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Introduction to „Transverse Beam Dynamics“  

A short review 



 Lorentz force 
!
F = q*(

!
E + !v ×

!
B)

„  ... in the end and after all we have to control the geometry of the accelerator 
    or storage ring  

 à need transverse deflecting force acting on the parrticle trajectories 

typical velocity in high energy machines: 83*10≈ ≈ m
sv c

1.) Introduction and Basic Ideas 
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Example: 

equivalent  
electrical field: 

Technical limit for electrical fields: 



Bvevm
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ρ
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circular  coordinate system condition for circular orbit:   

Lorentz force 

centrifugal force 

The ideal circular orbit 
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BveFL =
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ρB
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B ρ =  "beam rigidity" 

Magnetic fields are much stronger than electric ones as soon as the particle  
velocity is „high enough“. 

x 

The beam rigidity tells us about the effect of a magnetic field on a particle. 
Which is valid whenever we deflect the trajectory of a charge particle. 
... be it in a storage ring or in a transferline. 



field map of a storage ring dipole magnet 
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α 

ds 

The Magnetic Guide Field: Bending Magnets 

TB 8...1≈

In case of a storage ring or synchrotron the dipole magnets create a circle  
(... better polygon) of circumference  2πρ and define the maximum 
momentum of the particle beam. 

ρB
e
p
=

The bending radius ... and so the size of the machine is determined by  
the dipole field and the particle momentum  

€ 

ρ =
p

B*e

Example LHC, in convenient units:  

B=𝟖.𝟑 𝑻 [𝑽𝒔/𝒎^𝟐]      p=7000 GeV/c   à 𝜌=2.83 km 



2.) Focusing Properties – Transverse Beam Optics 

... keeping the flocs together: 
In addition to the pure bending of the beam  
we have to keep 1011 particles close together 

classical mechanics: 
pendulum 

there is a restoring force, proportional  
to the elongation x:  

2

2* *d xm c x
dt

= −

general solution: free harmonic oszillation 
 

  this is how grandma‘s Kuckuck‘s clock is working!!! 

( ) *cos( )x t A tω ϕ= +

focusing force 



required:     focusing forces to keep trajectories in vicinity of the ideal orbit  
 

    linear increasing Lorentz force 
 

    linear increasing magnetic field  

                 

                 

           

Quadrupole Magnets: 

normalised quadrupole field: 

gradient of a  
quadrupole magnet: 

what about the vertical plane: 
    ... Maxwell   

By = g x , Bx = g y

LHC main quadrupole magnet 
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Focusing forces and particle trajectories: 

1
/
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= =

      normalise magnet fields to momentum  
      (remember: B*ρ = p / q ) 

Dipole Magnet Quadrupole Magnet 

:
/
gk
p q

=



Example: 
 heavy ion storage ring TSR 

Separate Function Machines: 
 
Split the magnets and optimise  
them according to their job:  
 
bending, focusing etc  

...
!3
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!2
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 The Equation of Motion: 

 only terms linear in x, y taken into account   dipole fields    
                                                                           quadrupole fields 
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" " x + x ( 1
ρ2

+ k) = 0

Equation for the vertical motion: * 

01
2 =ρ

kk −↔

no dipoles … in general …  

quadrupole field changes sign 
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" " y − k y = 0
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 The Equation of Motion: 

Equation for the horizontal motion: * 

x =   particle amplitude 
x’ = angle of particle trajectory (wrt ideal path line) 



Remark: 

2
1( ) 0ʹ́ + − ⋅ =x k x
ρ

… there seems to be a focusing even without a quadrupole gradient 
 

                            „weak focusing of dipole magnets“ 

xxk 2

10
ρ

−=ʹ́⇒=

even without quadrupoles there is a retriving force  (i.e. focusing) in the bending plane of the 
dipole magnets 
… however ... in large machines it is weak.    (!) 

The last weak focusing  
high energy machine … 
BEVATRON 

à  large apertures needed  
à  very expensive magnets 



Differential Equation of harmonic oscillator   …  with spring  constant K 
 

Ansatz: 

4.) Solution of Trajectory Equations 

Define …  hor. plane:  K= 1/ρ2  + k 
 

            … vert. Plane:  K = - k 0=+ʹ́ xKx

Hor. Focusing Quadrupole  K > 0: 

0 0
1( ) cos( ) sin( )ʹ= ⋅ + ⋅x s x K s x K s
K

0 0( ) sin( ) cos( )ʹ ʹ= − ⋅ ⋅ + ⋅x s x K K s x K s

For convenience expressed in matrix formalism: 
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1cosh sinh
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hor. defocusing quadrupole:  

drift space:   
                       K = 0  

1
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M

!     with the assumptions made, the motion in the horizontal and vertical planes are  
       independent  „ ... the particle motion in x & y is uncoupled“   

s = s1 s = 0 

0=−ʹ́ xKx

)sinh()cosh()( 21 sasasx ωω ⋅+⋅=

Ansatz:  Remember from school 
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x(s) = " x 0 * s



Combining the two planes: 

hor foc. quadrupole lens 

Clear enough  ( hopefully ... ? ) : a quadrupole magnet that is focussing o-in one plane acts as  
                  defocusing lens in the other plane ... et vice versa.  

matrix of the same magnet in the vert. plane: 
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„veni vidi vici ...“          .... or in english ....   „we got it !“ 

* we can calculate the trajectory of a single particle, inside a    
   storage ring magnet (lattice element)  
* for arbitrary initial conditions x0, x´0 
* we can combine these trajectory parts (also  mathematically)  
   and so get the complete transverse trajectory around  
   the storage ring 

Beispiel:  
Speichering für  
Fußgänger 
(Wille) 

horizontal  
focussing  
quadrupole lens 

horizontal 
defokussing 
quadrupole lens 
 

dipole magnet 

*.....* * * *= etotal QF D QD B nd DM M M M M M



focusing lens  

dipole magnet 

defocusing lens  

Transformation through a system of lattice elements 

combine the single element solutions by multiplication of the matrices 

*.....* * * *= etotal QF D QD B nd DM M M M M M

x(s) 

s 

court. K. Wille 

                          0 
 
typical values  
in a strong  
foc. machine: 
x ≈ mm, x´  ≤ mrad 

€ 

x
x '
" 

# 
$ 
% 

& 
' 
s2

= M(s2,s1) *
x
x '
" 

# 
$ 
% 

& 
' 
s1

in each accelerator element the particle trajectory corresponds to the movement of a  
harmonic oscillator  ! ! ! 



First turn steering ”sector by sector:” 
 Treat the machine as transferline !! 

 

LHC Operation: Beam Commissioning 
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Beam 1 on OTR screen  
 1st and 2nd turn 
 
!!! this is NOT (yet)  
a storage ring  !!! 

LHC Operation: the First Beam 



Tune: number of oscillations per turn 
 

            Qx= 64.31,  Qy= 59.32 
 

5.) Orbit & Tune: 

LHC revolution frequency:  11.3 kHz kHz5.33.11*31.0 =

... and the tunes in x and y are  
different. 
 
i.e. we can apply different  
focusing forces in the two planes 
 
i.e. we can create different 
 beam sizes in the two planes  

as soon as we close the orbit, we enter the 
world of  
“closed orbits”,  

 synchrotrons,  
  storage rings. 

in other words: periodic conditions 



Question: what will happen, if the particle performs a second turn ?  

x 

... or a third one or ... 1010 turns 

0 

s 



Astronomer Hill:   
 

                differential equation for motions with periodic focusing properties 
 „Hill‘s equation“ 

Example: particle motion with  
periodic coefficient 

equation of motion: ( ) ( ) ( ) 0ʹ́ − =x s k s x s

   restoring force  ≠ const,                                        we expect a kind of quasi harmonic       
          k(s) = depending on the position s                oscillation:  amplitude & phase will depend  
          k(s+L) = k(s),   periodic function                 on the position s in the ring. 



6.) The Beta Function 

     „it is convenient to see“...   after some beer                                  
... we make two statements: 

ε, Φ = integration constants  
determined by initial conditions ( ) * ( ) *cos( ( ) )x s s sε β ψ φ= +

A particle oscillation can then be written in the form 

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  
                                 scientifiquely spoken: area covered in transverse x, x´ phase space 
… and it is constant !!!  

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles  

( ) ( )s L sβ β+ =

o 

1.) There exists a mathematical function, that defines the envelope of all particle trajectories  
and so can act as measure for the beam size. We call it the β – function. 

2.) Whow !! 



 The Beta Function 

If we obtain the x, x’ coordinates of a particle  
trajectory via   

The maximum size of any particle amplitude at  
a position “s” is  given by 

)()(ˆ ssx βε=

β determines the beam size  
( ... the envelope of all particle  
trajectories at a given position  
“s” in the storage ring. 
  
It reflects the periodicity of the 
magnet structure. 
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7.) Beam Emittance and Phase Space Ellipse 

general solution of 
Hill equation 

 from (1) we get 

Insert into (2) and solve for ε 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 
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)()()()()(2)()( 22 sxssxsxssxs ʹ+ʹ+= βαγε



Phase Space Ellipse 

{ }( ) ( ) cos ( )= +x s s sε β ψ φparticel trajectory: 

max. Amplitude: εβ=)(ˆ sx x´ at that position …? 

… put         into                                                                                              and solve for x´       )(ˆ sx

22 xx ʹ+ʹ⋅+⋅= βεβαεβγε

βεα /⋅−=ʹx

In the middle of a quadrupole β = maximum,  
                                                  α = zero 0=ʹx

… and the ellipse is flat 

* 

* A high β-function means a large beam size and a small beam divergence. 
   … et vice versa !!! 

! 

)()()()()(2)()( 22 sxssxsxssxs ʹ+ʹ+= βαγε



2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )ʹ ʹ= + +s x s s x s x s s x sε γ α β

 Beam Emittance and Phase Space Ellipse 

x´ 

x 
εβ

εα β−εγ

εα γ−

●

●

●

●

●

●

s

Liouville: in reasonable storage rings  
area in phase space is constant. 
 
               A = π*ε=const  

€ 

x(s) = ε * β(s) *cos(ψ(s) +ϕ)

In phase space x, x’ a particle oscillation, observed at a given position “s” in the ring  
is running on an ellipse ... making Q revolutions per turn. 

x(s) 

s 



… and now the ellipse:  
  note for each turn x, x´at a given position „s1“ and plot in the  

          phase space diagram 



Emittance of the Particle Ensemble: 

… to be very clear:  
 as long as our particle is 
running on an ellipse in x, x’ 
space everything is alright, the 
beam is stable and we can sleep 
well at nights. 

 
If however we have scattering at the 

rest gas, or non-linear fields, or 
beam collisions (!) the particle 
will  perform a jump in x‘ and ε 
will increase 

 



Emittance of the Particle Ensemble: 

single particle trajectories, N ≈ 10 11  per bunch 

))(cos()()( φβε +Ψ⋅= sssx

Gauß  
Particle Distribution: 
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eeNx σ

σπ
ρ

−

⋅
⋅

=

particle at distance 1 σ from centre  
                                ↔ 68.3 % of all beam particles 

)()(ˆ ssx βε=

aperture requirements:  r 0 =  12 * σ 

  LHC:  

mmmm 3.0180*10*5* 10 === −βεσ

€ 

β =180m
ε = 5*10−10mrad



The phase space area can differ considerably from the ideal ellipse 
in case of non-linear fields or special initial distributions 

Statistical Interpretation of the beam emittance 

for details see e.g. N.Walker in CAS 2005 

Sometimes we express the rms emittance as  
determinant of a “beam” or sigma matrix  

With the obvious connection  
to the Twiss parametrisation 



8.) Transferlines & Injection: Errors & Tolerances 
* quadrupole strengths     --> "beta beat" Δβ / β  
* alignment of magnets    -->  orbit distortion in transferline & storage ring   
* septum & kicker pulses  -->  orbit distortion & emittance dilution in storage ring  

Kicker "plateau" at the end of the  PS - SPS transferline  
measured via injection - oscillations  

Example: Error in position Δa: 
 
 
 
 
Δa =0.5 σ 
 

→ 
 
And remember: 1 σ < mm 
 

)
2

1(*
2

0
a

new
Δ

+= εε

0*125.1 εε =new



Problems with Emittance dilution: 
it is only too real:    LHC logbook: Sat 9-June “Late-Shift” 

18:18h injection for physics 
                             clean injection ! 
 
 
 
 
 
 

but particle losses in signle bunches 
when beams are brought into collision 



Injection errors (position or angle) dilute the beam 
emittance 
 
Non-linear effects (e.g. magnetic field 
multipoles ) introduce distort the harmonic 
oscillation and lead to amplitude dependent effects 
into particle motion. 
 
Over many turns, a phase-space 
oscillation is transformed into an emittance 
increase. 

Filamentation 

court. B. Goddard 



Transferline: matched beam optics. 
     twiss parameters at start correspond to  
     periodic Twiss 

Transferline: un-matched beam optics  
at half the way: 
 

     twiss parameters at start correspond to  
     periodic Twiss 
     quadstrengths reduced by 20 % for  
     second part  
à  beta-functions & dispersion are distorted 

     ... and how it looks in phase space 

Matched & unmatched Transferline 
                                     Example: HERA Arc, FoDo  structure 

x´

x
εβ

εα β−
εγ

εα γ−

? ?



2 2( )* ( ) 2 ( ) ( ) ( ) ( ) ( )ʹ ʹ= + +s x s s x s x s s x sε γ α β

Main task: keep the transferline optically transparent. 

Injected Beam has to be matched  
to the optics of the storage ring  

x´ 

x 
εβ

εα β−εγ

εα γ−

●

●

●

●

●

●

Example:   
 SPS-match-Transferline-match-LHC 



10.) Liouville during Acceleration 

x´ 

x 
εβ

εα β−εγ

εα γ−

●

●

●●

Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  
 

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           

                      x                         px 

)()()()()(2)()( 22 sxssxsxssxs ʹ+ʹ+= βαγε



According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: pdq const=∫

for convenience (i.e. because we are lazy bones) we use  
in accelerator theory: 

!x = dx
ds

=
dx
dt
dt
ds
=
βx
β
=
px
p

1x dxε
βγ

ʹ⇒ = ∝∫
the beam emittance shrinks during  

acceleration   ε ~ 1 / γ 

x 'dx∫ =
px dx∫
p

∝
const
m0c ⋅γβ

ε 

px dx = const∫

x 

s p 

px 

2

2

1

1

c
v

−

=γ

βx =
vx
c



Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 
 
emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 
 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  



9.) Emittance in an electron ring:  
One word of caution:  
As soon as ε is determined by the radiation process … 

 i.e. by the fact that the particle looses energy and is thus travelling on on a  
 dispersive orbit we observe a complitely different behavior: 

Synchrotron radiation power 
 
 

 
Energy loss per turn  
 
 

 
Critical energy 

ε is quadratically dependent on the  
beam energy 
 
... but be aware of the fact that in a linac  
it still shrinks just as protons do 

ε∝γ 2



11.) The „ Δp / p ≠ 0“ Problem  

ideal accelerator:  all particles will see the same accelerating voltage. 
  à Δp / p = 0  

„nearly ideal“ accelerator: Cockroft Walton or van de Graaf  

Δp / p ≈ 10 -5  

MP Tandem van de Graaf Accelerator  
at MPI for Nucl. Phys. Heidelberg 

Vivitron, Straßbourg, inner  
structure of the acc. section 

The „ not so ideal world “ 



 RF Acceleration 1928, Wideroe 

+ + + + -̶ -̶ -̶ 

* RF Acceleration: multiple application of  
  the same acceleration voltage; 
  brillant idea to gain higher energies 

Energy Gain per „Gap“: 

€ 

W = n *qU0 sinωRF t

500 MHz cavities in an electron storage ring 

drift tube structure at a proton linac 
(GSI Unilac) 

n number of gaps between the drift tubes 
q charge of the particle 
U0 Peak voltage of the RF System 
ΨS synchronous phase of the particle 



RF Acceleration-Problem: 
panta rhei !!! 
(Heraklit: 540-480 v. Chr.) 

Z X, Y,( )

Bunch length of Electrons ≈ 1cm just a stupid (and nearly wrong) example) 

€ 

ν = 400MHz
c = λ ν

€ 

λ = 75 cm
U0 

t

€ 

λ = 75 cm

994.0)84sin(
1)90sin(

=

=
o

o
3100.6 −=

Δ

U
U

typical momentum spread of an electron bunch:  
3100.1 −≈

Δ

p
p



 Dispersive and Chromatic Effects: Δp/p ≠ 0  
 

Are there any Problems ???  
       Sure there are !!! 

 

font colors due to  
pedagogical reasons 



12.) Dispersion and Chromaticity:  
                     Magnet Errors for Δp/p ≠ 0 

Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  
 

   

dipole magnet 

focusing lens gk p
e

=

particle having ...   
          to high energy 
          to low energy 
          ideal energy 

ep
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/
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Δ
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. ρ 

xβ 

Closed orbit for Δp/p > 0 
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px s D s
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Δ
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Matrix formalism: 
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Δ
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ʹ= ⋅ + ⋅ + ⋅

Dispersion 
 Example: homogeneous dipole field 
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0
0 0 1p p
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x C S D x
x C S D x
Δ Δ
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Example  

3

1...2

( ) 1...2

1 10

x mm

D s m
p
p

β

−

=

≈

Δ ≈ ⋅

Amplitude of Orbit oscillation  
                           contribution due to Dispersion ≈ beam size 

          à Dispersion must vanish at the collision point  

Calculate D, D´:  ... takes a couple of sunny Sunday evenings ! 

or expressed as 3x3 matrix 

D

β

! 

(proof see CAS proc.) 



p
p*)s(DxD

Δ
=

Dispersion is visible  

HERA Standard Orbit 

dedicated energy change of the stored beam 
     à closed orbit is moved to a   
         dispersions trajectory 

HERA Dispersion Orbit 

Attention: at the Interaction Points  
                 we require D=D´= 0  



13.) Transfer Matrix M …   yes we had the topic already  

{ }( ) ( ) cos ( )= +x s s sε β ψ φ

{ } { }( ) ( )cos ( ) sin ( )
( )

−
ʹ ⎡ ⎤= + + +⎣ ⎦x s s s s

s
ε

α ψ φ ψ φ
β

general solution  
of Hill´s equation 

remember the trigonometrical gymnastics:  sin(a + b) = … etc 

( )( ) cos cos sin sin= −s s sx s ε β ψ φ ψ φ
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ʹ = − + +s s s s s s

s
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φ
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inserting above … 
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which can be expressed ... for convenience ... in matrix form 
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cos sin sin

( )cos (1 )sin cos sin

⎛ ⎞
+⎜ ⎟

⎜ ⎟
= ⎜ ⎟

− − +⎜ ⎟−
⎜ ⎟
⎝ ⎠

s
s s s s

s s s s
s s s

s

M

s

β
ψ α ψ β β ψ

β

α α ψ α α ψ β
ψ α ψ

ββ β

* we can calculate the single particle trajectories between two locations in the ring,  
   if we know the α β γ at these positions.  
* and nothing but the α β γ at these positions.  

*     …  ! 



14.) Transformation of α, β, γ 

consider two positions in the storage ring: s0  , s 

since ε = const (Liouville): 
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M =
m11 m12
m21 m22
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Betafunction in a Storage Ring 

• 
• 
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... remember W = CS´-SC´ = 1 

… inserting into ε   

sort via x, x´and compare the coefficients to get .... 
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M
x
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M−1 =
m22 −m12
−m21 m11

# 
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' 
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€ 

x0 = m22x −m12 # x 
# x 0 = −m21x + m11 # x 

€ 

ε = β0(m11 $ x −m21x)
2 + 2α0(m22x −m12 $ x )(m11 $ x −m21x) + γ 0(m22x −m12 $ x )2



in matrix notation: 

! 

1.)  this expression is important  
 

2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and  
     calculate their values at any other point in the ring. 
 

3.) the transfer matrix is given by the focusing properties of the lattice elements,  
     the elements of M are just those that we used to calculate single particle trajectories. 
 

... and here starts the lattice design !!! 
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β

α

γ
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( 

) 

* 
* * 
s2

=

m11
2 −2m11m12 m12

2

−m11m21 m12m21 + m22m11 −m12m22

m12
2 −2m22m21 m22
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' 
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) 

* 
* 
* 
*
β

α

γ

% 

& 

' 
' ' 

( 

) 

* 
* * 
s1

The Twiss parameters α, β, γ can be transformed through the lattice via the  
matrix elements defined above. 

€ 

β(s) = m11
2 β0 − 2m11m12α0 + m12

2 γ 0
α(s) = −m11m21β0 + (m12m21 + m11m22)α0 −m12m22 γ 0
γ(s) = m21

2 β0 − 2m21m22α0 + m22
2 γ 0



Most simple example:   drift space 

0

1
*

' 0 1 'l

x l x
x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 0

0

( ) * '
'( ) '
x l x l x
x l x

= +

=

particle coordinates 

transformation of twiss parameters: 

2

0

1 2
0 1 *
0 0 1

l

l l
l

β β

α α

γ γ

⎛ ⎞−⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟
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Mdrift =
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Special case: symmetric drift  
2
0

0 0
0 0

1 10, α
α γ

β β
+

= → = =

2

0
0

( ) ssβ β
β

= +



... clearly there is another problem !!! 

Example: Luminosity optics at LHC: β* = 55 cm 
                for smallest βmax we have to limit the overall length   
              and keep the distance “s” as small as possible. 

         ... unfortunately ... in general  
         high energy detectors that are  
         installed in that drift spaces  
         are a little bit bigger than a few centimeters ... 



15.) Lattice Design: 

      Arc: regular (periodic) magnet structure:  
   bending magnets à define the energy of the ring 
   main focusing & tune control, chromaticity correction, 
   multipoles for higher order corrections 

 
      Straight sections:  drift spaces for injection, dispersion suppressors,   

   low beta insertions, RF cavities, etc.... 
  ... and the high energy experiments if they cannot be avoided  



Matrix of a focusing quadrupole magnet: 
1cos( * ) sin( * )

sin( * ) cos( * )
QF

K l K l
KM

K K l K l

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

... Can we do a bit easier ??? 
     If the focal length f is much larger than  
     the length of the quadrupole magnet, 

1
Q

Q
f lkl= >>

M =
1 0
1
f 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

, 0q qkl const l= →

Once more unto the breach dear friends: The Matrices  

 The FoDo-Lattice 

L

QF QFQD

L

QF QFQD

the matrix can be simplified by 

and then we can show that ! 

! 
€ 

ˆ β =
(1+ sinψcell

2
)L

sinψcell

  

€ 

⌣ 
β =

(1− sinψcell

2
)L

sinψcell
proof see appendix 



16.) Dipole Errors / Quadrupole Misalignment 
 The Design Orbit is defined by the strength and arrangement of the dipoles. 

Under the influence of dipole imperfections and quadrupole misalignments we obtain  
a “Closed Orbit” which is hopefully still closed and not too far away from the design.   
 
Dipole field error: 
 

g = dB
dx

→ Δx ⋅ g = Δx dB
dx

= ΔB

misaligned quadrupoles (or orbit offsets in quadrupoles) create dipole effects that lead to a 
distorted “closed orbit” 

normalised to p/e: Δx ⋅ k = Δx ⋅ g
Bρ

=
1
ρ

x
x '

#
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In a Linac or Transfer Line – starting with  
a perfect orbit – the misaligned quadrupole  
creates an oscillation that is transformed from  
now on downstream via  

x
x '

!

"
#

$
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&
f

=M x
x '

!

"
#

$

%
&
i

θ =
dl
ρ
=

Bdl∫
Bρ

 

Quadrupole offset: 



... and in a circular machine ?? 
 

Calculation of the new closed orbit: 
 the general orbit will always be a solution of Hill, so ... 

x(s) = a ⋅ β cos(ψ(s)+ϕ

We set at the location of the error s=0, Ψ(s)=0 
and require as 1st boundary condition:  
periodic amplitude 

x(s+ L) = x(s)

a ⋅ β(s+ L) ⋅cos(ψ(s)+ 2πQ−ϕ ) = a ⋅ β(s) ⋅cos(ψ(s)−ϕ ) β(s+ L) = β(s)
ψ(s = 0) = 0
ψ(s+ L) = 2πQcos(2πQ−ϕ ) = cos(−ϕ ) = cos(ϕ )

→ϕ = πQ

we have to obey the periodicity condition. 
The orbit is closed !! ... even under the influence of a orbit kick. 



Misalignment error in a circular machine 
 

2nd boundary condition: x’ (s+L) + δx’= x’(s) 
we have to close the orbit 

ψ(s) = 1
β(s)∫ ds

ψ '(s) = 1
β(s)

x(s) = a ⋅ β cos(ψ(s)−ϕ )

x '(s) = a ⋅ β −sin(ψ(s)−ϕ( )ψ '+ β '(s)
2 β

a ⋅cos(ψ(s)−ϕ )

x '(s) = −a ⋅ 1
β
sin(ψ(s)−ϕ( )+ β '(s)

2 β
a ⋅cos(ψ(s)−ϕ )

boundary condition: x’ (s+L) + δx’= x’(s) 

−a ⋅ 1
β(!s + L)

sin(2πQ−ϕ( )+ β '(!s + L)
2β(!s + L)

β(!s + L) a ⋅cos(2πQ−ϕ )+ Δ!s
ρ
=

                                                           = −a ⋅ 1
β(!s)

sin(−ϕ( )+ β '(!s)
2β(!s)

β(!s) a ⋅cos(−ϕ )

Nota bene:    refers to the location of the kick !s



Misalignment error in a circular machine 
 

Now we use: β(s+L) = β(s), φ=πQ   

−a
β(!s)

sin(πQ( )+ β '(!s)
2β(!s)

β(!s) a ⋅cos(πQ)+ Δ!s
ρ

=
a
β(!s)

sin(πQ( )+ β '(!s)
2β(!s)

β(!s) a ⋅cos(πQ)

⇒ 2 a ⋅ sin(πQ)
β(!s)

=
Δ!s
ρ

⇒ a = Δ!s
ρ
⋅ β(!s) 1

2sin(πQ)
! this is the amplitude of the orbit  
oscillation resulting from a single kick 
 
 

inserting in the equation of motion 
 
x(s) = a ⋅ β cos(ψ(s)+ϕ

x(s) = Δ!s
ρ
⋅
β(!s) β(s) cos(ψ(s)−ϕ )

2sin(πQ)

! the distorted orbit depends on the kick strength,  
! the local β function 
! the β function at the observation point  
 
!!! there is a resoncance denominator 
à watch your tune !!! 



Misalignment error in a circular machine 
 

sdQss
s

s
Q
s

sx ~))()~(cos(
)~(

1)~(*
)sin(2
)(

)( πψψ
ρ

β
π

β
∫ −−=

For completeness: 
 if we do not set                       we have to write a bit more, but finally we get:  

 
ψ(s = 0) = 0

Reminder: LHC 
Tune:  Qx= 64.31,   Qy=59.32 
 
Relevant for beam stability:  
                 non integer part 

  avoid integer tunes 

Remember ... 
     ... we have to control the trajctory 
     top avoid emittance dilution !! 
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FoDo in thin lens approximation 

Calculate the matrix for a half cell, starting in the middle of a foc. quadrupole: 

/ 2 / 2* *halfCell QD lD QFM M M M=

MhalfCell =
1− lD !f

lD

−lD
!f 2

1+ lD !f
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#
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"
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for the second half cell set f à -f 

lD

LL

note:    denotes the focusing strength 
          of half a quadrupole, so  

f~

ff 2~
=

lD = L / 2
!f = 2 f

Appendix 



M =
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Matrix for the complete FoDo cell 

Now we know, that the phase advance is related to the transfer matrix by 

2 2 2cos( ) cos ( ) sin ( / 2) 1 2sin ( )2 2
x xx x= − = −

After some beer and with a little bit of trigonometric gymnastics 

€ 

cosψcell =
1
2

trace(M) =
1
2

* (2 − 4ld
2

˜ f 2 ) =1− 2ld
2

˜ f 2

FoDo in thin lens approximation 



In the middle of a foc (defoc) quadrupole of the FoDo we allways have α = 0,  
and the half cell will lead us from βmax to βmin  

Compare to the twiss 
parameter form of M 
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Transfer Matrix for half a FoDo cell: 



Solving for βmax and βmin and remembering that …. 

The maximum and minimum values of  
the β-function are solely determined by  
the phase advance and the length of the cell. 
  

Longer cells lead to larger β 

} →

Z X, Y,( )

typical shape of a proton  
bunch in a FoDo Cell 
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