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SC Devices in SC Accelerators  
  Magnets 

  RF Cavities 

  Current Leads 

  SC Bus-Bar 

  SC Links 

 Beam Instrumentation (based on SQUIDS, Superconducting 
Quantum Interference Devices) 
 

Auxiliaries 
 Quench Protection 

 Cold Diodes (semiconductors) 

 Energy Extraction 

 Post Mortem System 

Interlocks…….. 
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 Current Leads 

Conventional leads 

HTS Leads (Bi-2223, Y-123) 

 Bus-Bar 

 Nb-Ti bus-bar 

Superconducting Links (MgB2) 

 Protection  
 

 

Outline 

FROM 

TO 

FROM 

TO 
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Leads and Bus-Bar in  
a Magnet Circuit  

RT 

LHe 
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Single Magnet 

Individual magnet operated at LHe temperature 

Bus-Bar (Nb-Ti) 

Energy Extraction Power 

Converter

Cryostat

Magnet

DFB

Current 

Leads

HTS
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Powering the LHC Machine 

 8000 Superconducting magnets 

 1700 Electrical circuits 

 More than 3 MA of current 

 More than 3000 current leads (from 60 A to 
13000 A) 

 More than 2000 km of Nb-Ti bus-bar 

 More than 50000 interconnections 
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Sector 1

5

DC Power feed

3 DC Power

2

4 6

8

7

LHC 

Sector

arc 

cryostat

For superconducting magnets,  no DC powering across 

LHC Interaction Points 

Powering of LHC machine 
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Magnets Individually Powered 

Imax = 19500 A 
L = 14 H 

E-stored = 2.7 GJ 
Energy extraction (50 m) 

 

LHC Dipole Orbit Corrector CMS Solenoid 

Imax = 55 A 
L=7 H 

E-stored=9.2 kJ 
No energy extraction 

inner  = 6 m 
Length = 12 m 

=79 mm 
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LHC Main Dipole Circuit 

Power 

Converter 

Energy 

Extraction: 

switch closed 

Magnet 1 Magnet 3 Magnet 153 

Magnet 2 Magnet 152 Magnet 154 

Magnet 5 

Magnet 4 

Energy 

Extraction: 

switch closed 

DFB DFB 

 LHC powered in eight sectors, each with 154 dipole magnets (1232 dipoles) 

 Time for the energy  ramp is about 20 min (Energy from the grid) 

 Time for discharge is about the same (Energy back to the grid) 
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Current Leads 

10 



CAS, Erice, 3 May 2013 A. Ballarino 

Current leads 
 

 Current leads are usually the dominant 
source of heat leaking into the magnet 
cryostat  

 

 Objective of a current lead design: 
minimisation of the heat leak introduced by 
the transmission of a given current 
 

 Sources of heat: thermal conduction from 
room temperature to cryogenic environment 
and ohmic loss  
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Thermal Conductivity in Metals 

 In metals, the principle thermal conduction 
mechanisms are electronic and lattice 

 
K = Kl + Ke 

Kl = lattice conductivity 
Ke = electron conductivity 

 In pure metals, electron contribution is dominant 

Ke = (1/3) Cv <v> l 

<v> = velocity of electrons 

l = mean free path of electrons   

Cv = eletronic specific heat per unit volume   
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Thermal Conductivity in Metals 

<v> = 2 (EF/m)1/2 

l = <v>   

Ke = (1/3) Cv <v> l 

n = number of electrons per 
specific volume 

m = mass of electron 

kB = Boltzmann constant  

 = mean free time  

T = absolute temperature  

EF = Fermi Energy  

<v> = average speed  
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Free electrons also conduct electricity  in 
metals, high thermal conductivity gives low 
electrical resistivity 

Wiedemann-Franz Law 

L= Lorenz number 

 = 1/ 

k  = L T 
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Wiedemann and Franz (1853): ratio of thermal 
to electrical conductivity has about the same 
value for different metals at the same 
temperature 

 

 

Lorentz (1872): the proportionality constant is 
L = 2.4510-8 WK-2 

 

NB We did not consider lattice thermal conduction   

Wiedemann-Franz Law 

k  = L T 
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Optimization of a Current Lead 

k  = L T L = 2.4510-8 WK-2 

 There is a minimum heat leak associated with 
the transmission of a given current   

 
 This minimum heat leak is independent on 

conductor’s properties 

A good electrical conductor has high thermal conductivity  
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Multiple-stage cooling  

Conduction-Cooled Current Lead 

Cryo-cooler  
A stand-alone cooler providing intermediate 
temperatures  
 
or 
 

Heat exchangers using cryogen  at the 
temperatures available  in the cryogenic 
system  
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LHC Dipole Corrector Current Leads 

50 K 

20 K 

1.9 K 

RT 
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LHC Dipole Corrector Current Leads 

47 W/kA   2.8 W @ 60 A 
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Self-cooled Current Lead 

LHe 

RT 

In steady state conditions and neglecting  kHe: 

Self-cooling conditions 

L
CmQc 

Qc 

m
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Material properties  

Temperature Dependence of Material Properties 
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h,  T= 

QC,min(LHe) = 1.04 W/kA 

Self-Cooled Current Lead 

 QC,min(4.2K) is independent on material properties 
 

 BUT 
 

 The optimum geometry , i.e. the shape factor, depends on material properties 

LHe 

RT 

Optimum Shape Factor 

L
CmQc 

See “Superconducting Magnets”, M. Wilson, Chapter 11  
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Conventional self-cooled leads 

SS=Stainless Steel Cu ETP=Electrolytic-Tough-Pitch Copper 
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 The temperature profile depends on material properties 

 The thermal performance in stand-by conditions (0 A) depends on material 

 properties (kC(T), with A and L defined) 

Conventional self-cooled lead 
Q=0 

Measured 

Calculated 

I=Iopt=18 kA 
Cu, RRR=80 

x=L 

T(K) 

x (m) 

18.4 W 

RRR 
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Conventional vs HTS leads 

Room temperature 

LHe temperature 

   QA = 47 W/kA 

A B C 

HTS 

QB = 1.04 W/kA    QC = ? 

THTS 
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HTS Current Lead-Resistive Section 
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Forced He gas flow cooling 
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LHe 

RT 

THe THTS 

HTS Current Lead-Resistive Section 

I  nominal 
A  optimum 

Q (x/L=1)=0 
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HTS Current Lead-Resistive Section 
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LHC and ITER HTS Current Leads 
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HTS leads

ITER 
HTS leads 

LHC: from 60 A to 13000 A ITER: from 10000 A to 68000 A 
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K. Onnes, 1911 

K(T)(T) = LT 

0   

WFL  abolished 

Low K(T) 

HTS Current Lead-HTS Section 
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BSCCO 2223, Bi-2223,  Bi(2223), 1-G wire 

 

YBCO, Y-123, 2-G wire, REBCO (RE=Rare Earth 
Ba-Cu-O), Coated Conductor (thin layer of 
superconductor on a substrate), REBCO coated 
conductor 

 

Not to get lost when you will found different 
acronyms in the literature 

High Temperature Superconductors 
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Thermal Conductivity Bi-2223 

BSCCO: Bi-Sr-Ca-Cu-O  

Bi-2223 sintered polycrystals 

Anisotropy of K(T) because of anisotropy of crystal structure   
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High Temperature Superconductors 

Bi-2223 

Fill factor  30 % 

Y-123 

 4 mm 

 0.2 mm 0.2 mm

4 mm

0.2 mm

4 mm

 4 mm 

 0.1 mm 

Fill factor  1 % (1 to 3 m of Y-123) 

Ag Matrix 
Bi-2223 filaments 

Metallic substrate 
Buffer layer 
Y-123 layer 
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Thermal Conductivity Ag-Au Alloy 

1

10
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1000
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1 10 100 1000

Temperatura (K)

 K
 (

W
/m

 K
)

 Ag 

1.0 % Au

2.9 % Au

11 % Au

30 % Au

T (K)  

N.B. The thermal conductivity of an alloy is not a weighted average  
 of its elemental constituents 

37 



CAS, Erice, 3 May 2013 A. Ballarino 

High Temperature Superconductors 
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Ic(T) Dependence – Bi-2223 

Self-field conditions  
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Ic(B) Dependence – Bi-2223 

HTS: Highly Anisotropic Materials  

40 



CAS, Erice, 3 May 2013 A. Ballarino 

Operating temperature THTS  
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Higher THTS    More HTS conductor  Higher heat load at 4.2 K  
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LHC Current Leads: Saving 

Conventional leads HTS leads

Heat load into LHe 1.1 W/kA 0.1 W/kA

Exergy consumption 430 W/kA 150 W/kA

Exergy consumption 

(% conv. lead)

100 35

Total exergetic power 1290 kW 450 kW

Current = 3 MA 
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LHC HTS Current Leads 

HTS Part 

13000 A LHC Lead 
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LHC HTS Current Leads 

THe=20 K 

THe=4.2 K 

THTS=50 K 
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LHC HTS Current Leads in LHC Tunnel 
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Persistent-Current Mode Operation 

 Long time operation of magnet 
at steady fields 

 

 Demountable leads 
 

 Superconducting switch 
 

 Need of VERY low resistance 
joints in the superconducting 
circuit to guarantee uniformity 
of current in time  – required  
current stability in LHC main 
dipole circuit  1 ppm 
 

   

Lead 

SC Switch 

SC Magnet 

Heater 
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Buses, Links and their Protection 
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A conventional self-cooled current lead needs 
to be protected against thermal run-away 

 

The resistive and the HTS part of a HTS lead 
need to be protected against respectively 
thermal run-away and resistive transition 

 

In most cases, the superconducting bus needs 
to be protected against resistive transition 

Protection of leads and bus-bar 
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Protection of leads and bus-bar 

Magnet 1 Magnet 2 

Power Converter 

Magnet 154 

Magnet i 

When one magnet quenches, quench heaters are 
fired for this magnet. Resistance is switched in the 
circuit  

The current in the quenched magnet decays in about 
200 ms – it flows flows through the bypass diode 
 

Quench  

Heater PS 
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Protection of leads and bus-bar 

Magnet 1 Magnet 2 

Power Converter 

Magnet 154 

Magnet i 

The time constant of the LHC Main Dipole circuit is 107 s. 
This “rapid” current decay is obtained by switching an 
external resistance into the circuit  

 If the leads or bus-bar quench, the time constant for the 
discharge is given by the circuit (107 s for the LHC Main 
Dipole chain) 
 50 
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Protection-LHC Bus-Bar 

LHC Main Dipole  
Bus-Bar Stabilizer 

(=107 s) 

LHC Main Quadrupole  
Bus-Bar Stabilizer 

(=40 s) 

LHC Main Dipole  
Lyra 

Bus-Bar: Nb-Ti Rutherford Cable/Strand with copper stabilizer 

Rutherford Cable 
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BSCCO 2223 Superconductor with stabilizer: Ag-Au matrix 
of tapes plus stainless steel supporting structure 

Protection-LHC HTS Current Leads 

Long circuit time constants may make the use of HTS 
leads not appropriate for that specific application. 
Ex. ATLAS toroid leads (20.5 kA) are conventional (slow 
discharge of circuit:   3 hours).  

 

Bi-2223 Stack of Tapes Stainless Steel 

Nb-Ti 

50 K 4.2 K 

L = 0.5 m 
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Energy Stored in LHC Dipole Magnets 

E dipole = 0.5  L dipole   I 
2

dipole 
  

Energy stored in one dipole operating at 7 TeV with 

11850 A is 7.4 MJoule 
 

For 154 dipoles in one sector, E  1.2 GJoule 
 

 

 

 

For all 1232 dipoles in the LHC, E  9 GJoule (good 
reason for dividing the powering into 8 sectors) 
 

400 kg of TNT 

Energy must be dissipated in the resistor and not in  
magnets, bus-bar or current leads    
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Effect of 7.4 MJ in a Dipole Coil 
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LHC Nb-Ti Bus-Bar and Interconnections 
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Protection-LHC Bus Bar 
LHC Main Dipole Splice 

Highly resistive splice  Quench in bus-bar 
  Detection of voltage  Energy discharge in resistor 

BUT  
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Highly resistive splice + non-continuity of stabilizer 

  

Protection-LHC Bus Bar 
LHC Main Dipole Splice 

Localized over-heating until melting of the cable and 
local discharge of the circuit energy 
 

LHC Incident, 19th Sept 2008, Sector 3-4  
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Superconducting Links 

LHe 
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LHe 

GHe Power 
Converterr 

Power 
Converterr 

 SC cables GHe 
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Superconducting Links for LHC Upgrade 

Itot = 120 kA 
N =22 cables 
MgB2 Round Wire 

Ex. Development for LHC 
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HTS Power Transmission Cables 
 

 HTS cables for integration in the grid 
 

 AC cables for operation in the network 
 

 First and second generation HTS conductors 
 

 LN2 operation  
 

 Cables operated at up to max 4000 A (IRMS) 
 

 One or there cables in the cryogenic envelope 
 

 Horizontal transfer 
 

 High-voltage 
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Superconducting Links for LHC Upgrade 
 
 

 SC links for the LHC machine 
  
 Quasi-DC operation 
 

 Also MgB2 conductor 
 

  GHe operation 
 

 Cables operated at up to 20 kA 
 

 Multi-cable ( 50 high-current cable) assemblies 
 

 Horizontal + Vertical ( 80 m) transfer 
 

 1.5 kV – 2 kV electrical insulation 
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Cables for Superconducting Links 

High-current and low-field 

High temperature (5 K to 25 K)  

High temperature margin 

 Compact cables and compact multi-cable assemblies 

 Rutherford cables: why not, but they require  round 
conductor with good mechanical properties 
(bending radius  wire diameter) 

 The cost of the conductor should be a small fraction 
of the cost of the system     
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M. Noes , CAS, Erice 2013   
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SC Link Test Station at CERN 

LHe (4.2 K) 

GHe (5 K to 70 K) 

20 kA 

65 



CAS, Erice, 3 May 2013 A. Ballarino 

 

 

Thanks for your attention ! 


