

Optics Measurement Techniques for Transfer Line

& Beam Instrumentation

CAS for Beam Injection, Extraction and Transfer Line Erice, 16th and 17th of March 2017

Peter Forck

Gesellschaft für Schwerionenforschnung (GSI) and University Frankfurt

Acknowledgement:

- \succ To the organizers for the invitation to this presentation
- To P. Kowina, R. Singh (GSI) and M. Schuh (KIT) for very valuable discussion
- To numerous further colleagues for versatile & enlightening discussions and providing material

Demands on Beam Diagnostics

Diagnostics is the 'sensory organs' for the beam.

Different demands lead to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots Used as a check for online information. Reliable technologies have to be used *Example:* Current measurement by transformers
- Complex instruments for severe malfunctions, accelerator commissioning & development The instrumentation might be destructive and complex *Example:* Emittance determination

General usage of beam instrumentation:

- > Monitoring of beam parameters for operation, beam alignment & accelerator development
- Instruments for automatic, active beam control
 - **Example:** Synchrotron: Closed orbit feedback using position measurement by BPMs Slow extraction: Control of extraction strength to stabilize beam $I_{beam}(t)$ at target

Non-destructive ('non-intercepting') methods are preferred:

- \blacktriangleright The beam is not influenced \Rightarrow the **same** beam can be measured at several locations
- \succ The instrument is not destroyed

Outline of the Lecture

1st lecture

2nd lecture

- The ordering of the subjects is oriented by the beam quantities:
- Current measurement: Transformers, Faraday cups, particle detectors
- Beam loss detection: Secondary particle detection for optimization and protection
- Profile measurement: Various methods depending on the beam properties
- Transverse emittance measure: Destructive devices, linear transformations
- Pick-ups for bunched beams: Principle of rf pick-ups& relevant beam measurements
- Measurement of longitudinal parameters: time structure of bunches, beam energy spread energies, longitudinal emittance

Some instruments must be different for:

- \succ Transfer lines with single pass \leftrightarrow synchrotrons with multi-pass
- \succ Electrons are (nearly) always relativistic \leftrightarrow protons are at the beginning non-relativistic

Remark: Most example for GSI only because the author is familiar with this facility!

The Accelerator Facility at GSI

The GSI linear accelerator, synchrotron & storage ring for ions

Measurement of Beam Current

- The beam current and its time structure the basic quantity of the beam.
- ➤ It this the first check of the accelerator functionality
- > It has to be determined in an absolute manner
- > Important for transmission measurement and to prevent for beam losses.
- **Different devices are used:**
- **Transformers:** Measurement of the beam's magnetic field
 - They are non-destructive. No dependence on beam energy
 - They have lower detection threshold.
- **Faraday cups:** Measurement of the beam's electrical charges
- **Particle detectors:** Measurement of the particle's energy loss in matter
- **Remark:** Typical beam instruments are mounted outside of rf cavities to prevent for electro-magnetic interference from the high field; only inside cyclotrons some instruments.

Magnetic field of the beam and the ideal Transformer Beam current of N_{part} charges with velocity β $I_{beam} = qe \cdot \frac{N_{part}}{t} = qe \cdot \beta c \cdot \frac{N_{part}}{1}$ magnetic field B at radius r: \succ cylindrical symmetry $B \sim 1/r$ $\overrightarrow{B} \parallel \overrightarrow{e}_{0}$ \rightarrow only azimuthal component $\vec{B} = \mu_0 \frac{I_{beam}}{2\pi r} \cdot \vec{e_{\varphi}}$ beam current I Example: $I = 1 \mu A$, $r = 10 \text{ cm} \Rightarrow B_{heam} = 2 \text{ pT}$, earth $B_{earth} = 50 \mu \text{ T}$ Idea: Beam as primary winding and sense by sec. winding. \Rightarrow Loaded current transformer $I_1/I_2 = N_2/N_1 \Longrightarrow I_{sec} = 1/N \cdot I_{heam}$ > Inductance of a torus of μ_r Torus to guide the magnetic field $L = \frac{\mu_0 \mu_r}{l N^2} \cdot l N^2 \cdot \ln \frac{r_{out}}{l N^2}$ Solution \mathcal{L}_{in} \mathcal{L}_{in} \mathcal{L}_{in} \mathcal{L}_{in} **I**beam Vout and guiding of field lines. Definition: $U = L \cdot dI/dt$

Peter Forck, CAS 2017, Erice

Beam Measurements and Instrumentation I

Passive Transformer (or Fast Current Transformer FCT)

Simplified electrical circuit of a passively loaded transformer:

A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with *S* sensitivity [V/A], equivalent to transfer function or transfer impedance *Z*

Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_L)

Bandwidth of a Passive Transformer

Analysis of a simplified electrical circuit of a passively loaded transformer: passive transformer simplified equivalent circuit R_L L_s beam ΧΧΧλ U(t)∧ U(t) I-source $C_s \equiv R$ N windings represents $\frac{1}{N}I_{\text{beam}}(t)$ inductance L torus ground For this parallel shunt: iωL Ζ a i.e. no dc-transformation N[‡] Bandwidth \blacktriangleright High frequency $\omega >> 1/RC_S: Z \rightarrow 1/i\omega C_S$ іпр $1 = 2\pi f_{low} = R/L$ $2\pi f_{high}$ * i.e. current flow through C_s transfer \blacktriangleright Working region $R/L < \omega < 1/RC_S : Z \simeq R$ 0.1 i.e. voltage drop at R and sensitivity S=R/N. 0.001 1000 0.1 10 100000 frequency f [MHz] No oscillations due to over-damping by low $R = 50 \Omega$ to ground.

Response of the Passive Transformer: Rise and Droop Time

100000

[Ω] |¹z| *Time domain description:* Droop time: $\tau_{droop} = 1/(2\pi f_{low}) = L/R$ Bandwidth $\tau_{rise} = 1/(2\pi f_{high}) = 1/RC_S$ (ideal without cables) Rise time: 1 $2\pi f_{low} = R/L$ $2\pi f_{high} = l/RC_S$ Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = \sqrt{L_S C_s}$ (with cables) transfer R_I : loss resistivity, R: for measuring. 0.1 0.001 01 1000 For the working region the voltage output is 10 $U(t) = \frac{R}{N} \cdot e^{-t/\tau_{droop}} \cdot I_{beam}$ frequency f [MHz] current beam bunch test pulse primary time time current droop: $\tau_{droop} = L/R$ time secondary time

rise: $\tau_{rise} = (L_s * C_s)^{1/2}$

Example for passive Transformer

For bunch beams e.g. transfer between synchrotrons typical bandwidth of 2 kHz < f < 1 GHz $\Leftrightarrow 1$ ns $< t \approx 1/f < 200$ µs is well suited

Example GSI type:

Inner / outer radius	70 / 90 mm
Torus thickness	16 mm
Torus material	(CoFe) _{70%} (MoSiB) _{30%}
Permeability	$\mu_r \approx 10^5$ for $f < 100 \text{kHz}$
	$\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50 Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 300 MHz

Numerous application e.g.:

- Transmission optimization
- Bunch shape measurement
- Input for synchronization of 'beam phase'

Fast extraction from GSI synchrotron:

Beam Measurements and Instrumentation I

Example for passive Transformer

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz \Leftrightarrow 1 ns < $t \approx 1/f$ < 200 µs is well suited *Example GSI type:*

	Inner / outer radius	70 / 90 mm		
	Torus thickness	16 mm		
	Torus material	(CoFe)70% (MoSiB)30%		
	Permeability	$\mu_r \approx 10^5$ for f < 100kHz $\mu_r \propto 1/f$ above		
	Windings	10		
	Sensitivity	4 V/A for R = 50 Ω		
	Droop time $\tau_{droop} = L/R$	0.2 ms	131	
	Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns	11	
	Bandwidth	2 kHz 300 MHz		
MS bunch length $[\mu s]$	0,10 0,08 0,06 0,04			
×	0 30 Revolution	60 90 s in SIS18 [10 ³]		

Example: U^{73+} from 11 MeV/u ($\beta = 15 \%$) to 350 MeV/u within 300 ms (displayed every 0.15 ms)

Peter Forck, CAS 2017, Erice

Beam Measurements and Instrumentation I

Control of extraction Kicker for 'fast' Extraction

Control of kicker timing by FCT measurement in transfer line

- **Correct timing:**
 - \rightarrow all bunches are extracted
- ➤ Too late (here $\Delta t = 60$ ns ≈ 120⁰ @ f_{rf}):
 → first bunch is only partly extracted
- > Too early (here $\Delta t = -60$ ns $\approx -120^{\circ} @ f_{rf}$):
 - \rightarrow last bunch is not extracted

Example: C⁶⁺ at 600 MeV/u, f_{rf} =5.46 MHz, h = 4

Longitudinal Bunch Diagnostics inside Synchrotron using FCT

- Acceleration and bunch 'gymnastics' are performed inside synchrotrons
- Bunch shaping for fast, single turn extraction

Measurement within synchrotron because bunch shape is constant during transport in most cases

Example: Transfer line L=100m,
$$\beta = 1, \frac{\Delta p}{p} = 2 \cdot 10^{-3} \rightarrow \Delta t = \frac{\Delta p}{p} \cdot t_{drift} = \frac{\Delta p}{p} \cdot \frac{L}{\beta c} = 0.7 \text{ ns} \ll \sigma_{bunch}$$

Example: Bunch merging at upper flattop using 2 cavities at GSI synchrotron Beam: 10⁹ U⁷³⁺ at 600 MeV/u, FCT

Longitudinal Emittance using tomographic Reconstruction

Longitudinal Emittance using tomographic Reconstruction

Results of tomographic Reconstruction at a Synchrotron I

Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:

Typical bucket filling. Important knowledge for bunch 'gymnastics'.

 (α)

Results of tomographic Reconstruction at a Synchrotron II

Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:

Mismatched bunch shown oscillations and filamentation due to 'bunch-rotation'.

Application: Bunch rotation for short bunch extraction for experiments, alignment of kicker timing **Remark:** For typical proton synch with E > 1 GeV.: negligible change of bunch shape in transfer line \Rightarrow measurement often done using synchrotron diagnostics.

'Active' Transformer with longer Droop Time

Active Transformer or Alternating Current Transformer ACCT: uses a trans-impedance amplifier (I/U converter) to $R \approx 0 \Omega$ load impedance i.e. a current sink + compensation feedback \Rightarrow longer droop time τ_{droop}

Application: measurement of longer $t > 10 \mu s$ e.g. at pulsed LINACs

The input resistor is for an op-amp: $R_f/A \ll R_L$

$$\Rightarrow \tau_{droop} = L/(R_f/A + R_L) \simeq L/R_L$$

Droop time constant can be up to 1 s!

The feedback resistor is also used for range switching.

An additional active feedback loop is used to compensate the droop.

'Active' Transformer Realization

Active transformer for the measurement of long $t > 10 \mu s$ pulses e.g. at pulsed LINACs

Torus inner radius Torus outer radius Core thickness Core material

Core permeability Number of windings Max. sensitivity Beam current range Bandwidth Droop rms resolution

 $r_i=30 \text{ mm}$ $r_o=45 \text{ mm}$ l=25 mmVitrovac 6025 (CoFe)_{70%}(MoSiB)_{30%} $u_r=10^5$ 2x10 crossed 10⁶ V/A 10 µA to 100 mA 1 MHz 0.5 % for 5 ms 0.2 µA for full bw

Shielding of a Transformer

Task of the shield:

- > The image current of the walls have to be bypassed by a gap and a metal housing.
- ➤ This housing uses µ-metal and acts as a shield of external B-field (remember: I_{beam} = 1 µA, r = 10 cm ⇒ B_{beam} = 2pT, earth field B_{earth} = 50 µT)

'Active' Transformer Measurement

Peter Forck, CAS 2017, Erice

The dc Transformer

How to measure the DC current? The current transformer discussed sees only B-flux *changes*. The DC Current Transformer (DCCT) \rightarrow look at the magnetic saturation of two torii.

typically about 1 kHz to saturation \rightarrow **no** net flux

Modulation with beam:

saturation is reached at different times, \rightarrow net flux

- > Net flux: double frequency than modulation
- **Feedback:** Current fed to compensation winding

for larger sensitivity

Two magnetic cores: Must be very similar.

The dc Transformer Realization

Example: The DCCT at GSI synchrotron

Torus radii	$r_i = 135 \text{ mm } r_0 = 145 \text{ mm}$
Torus thickness	d = 10 mm
Torus permeability	$\mu_r = 10^5$
Saturation inductance	$B_{sat} = 0.6 T$
Number of windings	16 for modulation & sensing 12 for feedback
Resolution	$I^{min}_{beam} = 2 \ \mu A$
Bandwidth	$\Delta f = dc \dots 20 \text{ kHz}$
Rise time constant	$\tau_{\rm rise} = 10 \ \mu s$
Temperature coefficient	1.5 μA/°C
	В

cán

Application for dc transformer:

 \Rightarrow Observation of beam behavior with typ. 20 µs time resolution \rightarrow **the** basic operation tool.

Important parameter: Detection threshold: $\approx 1 \ \mu A$ (= resolution) Bandwidth: $\Delta f = dc \text{ to } 20 \text{ kHz}$ Rise-time: $t_{rise} = 20 \ \mu s$ Temperature drift: 1.5 $\mu A/^0C$ \Rightarrow compensation required.

The beam current is the basic quantity of the beam.

- \succ It this the first check of the accelerator functionality
- ➢ It has to be determined in an absolute manner
- > Important for transmission measurement and to prevent for beam losses.

Different devices are used:

Transformers: Measurement of the beam's magnetic field

They are non-destructive. No dependence on beam energy

They have lower detection threshold.

Faraday cups: Measurement of the beam's electrical charges

They are destructive. For low energies only Low currents can be determined.

>Particle detectors: Measurement of the particle's energy loss in matter

Energy Loss of Ions in Copper

Bethe Bloch formula: (simplest formulation)

$$-\frac{dE}{dx} = 4\pi N_A r_e m_e c^2 \left(\cdot \frac{Z_t}{A_t} \right)$$

Semi-classical approach:

- Projectiles of mass *M* collide with free electrons of mass *m*
- > If M >> m then the relative energy transfer is low
- \Rightarrow many collisions required many elections participate proportional to electron density $n_e = \frac{Z_t}{A_t} \rho_t$
- \Rightarrow low straggling for the heavy projectile i.e. 'straight trajectory'
- ► If projectile velocity $\beta \approx 1$ low relative energy change of projectile (γ is Lorentz factor)
- → *I* is mean ionization potential including kinematic corrections $I \approx Z_t \cdot 10 \ eV$ for most metals

beam

> Strong dependence an projectile charge Z_p

Constants: N_A Advogadro number, r_e classical e⁻ radius, m_e electron mass, c velocity of light

 $\ln \frac{2m_e c^2 \gamma^2 \beta}{1}$

Energy Loss of Ions in Copper

Beam Measurements and Instrumentation I

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: \rightarrow fast e⁻ with $E_{kin} > 100 \text{ eV}$

Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$

- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1 10$ nm
- \rightarrow at surface ≈ 90 % probability for escape

Secondary electron yield and energy distribution comparable for all metals!

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: \rightarrow fast e⁻ with $E_{kin} > 100 \text{ eV}$

- Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$ \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1 - 10$ nm
- \rightarrow at surface ≈ 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!

Peter Forck, CAS 2017, Erice

Faraday Cups for Beam Charge Measurement

The beam particles are collected inside a metal cup \Rightarrow The beam's charge are recorded as a function of time.

Currents down to 10 pA with bandwidth of 1 kHz!

Magnetic field:

To prevent for secondary electrons leaving the cup

and/or

Electric field:

Potential barrier at the cup entrance.

The cup is moved in the beam pass \rightarrow destructive device

Realization of a Faraday Cup at GSI LINAC

1n

out

electrical

bellow

feed-through

Secondary Electron Suppression: Electric Field

U

air

e-trajectory

acuum

e-emission cone

В

here: potential at center ≈ 35 % of applied voltage

Courtesy of J. Latzko, GSI

Peter Forck, CAS 2017, Erice

beam

Secondary Electron Suppression: Magnetic Field

Yoke of soft iron 0.433 -Co-Sm permanent magnets within the yoke 0.275 -0.175 and the calculated magnetic field lines. 0.11 0.0686 0.0421 -The central field strength is $B \approx 0.1$ T. 0.0252 0.0143 -0.00732 -0.00286 oke negative HV ermanent magnet aperture I/U-converter ~ 50mm beam e-trajectory magnets: U north pole acuum south pole emission co air permanent magnets Yoke of soft iron B magnets: north pole south pole Courtesy of J. Latzko, GSI 13 55 H

The beam current is the basic quantity of the beam.

- ➢ It this the first check of the accelerator functionality
- \succ It has to be determined in an absolute manner
- ▶ Important for transmission measurement and to prevent for beam losses.

Different devices are used:

Transformers: Measurement of the beam's magnetic field

They are non-destructive. No dependence on beam energy

They have lower detection threshold.

Faraday cups: Measurement of the beam's **electrical charges**

They are destructive. For low energies only

Low currents can be determined.

Particle detectors: Measurement of the particle's energy loss in matter Examples are scintillators, ionization chambers, secondary e- emission monitors Used for low currents at high energies e.g. for slow extraction from a synchrotron.

Low Current Measurement for slow Extraction

Slow extraction from synchrotron: lower current compared to LINAC, but higher energies and larger range R >> 1 cm.

Extracted current $I_{beam} = qe \frac{N_{part}}{t}$:

- Slow extraction: e.g. $N_{part} = 10^{12}$ protons per t = 10 s = 1.6 μ A i.e. below DCCT threshold
- Fast extraction: e.g. $N_{part} = 10^{12}$ protons per t = 100 ns = 1.6 A

Peter Forck, CAS 2017, Erice

Example of Scintillator Counter

Example: Plastic Scintillator i.e. organic fluorescence molecules in a plastic matrix

Here: BC 400 (emission $\lambda_{max} = 420$ nm, pulse width ≈ 3 ns + cable dispersion, size) Advantage: any mechanical from, cheap, blue wave length, fast decay time Disadvantage: not radiation hard

Particle counting: Photomultiplier \rightarrow discriminator \rightarrow scalar \rightarrow computer

Properties of a good scintillator:

- Light output linear to energy loss
- \succ Fast decay time → high rate
- ➢ No self-absorption
- ► Wave length of fluorescence $350 \text{ nm} < \lambda < 500 \text{ nm}$
- ▶ Index of refractivity $n \approx 1.5$
 - \rightarrow light-guide
- Radiation hardness
 - e.g. Ce-activated inorganic are much more radiation hard.

Analog pulses from a plastic sc. with a low current 300 MeV/u Kr beam.

The scaling is 20 ns/div and 100 mV/div.

Monitoring of Slow Extraction

Slow extraction from a synchrotron delivers countable currents.

Usage for:

- Optimization of extraction efficiency
- If possible transmission active control
- > Alignment of coarse time dependent $I_{beam}(t)$
- > Determination & optimization of fine $I_{beam}(t)$
- Calibration of different detectors

Example: Comparison for different detector types: dc-transformer DCCT inside synchrotron., ionization chamber and scintillator for

Ionization Chamber (IC): Electron Ion Pairs

Energy loss of charged particles in gases \rightarrow electron-ion pairs \rightarrow low current meas.

W-value	Gas	Ionization Pot.	W-value
is the average energy	Не	24.5 eV	42.7 eV
for one e^- -ion pair:	N ₂	15.5 eV	36.4 eV
	O ₂	12.5 eV	32.2 eV
	Ar	15.7 eV	26.3 eV
	CO2	13.7 eV	33.0 eV

Example: GSI type:

GSI realization:

- > Energy calculation dE/dx with SRIM or LISE
- Current measurement via current-to-frequency converter IFC

Lower and upper Limit of IC Current

Lower limit of a IC is given by the most sensitive current measurement:

typically min. $I_{sec} \approx 10$ pA with 1 ms time resolution \Leftrightarrow bandwidth 0.3 kHz (note $U_{noise} \propto \sqrt{\Delta f}$)

Upper limit of a IC is related to the recombination of gas ions e.g. Ar^+ with e^- : $Ar^+ + e^- \rightarrow Ar$ \succ The density of Ar^+ and is $n_{Ar} \propto I_{beam}$ and of $e^- n_e \propto I_{beam}$

► Recombination: Ar⁺ + e⁻ → Ar leads to loss of sec. charges $I_{REC} \propto \alpha \cdot n_{Ar} \cdot n_e \propto I_{beam}^2$

- > Drift time Ar: $t_{drift} \propto E_{IC} \approx 50 \mu s \& e^-$: $t_{drift} \propto E_{IC} \approx 0.1 \mu s$; rate coefficient $\alpha = 10^{-9} \text{ cm}^3/\text{s}$
- Effect remarkable for secondary current $I_{sec} > 1 \mu A$ or dose rate of $D_{IC} > 30 \text{ Gy/s}$

e.g. max I_{beam} for 1 GeV/u, $t_{ex}=1$ s, \emptyset 0.5 cm: p \rightarrow 10¹¹ 1/s, Ne \rightarrow 10⁹ 1/s, U \rightarrow 10⁷ 1/s

Secondary Electron Monitor (SEM): Electrons from Surface

cion

For higher intensities SEMs are used.

Due to the energy loss, secondary e⁻ are emitted from a metal surface.

The amount of secondary e⁻ is proportional to the energy loss

It is a *surface* effect:

- \rightarrow Sensitive to cleaning procedure
- \rightarrow Possible surface modification by radiation

Example: GSI SEM type:

Material	Pure Al (≈ 99.5%)
# of electrode	3
Active surface	80 x 80 mm ²
Distance between electrodes	5 mm
Applied voltage	+ 100 V

Advantage for Al: good mechanical properties.

- **Disadvantage:** Surface effect!
 - e.g. decrease of yield Y due to radiation
 - \Rightarrow calibration versus IC required to reach 5%.

Sometimes they are installed permanently in front of an experiment.

GSI Installation for SEM, IC and Scintillator

→ Conclusion

Beam Measurements and Instrumentation I

Current Control for slow Extraction using the Signal from IC

Slow extraction: A constant beam delivery $I_{heam}(t)$ at experiment is desired → feedback: *Input* IC monitor for the *extracted* beam on target, *Output*: extraction strength in sychr. **Example** from medical facility HIT: C⁶⁺ at 250 MeV/u Beam current measurement by IC with $\Delta t = 100 \ \mu s$ readout time x 10' Regulation of extraction strength (here RF-amplitude) Intensity [part./s] x 10 3.5 ⊢ patient actual value intensity beam parameter With feedback therapy-control unit accelerator (TCU) control system 2.5 Intensity [part/s] IC actual. Cs und TCUs of reference 5 10 15 time [ms] ther beam targets value 1.5 broadcast Dynamic Intensity Without Controller extracted beam 0.5 feedback circulating correction signal power beam Œ ampl. 2 6 **RF-KO** exciter **RF-KO** exciter Time [s] control unit in synchrotron amplifier trans.

Amplitude selection by amplitude growth

RF excitation causes amplitude growth

Amplitude

(V)

 $\Delta p/p$

Regulation achievements: $\approx 10 \text{ ms}$ limited by latency from crossing separatrix until reach the electro-static septum

Courtesy C. Schömers (HIT) et al., NIM A 795, 92 (2015) and IPAC'11 & '13

injection 'Waiting' beam : Large E_x , small $\Delta p/p$. Extracted beam: Constant p, small $\Delta p/p$ and target constant spiral step Beam Measurements and Instrumentation I 44

exciter

p synchrotron

extraction

contr.

IC at

Peter Forck, CAS 2017, Erice

Summary for Current Measurement

Current is the basic quantity for accelerators!

Transformer: \rightarrow measurement of the beam's magnetic field

 \blacktriangleright magnetic field is guided by a high μ toroid

> types: passive (large bandwidth, $I_{min} \approx 30 \mu A$, BW = 10 kHz ... 500 MHz),

active (low droop, $I_{min} \approx 0.3 \,\mu\text{A}$, BW = 10 Hz 1 MHz)

dc (two toroids + modulation, $I_{min} \approx 1 \mu A$, BW = dc ... 20 kHz) > non-destructive, used for all beams

Faraday cup: → measurement of beam's charge

 \succ low threshold by I/U-converter: $I_{beam} > 10 \text{ pA}$

➤ totally destructive, used for low energy beams

- Scintillator, \rightarrow measurement of the particle's energy loss
- *IC, SEM:* > particle counting (Scintillator)
 - ➤ secondary current: IC from gas ionization or SEM sec. e⁻ emission surface

 \succ no lower threshold due to single particle counting

> partly destructive, used for high energy beams

When energetic beam particles penetrates matter, secondary particles are emitted:

this can be e^- , γ , protons, neutrons, excited nuclei, fragmented nuclei...

 \Rightarrow Spontaneous radiation and permanent activation is produced.

 \Rightarrow Large variety of Beam Loss Monitors (**BLM**) depending on the application.

Protection: Sensitive devices e.g. super-conducting magnets to prevent quenching (energy absorption by electronic stopping)

 \rightarrow interlock signal for fast beam abortion.

Beam diagnostics: Alignment of the beam to prevent for activation

 \rightarrow optimal transmission to the target.

Several devices are used, depending on particle rate and required time resolution
Some applications for usage

Basic idea for Beam Loss Monitors B LM:

A loss beam particle must collide with the vacuum chamber or other insertions

- \Rightarrow Interaction leads to some shower particle:
 - e⁻, γ , protons, neutrons, excited nuclei, fragmented nuclei
- \rightarrow detection of these secondaries by an appropriate detector outside of beam pipe
- \rightarrow relative cheap detector installed at many locations

Secondary Particle Production for Electron Beams

Processes for interaction of electrons

For $E_{kin} > 100$ MeV: Bremsstrahlungs-photon dominated $\Rightarrow \gamma \rightarrow e^+ + e^-$ or $\mu^{\pm}, \pi^{\pm} \dots$

- \rightarrow electro-magnetic showers
- \Rightarrow excitation of

nuclear giant resonances $E_{res} \approx 6 \text{ MeV}$ via (γ , n), (γ , p) or (γ , np)

 \rightarrow fast neutrons emitted

 \rightarrow neutrons: Long ranges in matter due to lack of ele.-mag. interaction.

For *Ekin* < **10 MeV:**

 \Rightarrow only electronic stopping (x-rays, slow e⁻).

Secondary Particle Production for Proton Beams

- \Rightarrow High rate of neutron with broad energy & angular distribution
- \Rightarrow Role of thumb for protons: Sufficient count rate for beam loss monitoring only for $E_{kin} \ge 100$ MeV

Courtesy R.H. Thomas, in Handbook on Acc. Phy. & Eng. (ed. A.W. Chao, et al.)

Peter Forck, CAS 2017, Erice

Beam Measurements and Instrumentation I

Outline:

- Physical process from beam-wall interaction
- Different types of Beam Loss Monitors different methods for various beam parameters
- Machine protection using BLMs
- > Summary

CÓ

Scintillators as Beam Loss Monitors

Plastics or liquids are used:

detection of charged particles by electronic stopping

detection of **neutrons**

by elastic collisions n on p in plastics and fast p electronic stopping.

Scintillator + **photo-multiplier**:

counting (large PMT amplification) or analog voltage ADC (low PMT amplification) Radiation hardness: plastics 1 Mrad = 10^4 Gy liquid 10 Mrad = 10^5 Gy

Example: Analog pulses of plastic scintillator: \Rightarrow broad energy spectrum due to many particle species and energies.

Analog pulses U(t)

20 ns/div and 100 mV/div

i

Solid-state detector: Detection of charged particles.

Working principle

- > About 10^4 e^- -hole pairs are created by a Minimum Ionizing Particle (MIP).
- \blacktriangleright A coincidence of the two PIN reduces the background due to low energy photons.
- ➤ A counting module is used with threshold value comparator for alarming.

\rightarrow small and cheap detector.

Excurse: Ionization Chamber (IC)

[eV]

Energy loss of charged particles in gases \rightarrow electron-ion pairs \rightarrow current measurement $I_{\rm sec} \propto \frac{1}{W} \cdot \frac{dE}{dx} \Delta x$ W is average energy for one e^- -ion pair:

W-Value Ionization Gas

Pot. [eV]

15.7 26.4 Ar N_2 15.5 34.8 O_{2} 12.5 30.8 Air 33.8

Sealed tube Filled with Ar or N₂ gas:

- \blacktriangleright Creation of Ar⁺-e⁻ pairs, average energy W=32 eV/pair
- \blacktriangleright measurement of this current
- \blacktriangleright Slow time response due to 100 µs drift time of Ar⁺.

Per definition: direct measurement of dose.

Beam Measurements and Instrumentation I

Ionization Chamber as BLM: TEVATRON and CERN Type

TEVATRON, RHIC type

15cm, \emptyset 6 cm	size	$50 \text{ cm}, \emptyset 9 \text{ cm}$
Ar at 1.1 bar	gas	N_2 at 1.1 bar
three	# of electrodes	61
1000 V	voltage	1500 V
3 µs	reaction time	0.3 µs
cm	# at the synchr.	≈ 4000 at LHC
	aver. distance	1 BLM each $\approx 6 \text{ m}$

CERN type

50 cm

Secondary Electron Monitor as BLM

Ionizing radiation liberates secondary electrons from a surface. Working principle:

- Three plates mounted in a vacuum vessel (passively NEG pumped)
- → Outer electrodes: biased by $U \approx +1$ kV
- Inner electrode: connected for current measurement (here current-frequency converter)
- \rightarrow small and cheap detector, very insensitive.

HV electrodes

Electrode for measured current

Detector with intrinsic amplification: Secondary electron multiplier i.e. a 'photo-multiplier without photo-cathode'

Comparison of different Types of BLMs

Different detectors are sensitive to various physical processes very different count rate, but basically proportional to each other

 \Rightarrow Linear behavior for all detectors but quite different count rate:

 $r_{\rm IC} < r_{\rm BF3} < r_{\rm liquid} < r_{\rm plastic}$

Choice of the detector type:

► IC:

measurement of absolute dose low signal, sometimes slow

 PIN-diode, scintillator or diamond detector: fast due to particle counting might need calibration

Example: Beam loss for 800 MeV/u O ⁸⁺ determined different BLMs at GSI-synchr.:

Application of BLMs for slow Extraction: Time Dependence

BLM are cheap and can be installed at several locations and determine local loss: **Example at SIS synchr. using quadrupole variation for slow extraction:**

- Losses during acceleration
- \blacktriangleright Losses at ele. septum
- Momentum dependent extraction current \Rightarrow change of extraction angle \Leftrightarrow time-dependent losses at mag. septum
- \Rightarrow used for optimization of time-dep. extraction angle

BLM

Ο

injection

Application of BLMs for slow Extraction: Transfer Line Alignment

Example: Counts per spill from scintillators

at different location for optimization of extraction efficiency and transmission to target:

Losses lead to permanent activation \Rightarrow maintenance is hampered and to material heating (vacuum pipe, super-cond. magnet etc.) \Rightarrow destruction. **Types of losses:**

- Irregular or fast losses by malfunction of devices (magnets, cavities etc.)
 - \rightarrow BLM as online control of the accelerator functionality and **interlock generation**.
- *Regular* or slow losses e.g. at collimator, by lifetime inside synchrotron or slow extraction
 → BLM used for alignment

Demands for BLM:

- ➢ High sensitivity to detect behavior of beam halo e.g. at collimator
- Large dynamic range:
 - \rightarrow low signal during normal operation, but large signal in case of malfunction
 - \rightarrow detectable without changing the full-scale-range
 - e.g. scintillators from 10^2 1/s up to 10^7 1/s in counting mode.

Monitoring of loss rate in control room *and* as interlock signal for beam abortion.

Summary Beam Loss Monitors

Measurement of the lost fraction of the beam:

- \blacktriangleright detection of secondary products
- \blacktriangleright sensitive particle detectors are used outside the vacuum
- \succ cheap installations used at many locations

Used as interlock in all high current machines for protection. Additionally used for sensitive 'loss studies'.

- **Depending on the application different types are used: Frequently used:**
- Scintillators: very sensitive, fast response, largest dynamics, not radiation hard
- PIN diode: insensitive, fast response, not radiation hard, cheap
- ➢ IC: medium sensitive, slow response, radiation hard, cheap, absolute measurement of dose
- **SEM:** very in-sensitive, i.e. suited for high radiation area, fast radiation hard, cheap

Further types are used: electron multiplier, BF₃ neutron counter, cable-based IC, optical fibers....

Thank you for your attention!