# Advanced Concepts for Laser-Driven Acceleration

Simon Hooker

John Adams Institute & Department of Physics, University of Oxford, UK





#### Motivation

- Some key concepts for laser-plasma accelerators
- Further considerations
- A brief review of progress in laser-plasma accelerators
- Some status & challenges
- Multi-pulse laser wakefield acceleration





- General interest review articles
  - S. M. Hooker, "Developments in laser-driven plasma accelerators," *Nature Photonics* 7 775 - 782 (2013)
  - W. Leemans & E. Esarey, "Laser-driven plasma-wave electron accelerators," *Physics Today* 62 44 - 49 (2009)
  - C. Joshi, "Plasma accelerators," *Scientific American*, pp. 41 47, February (2006)
- Physics of laser-plasma accelerators
  - E. Esarey et al, "Physics of laser-driven plasma-based electron accelerators," *Reviews of Modern Physics* **81** 1229 1285 (2009)
  - V. Malka, "Laser plasma accelerators," *Physics of Plasmas* **19** 055501 (2012)
- Applications
  - F. Albert *et al.*, "Laser wakefield accelerator based light sources: potential applications and requirements," *Plasma Physics and Controlled Fusion* **56** 084015 (2014)
  - S. Corde *et al.*, "Femtosecond x rays from laser-plasma accelerators," *Reviews of Modern Physics* 85 1 - 48 (2013)



# **Motivation**



- "Conventional" accelerators are widely used in science and medicine
  - Acceleration gradient limited by electrical breakdown to < 100 MV / m</li>
  - To a significant degree, this sets the size (& cost) of the machine













VOLUME 43, NUMBER 4

#### PHYSICAL REVIEW LETTERS

23 JULY 1979

#### Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density  $10^{18}$ W/cm<sup>2</sup> shone on plasmas of densities  $10^{18}$  cm<sup>-3</sup> can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

- Pioneering paper by Tajima & Dawson in 1979
- First to suggest laser-driven plasma wakefield for accelerating charged particles
- Predicted acceleration gradients 1000 times higher than radio-frequency machines



# Key concepts



- Natural frequency for collective oscillations of plasma
- Derived by considering 3 equations (exercise for student!):

 $\vec{J} = -n_{\rm e}e\vec{v} \qquad \text{Current density}$   $\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \approx 0 \qquad \text{Maxwell equation}$   $m_{\rm e} \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -e\vec{E} \qquad \text{Equation of motion}$ 



Combining these gives,

$$\frac{\mathrm{d}^2\vec{J}}{\mathrm{d}t^2} = -\frac{n_\mathrm{e}e^2}{m_\mathrm{e}\epsilon_0}\vec{J} = -\omega_\mathrm{p}^2\vec{J}$$

where  $\omega_{\rm p} = \left(\frac{n_{\rm e}e^2}{m_{\rm e}\epsilon_0}\right)^{1/2}$ 







Ponderomotive force of an intense laser pulse expels electrons from the region of the pulse to form a trailing plasma wakefield (a Langmuir wave).

> Simon Hooker, University of Oxford Advanced Accelerator Physics Royal Holloway, 14th September 2017







- Ponderomotive force of an intense laser pulse expels electrons from the region of the pulse to form a trailing plasma wakefield (a Langmuir wave).
- The wakefield moves at speed of laser pulse (close to speed of light)
- Electric fields within wakefield can accelerate charged particles







- Ponderomotive force of an intense laser pulse expels electrons from the region of the pulse to form a trailing plasma wakefield (a Langmuir wave).
- The wakefield moves at speed of laser pulse (close to speed of light)
- Electric fields within wakefield can accelerate charged particles

#### Important things I will not talk about:

- Plasma accelerators driven by particle beams ("beam-driven" or "plasma wakefield accelerator")
- Ion acceleration: acceleration of protons, positive ions etc by fields generated in lasersolid interactions





# Motion of free electron in laser field I

E. Esarey *et al. Rev. Mod. Phys.* **81** 1229 (2009) P. Gibbon, "Short Pulse Laser Interactions with Matter: An Introduction"





$$\vec{v}_{\rm osc} = i \frac{e}{m_{\rm e}\omega} \vec{E}_0 \exp\left(-i\omega t\right)$$

electron

$$U_{\rm p} = \frac{1}{2} m_{\rm e} \left\langle \left| \vec{v}_{\rm osc} \right|^2 \right\rangle$$
$$= \frac{e^2}{4m_{\rm e}\omega^2} E_0^2$$





# Motion of free electron in laser field I

E. Esarey *et al. Rev. Mod. Phys.* **81** 1229 (2009) P. Gibbon, "Short Pulse Laser Interactions with Matter: An Introduction"



Eqn of motion of electron in field:

$$\frac{d\vec{p}}{dt} = -e\left[\vec{E} + \vec{v} \times \vec{B}\right]$$
$$\approx -e\vec{E}$$

For a harmonic field,

$$\vec{v}_{\rm osc} = i \frac{e}{m_{\rm e}\omega} \vec{E}_0 \exp\left(-i\omega t\right)$$

The **ponderomotive potential** is the mean "quiver" energy:

$$U_{\rm p} = \frac{1}{2} m_{\rm e} \left\langle \left| \vec{v}_{\rm osc} \right|^2 \right\rangle$$
$$= \frac{e^2}{4m_{\rm e}\omega^2} E_0^2$$





# Motion of free electron in laser field II

E. Esarey *et al. Rev. Mod. Phys.* **81** 1229 (2009) P. Gibbon, "Short Pulse Laser Interactions with Matter: An Introduction"



electron







# Motion of free electron in laser field II

E. Esarey *et al. Rev. Mod. Phys.* **81** 1229 (2009) P. Gibbon, "Short Pulse Laser Interactions with Matter: An Introduction"





Can write eqn of motion of electron in field as:

$$\frac{1}{mc}\frac{d\vec{p}}{dt} = \frac{\partial}{\partial t}\left(\frac{e}{mc}\vec{A}\right) - \vec{v} \times \nabla \times \left(\frac{e}{mc}\vec{A}\right)$$

Hence define normalized vector potential as

$$\vec{a} = \frac{e\vec{A}}{mc}$$

Simon Hooker, University of Oxford Advanced Accelerator Physics Royal Holloway, 14th September 2017





# Motion of free electron in laser field II

E. Esarey *et al. Rev. Mod. Phys.* **81** 1229 (2009) P. Gibbon, "Short Pulse Laser Interactions with Matter: An Introduction"





Can write eqn of motion of electron in field as:

$$\frac{1}{mc}\frac{d\vec{p}}{dt} = \frac{\partial}{\partial t}\left(\frac{e}{mc}\vec{A}\right) - \vec{v} \times \nabla \times \left(\frac{e}{mc}\vec{A}\right)$$

Hence define normalized vector potential as

$$\vec{a} = \frac{e\vec{A}}{mc}$$

For linear poln:  $a_0^2 \approx 0.73 \times 10^{-18} \left(\lambda[\mu \text{m}]\right)^2 I_0[\text{Wcm}^{-2}]$ 

#### **Electron motion relativistic when** $a_0 \approx 1$





"There are few topics in laser-plasma interactions that have caused such persistent argument as the curiously named ponderomotive force."

Paul Gibbon, Chapter 3 of "Short-pulse laser interactions with matter," Imperial College Press







"There are few topics in laser-plasma interactions that have caused such persistent argument as the curiously named ponderomotive force."

Paul Gibbon, Chapter 3 of "Short-pulse laser interactions with matter," Imperial College Press

- In essence it is simply the cycleaveraged force experienced by a charged particle in a non-uniform EM field
- A non-relativistic expression is,

$$\vec{F}_{\rm p} = -\frac{e^2}{4m_{\rm e}\omega^2}\nabla E_0^2 = -\nabla U_{\rm p}$$







Consider 1 D plasma wave: 
$$n_{
m e} = n_0 + \Delta n_{
m e} \sin(k_{
m p} z - \omega_{
m p} t)$$

$$\nabla \cdot \vec{D} = \rho$$
  
$$\Rightarrow \frac{\partial D_z}{\partial z} = (n_0 - n_e)e = -\Delta n_e e \sin(k_p z - \omega_p t)$$

Integrating gives:

$$E_z = \frac{\Delta n_{\rm e}}{n_0} \frac{m_{\rm e} \omega_{\rm p} c}{e} \cos(k_{\rm p} z - \omega_{\rm p} t)$$

So max possible field is the wave-breaking field:

$$E_{\rm wb} = \frac{m_{\rm e}\omega_{\rm p}c}{e} \qquad \qquad \omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$$







- Laser & plasma wave propagate at group velocity of laser
- $\blacktriangleright$  Plasma oscillates at plasma frequency  $\omega_p$
- Wake amplitude greatest when  $\omega_p \tau \approx 1$
- Electric fields up to order of wave-breaking field,

$$E_{wb} = \frac{m_e \omega_p c}{e} \qquad \omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$$

|                   |                                     | Comment                                             |
|-------------------|-------------------------------------|-----------------------------------------------------|
| Laser intensity   | 10 <sup>18</sup> W cm <sup>-2</sup> | 1 J, 50 fs, 25 μm                                   |
| Plasma density    | 10 <sup>18</sup> cm <sup>-3</sup>   | i.e. 100 mbar                                       |
| Accel. field      | 100 GV m <sup>-1</sup>              | $10^3$ to $10^4$ > RF machine                       |
| Plasma period     | 100 fs                              | Need short laser pulses, get short electron bunches |
| Plasma wavelength | 30 µm                               |                                                     |





- Linear regime
  - Occurs when  $a \ll 1$
  - Sinusoidal wakefield
  - Wavelength  $\lambda_p$
  - δn / n<sub>0</sub> « 1
  - $E_{\rm acc} \ll E_{\rm wb}$
- Nonlinear regime
  - Occurs when  $a \gg 1$
  - "Sawtooth" wakefield
  - Wavelength >  $\lambda_p$
  - δn / n<sub>0</sub> ≈ 1
  - $E_{\rm acc} \approx E_{\rm wb}$







- Linear regime
  - Occurs when  $a \ll 1$
  - Sinusoidal wakefield
  - Wavelength  $\lambda_p$
  - δn / n<sub>0</sub> « 1
  - $E_{\rm acc} \ll E_{\rm wb}$
- Nonlinear regime
  - Occurs when  $a \gg 1$
  - "Sawtooth" wakefield
  - Wavelength >  $\lambda_p$
  - δn / n<sub>0</sub> ≈ 1
  - $E_{\rm acc} \approx E_{\rm wb}$





# Further considerations





$$Z_R = \frac{\pi w_0^2}{\lambda}$$
  
Example :  
$$w_0 = 10 \,\mu\text{m}; \, \lambda = 1 \,\mu\text{m}$$
$$\Rightarrow Z_R = 0.3 \,\text{mm}$$

In absence of other effects, driving laser pulse will diffract in distance of order the Rayleigh range





# **Dephasing & pump depletion**





- Electrons move from accelerating to decelerating phase in the **dephasing distance**
- Driving laser loses energy in the pump depletion length









# **Dephasing & pump depletion**

- Accelerated electrons can come from external source or background plasma
- To be trapped & accelerated an electron needs v > v<sub>p</sub>
   i.e. there is a threshold momentum
- Linear regime:
  - Background electrons cannot be trapped
  - Requires "external" injection
- Nonlinear regime
  - Background electrons can be trapped ("selftrapping")



# Brief review of progress in plasma accelerators

**Progress linked to advances in laser technology** 



#### Plasma beat-wave

- Combine 2 long pulses with freqs  $\omega_2 \omega_1 = \omega_p$ 
  - Wake amplitudes of 28%
  - $\Delta W = 38$  MeV (external injection)
- But wakefield saturates due to relativistic increase in electron mass



Tochitsky *et al. Phys Rev. Lett.* **92** 095004 (2004) Laser: 200 J, 400 ps (CO<sub>2</sub>) Plasma:  $n_e \sim 9 \times 10^{15}$  cm<sup>-3</sup> Injected electrons: 12 MeV





**Progress linked to advances in laser technology** 



Plasma beat-wave

- Combine 2 long pulses with freqs  $\omega_2 \omega_1 = \omega_p$ 
  - Wake amplitudes of 28%
  - $\Delta W = 38$  MeV (external injection)
- But wakefield saturates due to relativistic increase in electron mass



Tochitsky *et al. Phys Rev. Lett.* **92** 095004 (2004) Laser: 200 J, 400 ps (CO<sub>2</sub>) Plasma:  $n_e \sim 9 \times 10^{15}$  cm<sup>-3</sup> Injected electrons: 12 MeV





# **Progress linked to advances in laser technology**



Self-modulated LWFA

- Long laser pulse modulated by plasma
- Automatically maintains resonance
- W ~ 100 MeV
- Very broad-band energy spectra



Royal Holloway, 14th September 2017



# An aside: Chirped-pulse amplification

D. Strickland & G. Mourou, Opt. Commun. 55 447 (1985)



- CPA has allowed the generation of short (< 50 fs) pulses with reasonable energy</li>
- State of art is the BELLA laser at Berkeley:
  - E = 40 J
  - τ = 40 fs
  - P = 1 PW



Simon Hooker, University of Oxford Advanced Accelerator Physics Royal Holloway, 14th September 2017



# **High-intensity ultrafast lasers:** The bubble regime



A. Pukhov & J. Meyer-ter-Vehn *Appl. Phys. B* **74** 355 (2002) W. Lu *et al. Phys. Rev. STAB* **10** 061301 (2007)

- For short, high-intensity pulses ponderomotive force expels all electrons from region behind laser pulse
- Condition *a*<sub>0</sub> > 2 and:

$$c\tau < w_0 \approx R \approx \frac{\lambda_p}{\pi} \sqrt{a_0}$$

- Approx spherical cavity ("bubble") of radius *R* formed
- Laser pulse relativistically guided over many Z<sub>R</sub>
- Electrons self-injected
- Can give near-monoenergetic beams



# **High-intensity ultrafast lasers:** The bubble regime



A. Pukhov & J. Meyer-ter-Vehn *Appl. Phys. B* **74** 355 (2002) W. Lu *et al. Phys. Rev. STAB* **10** 061301 (2007)

- For short, high-intensity pulses ponderomotive force expels all electrons from region behind laser pulse
- Condition *a*<sub>0</sub> > 2 and:

$$c\tau < w_0 \approx R \approx \frac{\lambda_p}{\pi} \sqrt{a_0}$$

- Approx spherical cavity ("bubble") of radius *R* formed
- Laser pulse relativistically guided over many Z<sub>R</sub>
- Electrons self-injected
- Can give near-monoenergetic beams





### **Dream beams!**





# **Scaling to higher energies**





- Increasing energy by factor 10 requires factor 10 decrease in density and factor 30 increase in L<sub>acc</sub>
- ▶ Hence *L*<sub>acc</sub> increases from mm to cm
- Must overcome diffraction of drive pulse....











Laser beam will be focused if the refractive index decreases with distance from axis



- Relativistic self-focusing: transverse variation of intensity gives correct refractive index profile
- Leads to self-focusing for beams above a critical power:

$$P_c = 17.4 \left(\frac{\omega}{\omega_p}\right)^2 \,\mathrm{GW}$$







Laser beam will be focused if the refractive index decreases with distance from axis



- Relativistic self-focusing: transverse variation of intensity gives correct refractive index profile
- Leads to self-focusing for beams above a critical power:

$$P_c = 17.4 \left(\frac{\omega}{\omega_p}\right)^2 \,\mathrm{GW}$$



Example :

$$n_e = 10^{18} \,\mathrm{cm}^{-3}, \lambda = 800 \,\mathrm{nm}$$
  
 $P_c = 8 \,\mathrm{TW}$ 





Laser beam will be focused if the refractive index decreases with distance from axis



- Relativistic self-focusing: transverse variation of intensity gives correct refractive index profile
- Leads to self-focusing for beams above a critical power:

$$P_c = 17.4 \left(\frac{\omega}{\omega_p}\right)^2 \,\mathrm{GW}$$

 Plasma channel: transverse variation of electron density gives correct refractive index profile

Χ



 $n_{\rm e}(\mathbf{X})$ 

 $\eta = \sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2}$ 

 $\approx 1 - \frac{1}{2} \frac{n_e(r)e^2}{\gamma m_e \epsilon_0 \omega^2}$ 





# Gas-filled capillary discharge waveguide

D. J. Spence et al. *Phys. Rev. E* **63** 015401(R) (2001) A. Butler et al. *Phys. Rev. Lett.* **89** 185003 (2002)



- Plasma formed by pulsed discharge
  - ~300 A peak
  - ~ 200 ns half-period
- Plasma channel formed by heat conduction to capillary wall
- Channel is fully ionized and stable





# Gas-filled capillary discharge waveguide



D. J. Spence et al. *Phys. Rev. E* **63** 015401(R) (2001) A. Butler et al. *Phys. Rev. Lett.* **89** 185003 (2002)



- Plasma formed by pulsed discharge
  - ~300 A peak
  - ~ 200 ns half-period
- Plasma channel formed by heat conduction to capillary wall.
- Channel is fully ionized and stable.





# Gas-filled capillary discharge waveguide



D. J. Spence et al. *Phys. Rev. E* **63** 015401(R) (2001) A. Butler et al. *Phys. Rev. Lett.* **89** 185003 (2002)



- Plasma formed by pulsed discharge
  - ~300 A peak
  - ~ 200 ns half-period
- Plasma channel formed by heat conduction to capillary wall.
- Channel is fully ionized and stable.





## GeV bea ns!















# Status.... ... and some challenges



# **Status: Towards applications**

- 100 eV radiation from undulators
  - Fuchs et al. *Nat. Phys.* **5** 826 (2009)
- 10 150 keV radiation from betatron motion
  - Kneip et al. *Nat. Phys.* **6** 980 (2010)
  - Cippiccia et al. Nat. Phys. 7 861 (2011)
- 1 MeV from Thomson scattering
  - Powers et al. *Nat. Photon.* **8** 28 (2013)
  - Khrennikov et al. *Phys. Rev. Lett.* 114 195003 (2015)
- Proof-of-principle imaging with betatron radiation sources
  - flies, fish, human bone





# **Imaging with betatron radiation**



Advanced Accelerator Physics Royal Holloway, 14th September 2017



# **Imaging with betatron radiation**



Advanced Accelerator Physics Royal Holloway, 14th September 2017

## **Imaging with betatron radiation**

![](_page_48_Picture_1.jpeg)

![](_page_48_Figure_2.jpeg)

J.M. Cole et al. Sci. Rep. 5 13244 (2015)

![](_page_48_Picture_5.jpeg)

![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_1.jpeg)

Simon Hooker, University of Oxford Advanced Accelerator Physics Royal Holloway, 14th September 2017

![](_page_49_Picture_4.jpeg)

![](_page_50_Picture_0.jpeg)

- The shot-to-shot jitter of the key bunch parameters is too high
- The energy spread is too large

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

![](_page_51_Picture_0.jpeg)

- The shot-to-shot jitter of the key bunch parameters is too high
- The energy spread is too large

- The repetition rate is too low
- ▶ The wall-plug efficiency of the driving lasers (0.1%) is too low

![](_page_51_Picture_8.jpeg)

![](_page_52_Picture_0.jpeg)

- The shot-to-shot jitter of the key bunch parameters is too high
- The energy spread is too large

Requires controlled injection

- The repetition rate is too low
- ▶ The wall-plug efficiency of the driving lasers (0.1%) is too low

![](_page_52_Picture_9.jpeg)

![](_page_53_Picture_0.jpeg)

- The shot-to-shot jitter of the key bunch parameters is too high
- The energy spread is too large

Requires controlled injection

- The repetition rate is too low
- The wall-plug efficiency of the driving lasers (0.1%) is too low

Requires novel ways to drive wakefield

![](_page_53_Picture_10.jpeg)

![](_page_54_Picture_0.jpeg)

| Parameter                    | Typical values<br>from plasma | Requirements of<br>European XFEL | Conclusion   |
|------------------------------|-------------------------------|----------------------------------|--------------|
| Beam energy <i>E</i>         | < 4 GeV                       | 17.5 GeV                         | <u></u>      |
| Energy spread Δ <i>E / E</i> | 1 - 5 %                       | 0.005%                           | ×            |
| Bunch charge                 | 10 - 100 pC                   | 1000 pC                          |              |
| Bunch duration               | < 5 fs                        | 200 fs                           | $\checkmark$ |
| Rep. rate                    | < 10 Hz                       | 27 kHz                           | ×            |
| Norm emittance $\epsilon_n$  | 0.1 - 2 mm mrad               | 1.4 mm mrad                      | $\checkmark$ |
| Jitter: energy               | 1 - 5%                        |                                  | ×            |
| Jitter: charge               | 5 - 50%                       |                                  | ×            |
| Jitter: pointing             | 0.5 - 3.0 mrad                |                                  | ×            |

![](_page_54_Picture_4.jpeg)

![](_page_55_Picture_0.jpeg)

| Parameter                    | Typical values<br>from plasma | Requirements of<br>European XFEL | Conclusion   |                                                                                                                                   |
|------------------------------|-------------------------------|----------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Beam energy <i>E</i>         | < 4 GeV                       | 17.5 GeV                         |              | Power in e-beam: 470 kW<br>If drive laser has "wall-<br>plug" efficiency of 0.1%<br>then need >400 MW just<br>to power the laser! |
| Energy spread Δ <i>E / E</i> | 1-5%                          | 0.005%                           | ×            |                                                                                                                                   |
| Bunch charge                 | 10 - 100 pC                   | 1000 pC                          | •••          |                                                                                                                                   |
| Bunch duration               | < 5 fs                        | 200 fs                           | $\checkmark$ |                                                                                                                                   |
| Rep. rate                    | < 10 Hz                       | 27 kHz                           | ×            |                                                                                                                                   |
| Norm emittance $\epsilon_n$  | 0.1 - 2 mm mrad               | 1.4 mm mrad                      | $\checkmark$ |                                                                                                                                   |
| Jitter: energy               | 1 - 5%                        |                                  | ×            |                                                                                                                                   |
| Jitter: charge               | 5 - 50%                       |                                  | ×            |                                                                                                                                   |
| Jitter: pointing             | 0.5 - 3.0 mrad                |                                  | ×            |                                                                                                                                   |

![](_page_55_Picture_4.jpeg)

# Multi-pulse laser wakefield acceleration

![](_page_57_Picture_0.jpeg)

- MP-LWFA: Use a train of many pulses separated by plasma period to resonantly excite wakefield
  - Not a new idea. Considered theoretically (in 1D) in 1990s
- Some advantages
  - Moves energy storage from laser material to the plasma
  - Allows drive energy to be supplied over many (10 - 100) plasma periods
  - Opens possibility of using new laser technologies (thin-disk, fibre lasers, OPCPA) capable of multi-kHz operation @ > 10% efficiency
  - Opportunities for additional control

![](_page_57_Picture_9.jpeg)

![](_page_57_Figure_10.jpeg)

Multi-pulse LWFA Only 4 laser pulses shown. In reality would use 10 - 100!

![](_page_57_Picture_13.jpeg)

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_1.jpeg)

#### S.M. Hooker et al. J. Phys. B 47 234003 (2013)

- Fluid and PIC simulations show gradients of 4.7 GV/m for train of 100 pulses
- For L<sub>acc</sub> = L<sub>d</sub>/2 = 260 mm, energy gain is 0.75 GeV

![](_page_58_Figure_5.jpeg)

![](_page_58_Picture_7.jpeg)

![](_page_59_Picture_0.jpeg)

# **MP-LWFA-driven radiation sources**

- Betatron radiation
  - Average photon flux @ 10keV is ≈ 2 × 10<sup>8</sup> photons s<sup>-1</sup>, per 0.1% BW
  - Greater than existing short-pulse 3rd gen sources (but 100 x better resolution)

► FELs

- Simulations show SASE saturation reached in soft X-ray range (λ<sub>FEL</sub> = 6.9 nm) in 4 m TGU
- Peak FEL power comparable to kmscale FELs but much higher repetition rate than non-superconducting machine

S.M. Hooker et al. J. Phys. B 47 234003 (2013)

![](_page_59_Figure_9.jpeg)

![](_page_59_Figure_10.jpeg)

![](_page_60_Picture_0.jpeg)

# First demonstration of MP-LWFA concept

![](_page_60_Figure_2.jpeg)

J. Cowley et al. Phys. Rev. Lett. **119** 044802 (2017)

- Single, chirped pulse from
   Ti:sapphire laser converted to
   train of pulses by passing
   through Michelson
   interferometer
- Focused into gas cell to drive wakefield
- Wakefield probed by frequency domain holography
  - Interference between copropagating probe pulse and a reference pulse gives phase shift of probe
  - Probe & ref pulses frequency
     chirped, so frequency ↔ time

![](_page_60_Picture_10.jpeg)

![](_page_61_Picture_0.jpeg)

- Pulse train (N ≈ 7)
   experiments
  - Clear resonant excitation when plasma period (~ P<sup>-1/2</sup>) matches pulse spacing
- "Energy recovery" (N = 2)
  - Wakefield damped by trailing laser pulse when out of resonance
  - Trailing pulse reduced wake amplitude by (44 ± 8)%

# **Summary of results**

![](_page_61_Figure_7.jpeg)

![](_page_62_Picture_0.jpeg)

![](_page_62_Picture_1.jpeg)

- Laser-driven plasma accelerators have made enormous progress in last three decades
- GeV-scale electron beams can now be generated from accelerator stages only a few cm long
- Attention is now turning to near-term applications
- Future challenges for laser-driven plasma accelerators are to:
  - Improve bunch parameters
  - Reduce shot-to-shot pulse jitter
  - Operate at higher repetition rate
  - Increase efficiency of driving lasers

![](_page_62_Figure_10.jpeg)

![](_page_62_Picture_11.jpeg)

![](_page_62_Picture_13.jpeg)

![](_page_63_Picture_0.jpeg)

#### JAI, Oxford

- Riccardo Bartolini, Laura Corner, Stephen Dann, Andrei Seryi, Roman Walczak
- Chris Arran, Gavin Cheung, James Cowley, Chris Thornton, Robert Shalloo, Jakob Jonnerby

#### JAI, Imperial College

Stuart Mangles & Zulfikar Najmudin

#### Friedrich-Schiller-Universität, Jena, Germany

Jens Limpert & Andreas Tuennermann

This work was supported in part by the following grants:

- STFC (ST/J002011/1, ST/ P002048/1 & 1507620)
- EPSRC (1378575 & 1093881)
- ► AOFSR (FA8655-13-1-2141)
- Helmholtz Foundation (VH-VI-503)

![](_page_63_Picture_15.jpeg)