnets

Beam Deflection by Electric Field

irce) 5) 5 acc

Bending radius in B and E:

E _k	B = 1T	E = 10MV/m
60 keV	35 mm	12 mm
1 MeV	140 mm	200 mm
1 GeV	5.6 m	150 m

comparison electric and

magnetic force on protons

 $\vec{F_E} = e \cdot \vec{E}, \quad \vec{F_B} = e \cdot \vec{v} \times \vec{B}$

table: bending radius, varying E_k

electrostatic inflectors

mirror inflector: particle energy is variable, simple design

spiral inflector: force always perpendicular to velocity vector, no energy change

velocity vector rotates around vertical axis due to action of magnetic field; other solutions exist, e.g. hyperbolic inflector or even magnetostatic inflector

injection schemes – spiral inflector

- an electrostatic component, basically a capacitor
- E-field arranged perpendicular to orbit, particles move on equipotential surfaces

[inflector IBA Cyclone 30 cyclotron]

simulation of orbits injected through a spiral inflector

[courtesy: W.Kleeven (IBA)]

Horizontal Injection – Example PSI Ring Cyclotron

Injection element

extraction

resonator

Bunching for Cyclotrons

Ion sources deliver DC beam; for acceleration in an RF field the beam must be bunched; unbunched beam should be removed at low energy (≤5MeV) to avoid uncontrolled losses and activation

schemes applied in practice:

	bunching in cyclotron	external buncher cavities	comment
internal source	x		lowest cost and complication
external source	X	Х	higher intensity, variety of ions
DC pre-accelerator Cockcroft-Walton		х	low ΔE , costly
Radio Freq. Quadrupole (RFQ)		Х	compact, costly

Sketch of 870 keV Injektion Beam Line

50 MHz and 50/150 MHz Harmonic Oscillation

 \rightarrow by utilizing a harmonic buncher (3 ω), a larger fraction of a DC beam can be captured in the cyclotron

[M.Humbel, PSI]

Center Region of PSI Injector 2

collimation of low energy protons and intensity control

0.86 → 72MeV max 2.5mA, 180kW

PSI Injector 2 and Injection Beamline

Transverse Matching

• Similar to a synchrotron the envelope function β varies around the circumference; the beam at injection must be matched to avoid blow up and sub-optimal beam distributions

transverse space charge

especially at low energy space charge effects are critical for the injection of high intensity beams

vertical force from space charge: $F_y = \frac{n_v e^2}{\epsilon_0 \gamma^2} \cdot y, \ n_v = \frac{N}{(2\pi)^{\frac{3}{2}} \sigma_y D_f R \Delta R}$ [constant charge density, $D_f = I_{avg}/I_{peak}$]

thus, eqn. of motion:
$$\ddot{y} + \left(\omega_c^2 \nu_{y0}^2 - \frac{n_v e^2}{\epsilon_0 m_0 \gamma^3}\right) y = 0$$

 \rightarrow tune shift results in **intensity limit** (see [6])!

tune shift from forces:

$$\Delta \nu_y \approx -n_v \frac{2\pi r_p R^2}{\beta^2 \gamma^3 \nu_{y0}}$$

next: extraction for cyclotrons

- review of schemes: internal targets, electrostatic deflectors, stripping
- maximizing extraction efficiency:
 stepwidth, coherent oscillations, avoid
 tails

electrostatic septum and charge exchange extraction

- simplest solution: use beam without extraction → internal target; use some mechanism to exchange target
- electrostatic deflectors with thin electrodes, deflecting element should affect just one turn, not neighboured turn → critical, cause of losses
- alternative: charge exchange by stripping foil; accelerate H⁻ or H₂⁺ to extract protons (problem: significant probability for unwanted loss of electron; Lorentz dissociation: B-field low, scattering: vacuum 10⁻⁸mbar)

derivation of relativistic turn separation in a cyclotron

starting point: bending strength \rightarrow compute total log.differential \rightarrow use field index $k = R/B \cdot dB/dR$

$$BR = \sqrt{\gamma^2 - 1} \frac{m_0 c}{e}$$

$$\frac{dB}{B} + \frac{dR}{R} = \frac{\gamma d\gamma}{\gamma^2 - 1}$$

$$\frac{dR}{d\gamma} = \frac{\gamma R}{\gamma^2 - 1} \frac{1}{1 + k}$$

$$IU_t = \text{energy gain per turn}$$

discussion: scaling of turn separation

for clean extraction a large stepwidth (turn separation) is of utmost importance; in the PSI Ring most efforts were directed towards maximizing the turn separation

methods to enhance turn separation

several techniques were invented to "artificially" increase turn separation beyond the magnitude achieved by simple acceleration

"brute force"	resonant orbit distortion is excited by harmonic coils beyond a certain radius
precessional extraction	resonant excitation at v_r =1 plus steep v_r slope in fringe field
regenerative extraction	using coherent excitation at half integer resonance by gradient bump

taken from Kleeven [1]

Resonant Extraction (Varian/Accel cyclotron)

extraction with coherent oscillations (PSI)

betatron oscillations around the "closed orbit" can be used to increase the radial stepwidth by a factor 3 !

extraction profile measured at PSI Ring Cyclotron

vertical tune in Ring cyclotron supports extraction

PSI Ring Cyclotron – tune diagram

comments:

- running on the coupling resonance would transfer the large radial betatron amplitude into vertical oscillations, which must be avoided
- special care has to be taken with fine-tuning the bending field in the extraction region

injection/extraction with electrostatic elements

electrostatic rigidity:

$$E\rho = \frac{\gamma + 1}{\gamma} \frac{E_k}{q}$$

Electrostatic Elements for High Energy/High Intensity

longitudinal space charge (tails at extraction)

sector model:

- \rightarrow accumulated energy spread transforms into transverse tails
- consider rotating uniform sectors of charge (overlapping turns)
- test particle "sees" only fraction of sector due to shielding of vacuum chamber with gap height 2w

two factors are proportional to the number of turns:

- 1) the charge density in the sector
- 2) the time span the force acts

$$\Delta U_{sc} \approx 2.800\Omega \cdot eI_p \cdot \frac{n_{\max}^2}{\beta_{\max}}$$

derivation see [4]: Joho 1981

in addition:

3) the inverse of turn separation at extraction:

$$rac{1}{\Delta R_{
m extr}} ~~ \propto ~~ n_{
m max}$$

 \rightarrow the attainable current at constant losses scales as $n_{\rm max}^{-3}$

extraction foil

- thin foil, for example carbon, removes the electron(s) with high probability
- new charge state of ion brings it on a new trajectory → separation from circulating beam
- lifetime of foil is critical due to heating, fatigue effects, radiation damage
- conversion efficiencies, e.g. generation of neutrals, must be considered carefully

electrons removed from the ions spiral in the magnetic field and may deposit energy in the foil

How much power is carried by the electrons? \rightarrow velocity and thus γ are equal for *p* and *e*

$$E_k = (\gamma - 1)E_0$$

$$\rightarrow E_k^e = \frac{E_0^e}{E_0^p}E_k^p = 5.4 \cdot 10^{-4}E_k^p$$

Bending radius of electrons?

$$\rho^e = \frac{E_0^e}{E_0^p} \rho^p$$

 \rightarrow typically mm

example: multiple H⁻ stripping extraction at TRIUMF

example: H₂⁺ stripping extraction in proposed Daedalus cyclotron [neutrino source]

Summary: Injection & Extraction for Cyclotrons

beam physics aspects:

central region design, beam centering, transverse matching, bunching, beam blowup/tails & loss minimization & activation, space charge

literature w.r.t. cyclotron injection/extraction

[1]	comprehensive review of inj./extr. concepts	W.Kleeven (IBA), Injection and Extraction for Cyclotrons https://cds.cern.ch/record/1005057/files/p271.pdf
[2]	many examples and calculations for compact machines	P.Heikkinen (Jyväsyla), Injection and Extraction for Cyclotrons http://www.iaea.org/inis/collection/NCLCollectionStore/ Public/26/001/26001643.pdf
[3]	calculations and matching on spiral inflectors	W.Kleeven & R.Baartman, 2x paper on spiral inflectors, Particle Accelerators 41 (1993), pages 41 and 55
[4]	extraction for very high intensity	W.Joho, High Intensity Problems in Cyclotrons, Proc. 5th intl. Conf. on Cyclotrons and their Applications, Caen, 337-347 (1981) http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
[5]	OPAL simulations; extraction profile	Y.Bi, A. Adelmann, et al. Phys. Rev. STAB Vol. 14, 054402 (2011) http://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.14.054402
[6]	Intensity limitation	R.Baartman, Space Charge limit in separate Turn Cyclotrons, Intl. Cycl. Conf. (2013) http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/papers/we2pb01.pdf
[7]	formation of round bunches and matching approach	Ch.Baumgarten, transverse-longitudinal coupling by space charge in cyclotrons http://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.14.114201

