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Outline

• Cyclotron Basics

scaling and isochronicity, focusing, turn separation, 
classical cyclotrons and derived types

• Injection for Cyclotrons

internal source, electrostatic inflectors, horizontal 
injection, optics matching, bunching

• Extraction for Cyclotrons

electrostatic septum, stepwidth calculation, charge 
exchange extraction
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The Classical Cyclotron
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invented 1930, Lawrence, Nobel Prize

powerful concept: 

 simplicity, compactness

 continuous injection/extraction

multiple usage of accelerating voltage

two capacitive electrodes 
„Dees“, two gaps per turn

internal ion source

homogenous B field

constant revolution time

(for low energy, 𝛾≈1)



wide spectrum of cyclotrons …
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RIKEN s.c. Ring Cyclotron- „as big as a house“

compact and cost optimized for
series production
e.g. medical nuclide production
 Internal source, extraction or
internal target

huge and complex for variable 
research purposes, e.g. R.I.B. 
production or high intensity
 External source, injection



cyclotron basics: isochronicity and scalings
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magnetic rigidity:

orbit radius from isochronicity:

deduced scaling of B:

thus, to keep the isochronous condition, B must be 
raised in proportion to (R); this contradicts the 
focusing requirements!

continuous acceleration  revolution time should stay constant, though Ek, R vary

field index k:



cyclotron basics: stepwidth (nonrelativistic, B const)
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relation between 
energy and radius

radius increment per turn 
decreases with increasing radius
→ extraction becomes more and 
more difficult at higher energies

thus:

use:

“cyclotron 
language”



focusing in a cyclotron
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centrifugal force mv2/r
Lorentz force qvB

focusing: consider small deviations x from beam orbit R (r = R+x):

thus in radial 
plane:

using
isochronicity
condition

in vertical 
plane:

k<0 to obtain 
vertical focus.



Classical vs Isochronous Cyclotron
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classical cyclotron Sector/AVF cyclotron

• insufficient vertical 
focusing

• limited energy reach

flutter spiral angle

[illustration of 
focusing at edges]



Azimuthally Varying Field vs. Separated Sector Cyclotrons

• modular layout, larger cyclotrons possible, 
sector magnets, box resonators, stronger 
focusing, injection/extraction in straight 
sections

• external injection required, i.e. pre-
accelerator

• box-resonators (high voltage gain)
• high extraction efficiency possible:  

e.g. PSI: 99.98% = (1 - 2·10-4)
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• AVF = single pole with shaping
• often spiral poles used
• internal source possible
• D-type RF electrodes, rel. low energy gain
• compact, cost effective
• depicted Varian cyclotron: 80% extraction 

efficiency; not suited for high power



classification of cyclotron like accelerators
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classical cyclotron
[B() = const]

Thomas cyclotron
[Azimuthally Varying Field, 

e.g. B()  b+cos(3), one pol]

separated sector 
cyclotron

[separated magnets, resonators]

synchro-cyclotron
[varying RF frequency]

Fixed Focus Alternating 
Gradient Accelerator FFAG

[varying RF, strong focusing]

high intensity high energy compact machine

AVF concept – harmonic pole shaping,
electron model, Richardson et al (1950), 
courtesy of Lawrence Berkeley National Laboratory
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next: injection for cyclotrons
• internal source, axial injection, horizontal 

injection

• electrostatic inflector, electrostatic 
deflectors

• transverse matching, bunching

• space charge



Injection – Overview

Injection Techniques

• internal source

• axial injection

– mirrow inflector

– spiral inflector

– hyperbolic inflector

• radial injection

– electrostatic septum

– stripping injection
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Aspects to be considered

• overall central region design

• radial centering

• matching of beam optics

• vertical centering

• bunching / long. capture

• minimize overall losses for
high intensity application



Internal Ion Source

Example: Cold Cathode, Penning Ionisation Gauge (PIG)
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cylindrical „chimney“ with slit as 
extraction aperture for protons

advantage:
• simple concept
• no heating required

critical:
• reproducibility of captured 

current (geometry related 
sensitivity)

• current stability on short (ms) 
timescale

O(10cm)

B



internal ion source
 example COMET (Accel/Varian)
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H-

H2+          

Dee 1

Dee 3 Dee 2

Dee 4

slit

chimney

• Hydrogen is injected and 
ionized through chimney

• first acceleration by puller, 
connected to one Dee (80kV)

deflector
electrode
for intensity 
regulation

chimney
= ion source



external source: axial vs. horizontal injection
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axial: suited for compact cyclotron 
with field covering entire plane

horizontal: suited for sector cyclotron 
with gaps between magnets

B field results in desired 
radial deflection

Ideally field free region



Beam Deflection by Electric Field
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momentum change:

resulting angle: E0 rest energy

E field strength deflector

Ek kinetic energy

 bending radius

q charge

l length

Uacc acc.voltage (source)

bending radius:

electric rigidity:

low energy at source:

Ek B = 1T E = 10MV/m

60 keV 35 mm 12 mm

1 MeV 140 mm 200 mm

1 GeV 5.6 m 150 m

comparison electric and
magnetic force on protons

table: bending radius, varying Ek

Bending radius in B and E:



electrostatic inflectors
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mirror inflector: particle energy is
variable, simple design

spiral inflector: force always
perpendicular to velocity vector, no
energy change

velocity vector rotates around vertical axis due to action of magnetic field; 
other solutions exist, e.g. hyperbolic inflector or even magnetostatic inflector



injection schemes – spiral inflector
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• an electrostatic component, 
basically a capacitor

• E-field arranged perpendicular to 
orbit, particles move on 
equipotential surfaces

simulation of orbits injected
through a spiral inflector

[inflector IBA Cyclone 30 cyclotron] [courtesy: W.Kleeven (IBA)]



Horizontal Injection – Example PSI Ring Cyclotron
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Injection path (72MeV) in 
region of low field,
passing along 3rd-
harmonic (150MHz) 
resonator

extractionInjection element



Bunching for Cyclotrons

Ion sources deliver DC beam; for acceleration in an RF field the beam 
must be bunched; unbunched beam should be removed at low energy
(≤5MeV) to avoid uncontrolled losses and activation
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bunching in 
cyclotron

external buncher
cavities

comment

internal source x lowest cost and
complication

external source x x higher intensity, 
variety of ions

DC pre-accelerator
Cockcroft-Walton

x low E, costly

Radio Freq. 
Quadrupole (RFQ)

x compact, costly

schemes applied in practice:



Sketch of 870 keV Injektion Beam Line

50 MHz Buncher 

CWB

150 MHz Buncher 

CW3B

Injektion 

Point

Beamline 

Ion Source
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50 MHz and 50/150 MHz Harmonic Oscillation

only 50MHz buncher

[M.Humbel, PSI]

additional 150MHz buncher

 by utilizing a harmonic buncher (3), a larger fraction of a DC beam can be
captured in the cyclotron

22



Center Region of PSI Injector 2

0.86  72MeV
max 2.5mA, 180kW
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collimation of low energy
protons and intensity control



PSI Injector 2 and Injection Beamline
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Transverse Matching
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• Similar to a synchrotron the envelope function  varies around the circumference; the
beam at injection must be matched to avoid blow up and sub-optimal beam distributions

nonetheless of the short «storage» 
time of a beam in a cyclotron, the 
distribution starts to filament, if 
not properly matched

example: beam sizes 
around the circumference 
for Inj II cyclotron, PSI 
[Ch.Baumgarten, [7]]



transverse space charge

especially at low energy space charge effects are critical 
for the injection of high intensity beams

vertical force from space charge:

[constant charge density, Df = Iavg/Ipeak]

thus, eqn. of motion: 

 tune shift results in intensity limit (see [6])!

tune shift from forces:
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next: extraction for cyclotrons
• review of schemes: internal targets, 

electrostatic deflectors, stripping

• maximizing extraction efficiency: 
stepwidth, coherent oscillations, avoid 
tails



electrostatic septum and charge exchange extraction

• simplest solution: use beam without extraction  internal target; use 
some mechanism to exchange target

• electrostatic deflectors with thin electrodes, deflecting element should 
affect just one turn, not neighboured turn  critical, cause of losses

• alternative: charge exchange by stripping foil; accelerate H- or H2
+ to 

extract protons (problem: significant probability for unwanted loss of 
electron; Lorentz dissociation: B-field low, scattering: vacuum 10-8mbar)
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0

-
HV foil

extraction electrode
placed between turns

extraction by charge 
exchange in foil
eg.: H- H+

H2
+  2H+

binding energies

H- H2
+

0.75eV 16eV



derivation of relativistic turn separation in a cyclotron
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isochronicity not 
conserved (last turns)

isochronicity conserved 
(general scaling)

starting point: bending strength
 compute total log.differential
 use field index k = R/BdB/dR

radius change per 
turn

[Ut = energy gain per turn]



discussion: scaling of turn separation

for clean extraction a large stepwidth (turn separation) is of utmost 
importance; in the PSI Ring most efforts were directed towards maximizing 
the turn separation
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general scaling at 
extraction:

desirable: 
• limited energy (< 1GeV)
• large radius Rextr

• high energy gain Ut

scaling during 
acceleration:

illustration: 
stepwidth vs. radius in 
cyclotrons of different sizes; 
100MeV inj  800MeV extr



methods to enhance turn separation

several techniques were invented to „artificially“ increase turn 
separation beyond the magnitude achieved by simple 
acceleration
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„brute force“ resonant orbit distortion is excited by
harmonic coils beyond a certain radius

precessional
extraction

resonant excitation at  r=1 plus steep r

slope in fringe field

regenerative 
extraction

using coherent excitation at half integer 
resonance by gradient bump

taken from Kleeven [1]



Resonant Extraction (Varian/Accel cyclotron)
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--

+

use r = 1 

Electrostatic
extraction elements

Extraction-
channel

Field bumps

extraction efficiency:
up to 80%

[M.Schippers, PSI]



without orbit oscillations: stepwidth from Ek-gain 
(PSI: 6mm)

extraction with coherent oscillations (PSI)
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phase vector of orbit 
oscillations (r,r’)

with orbit oscillations: extraction gap; up to 3 x stepwidth possible for 
r=1.5 (phase advance) 

r

betatron oscillations around the “closed orbit” can be used to increase the radial 
stepwidth by a factor 3 !
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beam to 
extract

r decreases
from 1.75 to 1.5



extraction profile measured at PSI Ring Cyclotron
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dynamic range:

factor 2.000 in 

particle density

red: tracking simulation [OPAL] 

black: measurement

position of extraction septum

d=50µm

turn numbers

from simulation

[Y.Bi et al]



vertical tune in Ring cyclotron supports extraction
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radial tune vs. energy (PSI Ring)
typically r ≈  during acceleration; 
but decrease in outer fringe field

field map showing increase and steep 
decline of field with radius



PSI Ring Cyclotron – tune diagram
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coupling resonance – pass quickly!

Qr decreases towards extraction 
– enhance turn separation

comments:
• running on the coupling 

resonance would 
transfer the large radial 
betatron amplitude into 
vertical oscillations, 
which must be avoided

• special care has to be 
taken with fine-tuning 
the bending field in the 
extraction region



injection 

element in Ring

Tungsten stripes

injection/extraction with electrostatic elements

principle of extraction 

channel

parameters 
extraction chan.:

Ek= 590MeV
E = 8.8 MV/m
 = 8.2 mrad
 = 115 m
U = 144 kV

major loss 
mechanism is 
scattering in 50m 
electrode!
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electrostatic rigidity:



Electrostatic Elements for High Energy/High Intensity

Loss electrodes
Collimator

current

HV feedthrough

140-150 kV

Tungsten stripes

3 mm X 0.05 mm

Cathode

Isolator

GND

actuator

[D.Götz, PSI]
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longitudinal space charge (tails at extraction)
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2w

F

sector model:
 accumulated energy spread transforms into transverse tails
• consider rotating uniform sectors of charge (overlapping turns)
• test particle “sees” only fraction of sector due to shielding of 

vacuum chamber with gap height 2w

two factors are proportional to the number of turns:
1) the charge density in the sector
2) the time span the force acts

in addition:
3)  the inverse of turn separation at extraction:

 the attainable current at constant losses scales as nmax
-3

derivation see [4]: Joho 1981



extraction foil

• thin foil, for example carbon, removes the electron(s) with high probability

• new charge state of ion brings it on a new trajectory → separation from 
circulating beam

• lifetime of foil is critical due to heating, fatigue effects, radiation damage

• conversion efficiencies, e.g. generation of neutrals, must be considered 
carefully

40

B

H-
H+

e
foil

electrons removed from the 
ions spiral in the magnetic 
field and may deposit energy 
in the foil

How much power is carried by the electrons?
 velocity and thus  are equal for p and e

Bending radius of electrons?

 typically mm



example: multiple H- stripping extraction at TRIUMF
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[R.Baartman]



example: H2
+ stripping extraction in proposed 

Daedalus cyclotron [neutrino source]
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[L.Calabretta, 
A.Calanna et al]

purpose: pulsed high 
power beam for neutrino 
production, goals:
• 800MeV kin. energy
• 5MW avg. beam power



Summary: Injection & Extraction for Cyclotrons
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compact cyclotron










separated sector cycl.

injection

internal source

axial injection:
electrost. inflector

horizontal injection:
electrost. septum

stripping injection

extraction

internal target

electrostatic element
coherent oscillations
resonant extraction

stripping extraction
H-, H2

+, various ions

beam physics aspects:

central region design, beam centering, transverse matching, bunching, beam 
blowup/tails & loss minimization & activation, space charge 

size
cost
function



literature w.r.t. cyclotron injection/extraction

44

[1] comprehensive review of 
inj./extr. concepts

W.Kleeven (IBA), Injection and Extraction for Cyclotrons
https://cds.cern.ch/record/1005057/files/p271.pdf

[2] many examples and
calculations for compact
machines

P.Heikkinen (Jyväsyla), Injection and Extraction for Cyclotrons
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/26/001/26001643.pdf

[3] calculations and matching
on spiral inflectors 

W.Kleeven & R.Baartman, 2x paper on spiral inflectors, Particle 
Accelerators 41 (1993), pages 41 and 55

[4] extraction for very high 
intensity

W.Joho, High Intensity Problems in Cyclotrons, Proc. 5th intl.
Conf. on Cyclotrons and their Applications, Caen, 337-347 (1981)
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf

[5] OPAL simulations; 
extraction profile

Y.Bi, A. Adelmann, et al. Phys. Rev. STAB Vol. 14, 054402 (2011)
http://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.14.054402

[6] Intensity limitation R.Baartman, Space Charge limit in separate Turn Cyclotrons, Intl. 
Cycl. Conf. (2013) 
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/papers/we2pb01.pdf

[7] formation of round 
bunches and matching 
approach

Ch.Baumgarten, transverse-longitudinal coupling by space charge in 
cyclotrons
http://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.14.114201

https://cds.cern.ch/record/1005057/files/p271.pdf
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/26/001/26001643.pdf
http://accelconf.web.cern.ch/AccelConf/c81/papers/ei-03.pdf
http://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.14.054402
http://accelconf.web.cern.ch/AccelConf/CYCLOTRONS2013/papers/we2pb01.pdf
http://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.14.114201


Thank you for your
attention !


