Recapitulation of Relativity and Space Charge Massimo.Ferrario@LNF.INFN.IT

Erice – 11 March 2017

The CERN Accelerator School is organising a course on: Beam Injection, Extraction and Transfer 10 - 19 March, 2017

Relativity - Basic principles

 The Principle of Relativity – The laws of physics are invariant (i.e. identical) in all inertial systems (nonaccelerating frames of reference) =>

- All experiments run the same in all inertial frames of reference

The Principle of Invariant Light Speed – The speed of light in a vacuum is the same for all observers, regardless of the motion of the light source =>

- c = 299792458 m/s

Inertial Systems

Galileo Transformations

Wave Equation ?

Galileo Transformations Fail !

$$x' = x - vt, \qquad t' = t.$$

The partial derivatives are related by

$\frac{\partial}{\partial x} = \frac{\partial x'}{\partial x} \frac{\partial}{\partial x'} + \frac{\partial t'}{\partial x} \frac{\partial}{\partial t'},$	$\frac{\partial}{\partial t} = \frac{\partial t'}{\partial t} \frac{\partial}{\partial t'} + \frac{\partial x'}{\partial t} \frac{\partial}{\partial x'},$
$\frac{\partial}{\partial x} = \frac{\partial}{\partial x'},$	$\frac{\partial}{\partial t} = \frac{\partial}{\partial t'} - v \frac{\partial}{\partial x'},$
$\frac{\partial^2}{\partial x^2} = \frac{\partial^2}{\partial x'^2},$	$\frac{\partial^2}{\partial t^2} = \frac{\partial^2}{\partial t'^2} + v^2 \frac{\partial^2}{\partial x'^2} - 2v \frac{\partial}{\partial t'} \frac{\partial}{\partial x'}.$

Insertion into the equation yields $\frac{\partial^2 \psi}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x'^2} - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t'^2} - \frac{v^2}{c^2} \frac{\partial^2 \psi}{\partial x'^2} + \frac{2v}{c^2} \frac{\partial^2 \psi}{\partial t' \partial x'} = 0$ In both reference frames a spherical wave propagates with velocity c and must remain spherical

Derivation of Lorentz Transformations

$$\begin{cases} x' = a_{11}x + a_{12}y + a_{13}z + a_{14}t \\ y' = a_{21}x + a_{22}y + a_{23}z + a_{24}t \\ z' = a_{31}x + a_{32}y + a_{33}z + a_{34}t \\ t' = a_{41}x + a_{42}y + a_{43}z + a_{44}t \end{cases}$$

+

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = 0 = x^{\prime 2} + y^{\prime 2} + z^{\prime 2} - c^{2}t^{\prime 2}$$

Lorentz Transformations

Lorentz Transformations and the invariance of light vector

$$\begin{aligned} x'^2 + y'^2 + z'^2 - c^2 t'^2 \\ &= \frac{1}{1 - \beta^2} (x - vt)^2 + y^2 + z^2 - \frac{c^2}{1 - \beta^2} \left(t - \frac{v}{c^2} x \right)^2 \\ &= \left[\frac{1}{1 - \beta^2} - \frac{v^2/c^2}{1 - \beta^2} \right] x^2 + y^2 + z^2 - c^2 t^2 \left[\frac{1}{1 - \beta^2} - \frac{v^2/c^2}{1 - \beta^2} \right] \\ &- tx \left[\frac{2v}{1 - \beta^2} - \frac{2v}{1 - \beta^2} \right] \\ &= x^2 + y^2 + z^2 - c^2 t^2 \end{aligned}$$

Lorentz Transformations and the invariance of wave equation

$$\begin{split} \frac{\partial^2 \psi}{\partial x^2} &- \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{1}{1 - \beta^2} \left(\frac{\partial^2 \psi}{\partial x'^2} - \frac{2v}{c^2} \frac{\partial^2 \psi}{\partial x' \partial t'} + \frac{v^2 \partial^2 \psi}{c^4 \partial t'^2} - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t'^2} + \frac{2v}{c^2} \frac{\partial^2 \psi}{\partial x' \partial t'} - \frac{v^2}{c^2} \frac{\partial^2 \psi}{\partial x'^2} \right) \\ &= \frac{1}{1 - \beta^2} \left[\frac{\partial^2 \psi}{\partial x'^2} - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t'^2} \right] - \frac{v^2/c^2}{1 - \beta^2} \left[\frac{\partial^2 \psi}{\partial x'^2} - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t'^2} \right] \\ &= \frac{\partial^2 \psi}{\partial x'^2} - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t'^2} = 0. \end{split}$$

The consequences of Lorentz Transformations

• Time Dilation:

$$\Delta t = \gamma \Delta t'$$

• Length Contraction:

$$\Delta x = \frac{\Delta x'}{\gamma}$$

Relativistic dynamics

Fundamental relations of the relativistic dynamics

Rest Energy	Relativistic momentum	Relativistic γ-factor		Total Energy	Kinetic Energy
$W_0 = m_0 c^2$	$p = \gamma m_o v,$ $\beta < 1 \text{ always } !$	$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$ $\gamma \ge 1 \ always!$ $m = \gamma \ m_0$		$W = \gamma m_0 c^2 = \gamma W_0$ $W^2 = W_0^2 + p^2 c^2$	$W_k = W - W_0 =$ = $(\gamma - 1)m_0c^2 \approx$ $\approx \frac{1}{2}m_0v^2 se \beta << 1$
Newton's 2 nd Law			Lorentz Force		
$\vec{F} = \frac{d}{dt}\vec{p} = \frac{d}{dt}(m\vec{v})$			$\vec{F} = q \ (\vec{E} + \vec{v} \times \vec{B})$		

Relativistic equation of motion

$$\mathbf{P} = m\mathbf{v} = m_0 \gamma(v) \mathbf{v} \qquad \qquad \mathbf{f} = \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} \qquad \qquad \gamma = \frac{1}{\sqrt{1-\beta^2}} \qquad \beta = \frac{v}{c}$$

$$I + \beta^2 \gamma^2 \equiv \gamma^2$$

$$\mathbf{f} = m_0 \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{v} \gamma(v) = m_0 \left[\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \cdot \gamma(v) + \mathbf{v} \frac{\mathrm{d}}{\mathrm{d}t} \gamma(v) \right]$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \gamma(v) = \frac{\mathrm{d}}{\mathrm{d}t} \left(1 - \frac{\mathbf{v}^2}{c^2} \right)^{-1/2} = -\frac{1}{2} \left(1 - \frac{v^2}{c^2} \right)^{-3/2} \cdot \left(-2 \frac{\mathbf{v}}{c^2} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \right) = \gamma^3(v) \frac{\mathbf{a}\mathbf{v}}{c^2}$$

$$\mathbf{f} = m_0 \gamma(v) \left[\mathbf{a} + \gamma^2(v) \frac{\mathbf{a}\mathbf{v}}{c^2} \cdot \mathbf{v} \right]$$

Acceleration does not generally point in the direction of velocity

$$\begin{array}{ll} \underline{a \perp v} & f = m_0 \gamma \left(v \right) \mathbf{a} & m_\perp = m_0 \gamma \left(v \right) \\ \hline a / / v & f = m_0 \gamma \left(v \right) \left[\mathbf{a} + \gamma^2 \left(v \right) \frac{v^2}{c^2} \cdot \mathbf{a} \right] = m_0 \gamma^3 \left(v \right) \mathbf{a} & m_{//} = m_0 \gamma^3 \left(v \right) \end{array}$$

A moving body is more inert in the longitudinal direction than in the transverse direction

Longitudinal motion in the laoratory frame ==> ex: beam dynamics in a relativistic capacitor

Consider longitudinal motion only:

 $\gamma^3 \, \frac{d\beta}{dt} = \frac{a_o}{c}$

 $a_o = \frac{eE_z}{m_o}$

$$\int_{\beta_o}^{\beta} \frac{d\beta}{\left(1-\beta^2\right)^{3/2}} = \frac{a_o}{c} \int_{t_o}^{t} dt$$

$$\frac{\beta}{\sqrt{1-\beta^2}} - \beta_o \gamma_o = \frac{a_o}{c} (t - t_o)$$

Solving explicitly for β one can find:

$$\beta(t) = \frac{a_o(t - t_o) + c\beta_o\gamma_o}{\sqrt{c^2 + (c\beta_o\gamma_o + a_o(t - t_o))^2}}$$

After separating the variables one can integrate once more to obtain the position as a function of time :

$$z(t) - z_o = \frac{c^2}{a_o} \left(\sqrt{I + \left(\beta_o \gamma_o + \frac{a_o}{c} \left(t - t_o\right)\right)^2} - \gamma_o \right) = h(t)$$

In the non relativistic limit: $z(t) - z_o = \beta_o c(t - t_o) + \frac{I}{2} a_o (t - t_o)^2$

The previous solution can be written also in the form:

 $\left(z(t) - z_o + \gamma_o \frac{c^2}{a_o}\right)^2 - \left(\frac{c^2}{a_o}\beta_o\gamma_o + c(t - t_o)\right)^2 = \left(\frac{c^2}{a_o}\right)^2$ the corresponding world line in the Minkowsky space-time (ct,z) is an hyperbola

Therefore such motion is called hyperbolic motion.

It describes the motion of a particle that arrives from large positive z, slows down and stops at turning point $Z_t = c^2/a_o$ then it accelerates back up the z axis.

The world-line is asymptotic to the light cones, and obviously, it will never reach the speed of light.

The problem of relativistic bunch length

Low energy electron bunch injected in a linac:

Length contraction?

Bunch length in the laboratory frame S

Let consider an electron bunch of initial length L_o inside a capacitor when the field is suddenly switched on at the time t_o .

Thus a simple computation show that no observable contraction occurs in the laboratory frame, as should be expected since both ends are subject to the same acceleration at the same time.

Bunch length in the moving frame S'

More interesting is the bunch dynamics as seen by a moving reference frame S', that we assume it has a relative velocity V with respect to S such that at the end of the process the accelerated bunch will be at rest in the moving frame S'. It is actually a deceleration process as seen by S'

Lorentz transformations:

$$\begin{cases} ct' = \gamma \left(ct - \frac{V}{c} z \right) \\ z' = \gamma \left(z - Vt \right) \end{cases}$$

leading for the tail particle to:

and for the **head** particle to:

$$\begin{cases} t'_{o,t} = t_o = 0 \\ z'_{o,t} = z_{o,t} = 0 \end{cases} \begin{cases} t'_{o,h} = -\frac{V}{c} \gamma'_o L_o < t_o \\ z'_{o,h} = \gamma'_o L_o > z_{o,h} \end{cases}$$

The key point is that as seen from S' the decelerating force is not applied *simultaneously* along the bunch but with a *delay* given by:

$$\Delta t'_{o} = t'_{o,h} - t'_{o,t} = -\frac{V}{c} \gamma'_{o} L_{o} < 0$$

At the end of the process when both particle have been subject to the same decelerating field for the same amount of time the bunch length results to be:

$$L'(t') = \left(\gamma'L_o + h'(t')\right) - h'(t') = \gamma'L_o$$
$$z'(t') - z'_o = \frac{c^2}{a_o} \left(\sqrt{1 + \left(\beta'_o \gamma'_o + \frac{a_o}{c}\left(t' - t'_{o,h}\right)\right)^2} - \gamma'_o\right) = h'(t')$$

Electromagnetic Fields of a moving charge

Fields of a point charge with uniform motion

- In the moving frame O' the charge is at rest
- The electric field is radial with spherical symmetry
- The magnetic field is zero

$$E'_{x} = \frac{q}{4\pi\varepsilon_{o}} \frac{x'}{r'^{3}} \qquad E'_{y} = \frac{q}{4\pi\varepsilon_{o}} \frac{y'}{r'^{3}} \qquad E'_{z} = \frac{q}{4\pi\varepsilon_{o}} \frac{z'}{r'^{3}}$$

Relativistic transforms of the fields from O' to O

$$\begin{cases} E_x = E'_x \\ E_y = \gamma(E'_y + \nu B'_z) \\ E_z = \gamma(E'_z - \nu B'_y) \end{cases} \qquad \begin{cases} B_x = B'_x \\ B_y = \gamma(B'_y - \nu E'_z / c^2) \\ B_z = \gamma(B'_z + \nu E'_y / c^2) \end{cases}$$

$$\begin{cases} x' = \gamma(x - vt) \\ y' = y \\ z' = z \\ ct' = \gamma \left(ct - \frac{v}{c} x \right) \end{cases} \qquad r' = \left(x'^2 + y'^2 + z'^2 \right)^{1/2} \\ r' = \left[\gamma^2 (x - vt)^2 + y^2 + z^2 \right]^{1/2} \end{cases}$$

$$E_x = E'_x = \frac{q}{4\pi\varepsilon_o} \frac{x'}{{r'}^3} = \frac{q}{4\pi\varepsilon_o} \frac{\gamma(x-vt)}{\left[\gamma^2(x-vt)^2 + y^2 + z^2\right]^{3/2}}$$

$$E_{y} = \gamma E_{y}' = \frac{q}{4\pi\varepsilon_{o}} \frac{y'}{r'^{3}} = \frac{q}{4\pi\varepsilon_{o}} \frac{\gamma y}{\left[\gamma^{2}(x-vt)^{2}+y^{2}+z^{2}\right]^{3/2}}$$

$$E_{z} = \gamma E_{z}' = \frac{q}{4\pi\varepsilon_{o}} \frac{z'}{r'^{3}} = \frac{q}{4\pi\varepsilon_{o}} \frac{\gamma z}{\left[\gamma^{2}(x-vt)^{2}+y^{2}+z^{2}\right]^{3/2}}$$

The field pattern is moving with the charge and it can be observed at t=0:

$$\vec{E} = \frac{q}{4\pi\varepsilon_o} \frac{\gamma \vec{r}}{\left[\gamma^2 x^2 + y^2 + z^2\right]^{3/2}}$$

The fields have lost the spherical symmetry

$$\vec{E} = \frac{q}{4\pi\varepsilon_o} \frac{\gamma \vec{r}}{\left[\gamma^2 x^2 + y^2 + z^2\right]^{3/2}}$$

$$\gamma^2 x^2 + y^2 + z^2 = r^2 \gamma^2 (1 - \beta^2 \sin^2 \theta)$$

$$\vec{E} = \frac{q}{4\pi\varepsilon_o} \frac{\left(l - \beta^2\right)}{r^2 \left(1 - \beta^2 \sin^2\theta\right)^{3/2}} \frac{\vec{r}}{r}$$

$$\vec{E} = \frac{q}{4\pi\varepsilon_o} \frac{\left(1-\beta^2\right)}{r^2 \left(1-\beta^2 \sin^2\theta\right)^{3/2}} \frac{\vec{r}}{r}$$

$$\beta = 0 \Rightarrow \vec{E} = \frac{q}{4\pi\varepsilon_o} \frac{1}{r^2} \frac{\vec{r}}{r}$$
$$\theta = 0 \Rightarrow E_{//} = \frac{q}{4\pi\varepsilon_o} \frac{1}{\gamma^2 r^2} \frac{\vec{r}}{r} \xrightarrow{\gamma \to \infty} 0$$
$$\theta = \frac{\pi}{2} \Rightarrow E_{\perp} = \frac{q}{4\pi\varepsilon_o} \frac{\gamma}{r^2} \frac{\vec{r}}{r} \xrightarrow{\gamma \to \infty} \infty$$

$$\vec{B}' = 0$$

B is transverse to the direction of motion

$$B_x = 0$$

$$B_y = -vE_z / c^2$$

$$B_z = vE_y / c^2$$

$$\vec{B}_{\perp} = \frac{\vec{v} \times \vec{E}}{c^2}$$

Space Charge

The net effect of the **Coulomb** interactions in a multi-particle system can be classified into two regimes:

 Collisional Regime ==> dominated by binary collisions caused by close particle encounters ==> Single Particle Effects

$$\sigma_{x,y,z} << \lambda_D$$

2) Space Charge Regime ==> dominated by the self field produced by the particle distribution, which varies appreciably only over large distances compare to the average separation of the particles ==> Collective Effects, Single Component Cold Plasma $\sigma_{x,y,z} >> \lambda$

Continuous Uniform Cylindrical Beam Model

Gauss' s law $\int \varepsilon_o E \cdot dS = \int \rho dV$

$$E_{r} = \frac{I}{2\pi\varepsilon_{o}R^{2}v}r \quad \text{for } r \le R$$
$$E_{r} = \frac{I}{2\pi\varepsilon_{o}v}\frac{1}{r} \quad \text{for } r > R$$

$$B_{\vartheta} = \frac{\beta}{c} E_r$$

Ampere's law $\int B \cdot dl = \mu_o \int J \cdot dS$

$$B_{\vartheta} = \mu_o \frac{Ir}{2\pi R^2} \quad \text{for} \quad r \le R$$
$$B_{\vartheta} = \mu_o \frac{I}{2\pi r} \quad \text{for} \quad r > R$$

Lorentz Force

$$F_{r} = e(E_{r} - \beta cB_{\vartheta}) = e(1 - \beta^{2})E_{r} = \frac{eE_{r}}{\gamma^{2}}$$

has only **radial** component and

is a **linear** function of the transverse coordinate

The attractive magnetic force, which becomes significant at high velocities, tends to compensate for the repulsive electric force.

Bunched Uniform Cylindrical Beam Model

Longitudinal Space Charge field in the bunch moving frame:

$$\tilde{\rho} = \frac{Q}{\pi R^2 \tilde{L}} \qquad \tilde{E}_z(\tilde{s}, r=0) = \frac{\tilde{\rho}}{4\pi\varepsilon_o} \int_0^R \int_0^{2\pi} \int_0^{\tilde{L}} \frac{\left(\tilde{l}-\tilde{s}\right)}{\left[\left(\tilde{l}-\tilde{s}\right)^2 + r^2\right]^{3/2}} r dr d\varphi d\tilde{l}$$

$$\tilde{E}_{z}(\tilde{s},r=0) = \frac{\tilde{\rho}}{2\varepsilon_{0}} \left[\sqrt{R^{2} + (\tilde{L} - \tilde{s})^{2}} - \sqrt{R^{2} + \tilde{s}^{2}} + \left(2\tilde{s} - \tilde{L}\right) \right]$$

Radial Space Charge field in the bunch moving frame by series representation of axisymmetric field:

$$\tilde{E}_r(r,\tilde{s}) \cong \left[\frac{\tilde{\rho}}{\varepsilon_0} - \frac{\partial}{\partial \tilde{s}}\tilde{E}_z(0,\tilde{s})\right] \frac{r}{2} + \left[\cdots\right] \frac{r^3}{16} +$$

$$\tilde{E}_r(r,\tilde{s}) = \frac{\tilde{\rho}}{2\varepsilon_0} \left[\frac{(\tilde{L}-\tilde{s})}{\sqrt{R^2 + (\tilde{L}-\tilde{s})^2}} + \frac{\tilde{s}}{\sqrt{R^2 + \tilde{s}^2}} \right] \frac{r}{2}$$

Lorentz Transformation back to the Lab frame

$$\begin{split} E_z &= \tilde{E}_z & \tilde{L} = \gamma L \implies \tilde{\rho} = \frac{\rho}{\gamma} \\ E_r &= \gamma \tilde{E}_r & \tilde{s} = \gamma s \end{split}$$

$$E_{z}(0,s) = \frac{\rho}{\gamma 2\varepsilon_{0}} \left[\sqrt{R^{2} + \gamma^{2}(L-s)^{2}} - \sqrt{R^{2} + \gamma^{2}s^{2}} + \gamma \left(2s - L\right) \right]$$

$$E_r(r,s) = \frac{\gamma \rho}{2\varepsilon_0} \left[\frac{(L-s)}{\sqrt{R^2 + \gamma^2 (L-s)^2}} + \frac{s}{\sqrt{R^2 + \gamma^2 s^2}} \right] \frac{r}{2}$$

It is still a linear field with r but with a longitudinal correlation s

$$E_{z}(\theta,s,\gamma) = \frac{I}{2\pi\gamma\varepsilon_{0}R^{2}\beta c}h(s,\gamma)$$

$$E_{r}(r,s,\gamma) = \frac{Ir}{2\pi\varepsilon_{0}R^{2}\beta c}g(s,\gamma)$$

$$\gamma = 1$$

$$\gamma = 1$$

$$\gamma = 5$$

$$T_{r} = \frac{eE_{r}}{\gamma^{2}} = \frac{eIr}{2\pi\gamma^{2}\varepsilon_{0}R^{2}\beta c}g(s,\gamma)$$

$$F_{r} = \frac{eE_{r}}{\gamma^{2}} = \frac{eIr}{2\pi\gamma^{2}\varepsilon_{0}R^{2}\beta c}g(s,\gamma)$$

The Laminar beam

Trace space of an ideal laminar beam

Trace space of a laminar beam

Trace space of non laminar beam

Fig. 17: Filamentation of mismatched beam in non-linear force

 $+\infty +\infty$ $\int f(x, x') dx \, dx' = 1$ f'(x,x') = 0 $-\infty -\infty$ rms beam envelope: $+\infty +\infty$ σ

$$\sigma_x^2 = \left\langle x^2 \right\rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 f(x, x') dx dx'$$

Define rms emittance:

$$\gamma x^{2} + 2\alpha x x' + \beta x'^{2} = \varepsilon_{rms}$$
such that:

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$

$$\sigma_{x'} = \sqrt{\langle x'^{2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$
Since:

$$\alpha = -\frac{\beta'}{2} \qquad \beta = \frac{\langle x^{2} \rangle}{\varepsilon_{rms}}$$
it follows:

$$\alpha = -\frac{1}{2\varepsilon_{rms}} \frac{d}{dz} \langle x^{2} \rangle = -\frac{\langle xx' \rangle}{\varepsilon_{rms}} = -\frac{\sigma_{xx'}}{\varepsilon_{rms}}$$

$$\sigma_{x} = \sqrt{\langle x^{2} \rangle} = \sqrt{\beta \varepsilon_{rms}}$$
$$\sigma_{x'} = \sqrt{\langle x'^{2} \rangle} = \sqrt{\gamma \varepsilon_{rms}}$$
$$\sigma_{xx'} = \langle xx' \rangle = -\alpha \varepsilon_{rms}$$

It holds also the relation:

$$\gamma\beta - \alpha^2 = 1$$

Substituting
$$\alpha$$
, β , γ we get

$$\frac{\sigma_{x'}^2}{\varepsilon_{rms}} \frac{\sigma_x^2}{\varepsilon_{rms}} - \left(\frac{\sigma_{xx'}}{\varepsilon_{rms}}\right)^2 = 1$$

We end up with the definition of rms emittance in terms of the second moments of the distribution:

$$\varepsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2} = \sqrt{\left(\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2\right)}$$

What does rms emittance tell us about trace space distributions under linear or non-linear forces acting on the beam?

Assuming a generic x, x' correlation of the type: $x' = Cx^n$

$$\varepsilon_{rms}^{2} = C^{2} \left(\left\langle x^{2} \right\rangle \left\langle x^{2n} \right\rangle - \left\langle x^{n+1} \right\rangle^{2} \right)$$
When $n \neq 1 => \varepsilon_{rms} \neq 0$
When $n \neq 1 => \varepsilon_{rms} \neq 0$

Envelope Equation without Acceleration

Now take the derivatives:

$$\frac{d\sigma_x}{dz} = \frac{d}{dz}\sqrt{\langle x^2 \rangle} = \frac{1}{2\sigma_x}\frac{d}{dz}\langle x^2 \rangle = \frac{1}{2\sigma_x}2\langle xx' \rangle = \frac{\sigma_{xx'}}{\sigma_x}$$
$$\frac{d^2\sigma_x}{dz^2} = \frac{d}{dz}\frac{\sigma_{xx'}}{\sigma_x} = \frac{1}{\sigma_x}\frac{d\sigma_{xx'}}{dz} - \frac{\sigma_{xx'}^2}{\sigma_x^3} = \frac{1}{\sigma_x}(\langle x'^2 \rangle - \langle xx'' \rangle) - \frac{\sigma_{xx'}^2}{\sigma_x^3} = \frac{\sigma_{xx'}^2}{\sigma_x^3} - \frac{\sigma_{xx'}^2}{\sigma_x^3}$$

And simplify: σ

$$\sigma_{x}'' = \frac{\sigma_{x}^{2}\sigma_{x'}^{2} - \sigma_{xx'}^{2}}{\sigma_{x}^{3}} - \frac{\langle xx'' \rangle}{\sigma_{x}} = \frac{\varepsilon_{rms}^{2}}{\sigma_{x}^{3}} + \frac{\langle xx'' \rangle}{\sigma_{x}}$$

We obtain the rms envelope equation in which the rms emittance enters as defocusing pressure like term.

$$\sigma_x'' - \frac{\langle xx'' \rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

$$\sigma_x'' - \frac{\left\langle xx''\right\rangle}{\sigma_x} = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

Assuming that each particle is subject only to a linear focusing force, without acceleration: $x'' + k_x^2 x = 0$

take the average over the entire particle ensemble $\langle xx'' \rangle = -k_x^2 \langle x^2 \rangle$

$$\sigma_x'' + k_x^2 \sigma_x = \frac{\varepsilon_{rms}^2}{\sigma_x^3}$$

We obtain the rms envelope equation with a linear focusing force in which the rms emittance enters as defocusing pressure like term.

Bunched Uniform Cylindrical Beam Model

$$E_{z}(0,s,\gamma) = \frac{I}{2\pi\gamma\varepsilon_{0}R^{2}\beta c}h(s,\gamma) \qquad E_{r}(r,s,\gamma) = \frac{Ir}{2\pi\varepsilon_{0}R^{2}\beta c}g(s,\gamma)$$

Lorentz Force

$$F_{r} = e\left(E_{r} - \beta c B_{\vartheta}\right) = e\left(1 - \beta^{2}\right)E_{r} = \frac{eE_{r}}{\gamma^{2}}$$

is a **linear** function of the transverse coordinate

$$\frac{dp_r}{dt} = F_r = \frac{eE_r}{\gamma^2} = \frac{eIr}{2\pi\gamma^2\varepsilon_0 R^2\beta c} g(s,\gamma)$$

The attractive magnetic force , which becomes significant at high velocities, tends to compensate for the repulsive electric force. Therefore space charge defocusing is primarily a non-relativistic effect.

$$F_{x} = \frac{eIx}{2\pi\gamma^{2}\varepsilon_{0}\sigma_{x}^{2}\beta c}g(s,\gamma)$$

Envelope Equation with Space Charge

Single particle transverse motion:

Now we can calculate the term $\langle xx'' \rangle$ that enters in the envelope equation

Including all the other terms the envelope equation reads:

 $(\beta\gamma)^2 k_{sc}\sigma_x^2$

$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_n^2}{(\beta \gamma)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$

Emittance Pressure
External Focusing Forces
Laminarity Parameter: $\rho =$

The beam undergoes two regimes along the accelerator

$$\sigma_x'' + k^2 \sigma_x = \frac{\varepsilon_x^2}{\left(\beta\gamma\right)^2 \sigma_x^3} + \frac{k_{sc}}{\sigma_x}$$

Fig. 11: Particle trajectories in non-zero emittance beam

Laminarity parameter

$$\rho = \frac{2I\sigma^2}{\gamma I_A \varepsilon_n^2} \equiv \frac{2I\sigma_q^2}{\gamma I_A \varepsilon_n^2} = \frac{4I^2}{\gamma'^2 I_A^2 \varepsilon_n^2 \gamma'^2}$$

Transition Energy (p=1)

$$\gamma_{tr} = \frac{2I}{\gamma' I_A \varepsilon_n}$$

Space charge induced emittance oscillations in a laminar beam

Neutral Plasma

Surface charge density

 $\sigma = e n \delta x$

Surface electric field

$$E_x = -\sigma/\epsilon_0 = -e \, n \, \delta x/\epsilon_0$$

Restoring force

$$m \frac{d^2 \delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x$$

Plasma frequency

$$\omega_{\rm p}^{\ 2} = \frac{{\rm n} e^2}{\epsilon_0 {\rm m}}$$

Plasma oscillations

$$\delta x = (\delta x)_0 \cos\left(\omega_p t\right)$$

Neutral Plasma

- Oscillations
- Instabilities
- EM Wave propagation

Single Component Cold Relativistic Plasma

Magnetic focusing

Magnetic focusing

$$\sigma'' + k_s^2 \sigma = \frac{k_{sc}(s,\gamma)}{\sigma}$$

Equilibrium solution:

$$\sigma_{eq}(s,\gamma) = \frac{\sqrt{k_{sc}(s,\gamma)}}{k_s}$$

Small perturbation:

$$\sigma(\zeta) = \sigma_{eq}(s) + \delta\sigma(s)$$

$$\delta\sigma''(s) + 2k_s^2\delta\sigma(s) = 0$$

Single Component Relativistic Plasma

$$k_s = \frac{qB}{2mc\beta\gamma}$$

$$\delta\sigma(s) = \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes:

$$\sigma(s) = \sigma_{eq}(s) + \delta\sigma_o(s)\cos(\sqrt{2}k_s z)$$

Emittance Oscillations are driven by space charge differential defocusing in core and tails of the beam

Perturbed trajectories oscillate around the equilibrium with the same frequency but with different amplitudes

Envelope oscillations drive Emittance oscillations

References:

[1] T. Shintake, Proc. of the 22nd Particle Accelerator Conference, June 25-29, 2007, Albuquerque, NM (IEEE, New York, 2007), p. 89.

[2] L. Serafini, J. B. Rosenzweig, PR E55 (1997) 7565

[3] M. Reiser, "Theory and Design of Charged Particle Beams", Wiley, New York, 1994

[4] J. B. Rosenzweig, "Fundamentals of beam physics", Oxford University Press, New York, 2003

[5] T. Wangler, "Principles of RF linear accelerators", Wiley, New York, 1998

[6] S. Humphries, "Charged particle beams", Wiley, New York, 2002

[7] F. J. Sacherer, F. J., IEEE Trans. Nucl. Sci. NS-18, 1105 (1971).

[8] M. Ferrario et al., Int. Journal of Modern Physics A, Vol 22, No. 23, 4214 (2007)

[9] J. Buon, "Beam phase space and emittance", in CERN 94-01

[10] C. Prior, "Special Relativity", CAS Proceedings, CERN 2006-012[11] W. Greiner "CLASSICAL MECHANICS - Point Particles and Relativity", Springer