

Beam Instrumentation and Diagnostics (Lecture 2)

CAS 2017

Royal Holloway, London

4th – 15th September, 2017

Dr. Rhodri Jones

Head of the CERN Beam Instrumentation Group

Introduction

Yesterday was dedicated to

- Beam position measurement
- Beam intensity measurement
- Beam loss monitoring
- Today we'll continue with a look at
 - Beam profile monitoring & diagnostics
 - Tune, Coupling & Chromaticity measurement & feedback
 - Making Accelerators work using beam instrumentation

Beam Profile Monitors

Profile Monitoring using Wires

Secondary Emission Monitors (SEM or HARP)

- Beam profile from secondary electrons emitted from wire grid on beam impact
- Require many electronic channels for readout

Profile Monitoring using Wires

Wire-scanners

- Move thin wire across beam
- Low energy : correlate wire position with secondary emission
- High energy : correlate wire position with secondary shower

Limitation of Wire-Scanners

• Wire Breakage – why?

- Brittle or Plastic failure (error in motor control)
- Melting/Sublimation (main intensity limit)
 - Due to energy deposition in wire by particle beam
- Temperature evolution depends on
 - Heat capacity, which increases with temperature!
 - Cooling (radiative, conductive, thermionic, sublimation)
 - Negligible during measurements (Typical scan 1 ms & cooling time constant ~10-15 ms)

Wire Choice

- Good mechanical properties, high heat capacity, high melting/sublimation point
- E.g. Carbon which sublimates at 3915K

Dr. Rhodri Jones – CERN Beam Instrumentation Group Bea

Profile Monitoring using Screens

Early Diagnostics

- Luminescence / Scintillating Screens
 - Destructive (thick) but work with low intensities

Advantages

- Allows use of CCD camera
 - gives 2D information

Dr. Rhodri Jones - CERN Beam Instrumentation Group

Profile Monitoring using Screens

Optical Transition Radiation

- Radiation emitted when a charged particle goes through an interface with different dielectric constants
- Surface phenomenon allows use of very thin screens (~10µm)
 - Can use multiple screens with single pass in transfer lines
 - Can leave it in for hundreds of turns e.g. for injection matching

• OTR screens

- Less destructive than scintillation but requires higher energy / intensity beam
- Can be used for extremely high resolution measurements

Synchrotron Light Monitors

Synchrotron Light Image Acquisition

Using various cameras

- Standard CCD cameras for average beam size measurements
- Gated intensified camera
 - For bunch by bunch diagnostics
- X-ray pin hole cameras
 - For imaging small, high energy electron beams
- Streak cameras
 - For short bunch diagnostics

Longitudinal Profile Measurement

- Next Generation FELs
 & Linear Colliders
 - Use ultra short bunches to increase brightness or improve luminosity
- How do we measure such short bunches?
 - Direct Observation
 - Synchrotron radiation observed with dedicated instruments
 Streak camera resolution ~200fs
 - Use of RF techniques
 - Use laser pulses and sampling techniques
 - Indirect Calculation
 - Reconstruct bunch length from frequency spectrum
 - Either directly from the bunch or through its radiation spectrum

p⁺ @ LHC	250ps
H⁻ @ SNS	100ps
e⁻ @ ILC	500fs
e⁻ @ CLIC	130fs
e ⁻ @ XFEL	80fs
e ⁻ @ LCLS	<75fs

Measuring Ultra Short Bunches

RF Deflection

- Converts time information to spatial information
- Coupled to spectrometer also provides energy information
- Destructive technique
- Resolution down to 1.3 fs
 - X-band RF cavity
 - Linac Coherent Light Source (SLAC)

Measuring Ultra Short Bunches

- Electro-Optic Sampling
 - Birefringent crystal placed close to the beam
 - Non-destructive technique
 - Bunch passes simultaneous a to chirped (time varying wavelength) laser pulse
 - Intensity of bunch electric field modifies polarisation of light in crystal
 - Longitudinal bunch distribution mapped to wavelength
 - Wavelength v. Intensity gives longitudinal bunch distribution
 - Can be done in a variety of ways (simplest example below)
 - Resolution down to 30 fs possible

Diagnostics using Beam Profile Monitors

3 Monitor Method

- Optics functions & initial emittance reconstructed using transport matrix

More advanced reconstruction

- Linearly map measured profiles onto initial phase space
- Use tomography to reconstruct particle density distribution

Things get more complicated when you add space charge

Hybrid Phase Space Tomography in Linac4

- Iteratively vary Twiss parameters
- Track to the measurement locations including space-charge
- Deduce new distribution of density in phase space from which particles fall on which wires
- Generate new beam distribution & use for next iteration

Reconstructed & Measured profiles at last SEM grid

Dr. Rhodri Jones – CERN Beam Instrumentation Group

CERN

Measurements with Screens

Injection matching measurements with OTR

- Machine settings mismatch
- Leads to filamentation
- Results in emittance growth

Dr. Rhodri Jones – CERN Beam Instrumentation Group

CERN

Bunch by Bunch Diagnostics

LHC Synchrotron Light Diagnostics

- Gated intensified Camera
- Allows bunch by bunch profile measurement

Electron Cloud

- Electron cloud creates instability in tail of bunch trains
- Increases the size of the bunches towards the end of each bunch train
- Leads to losses for these bunches
- Adjustments made to counter this effect
 - Chromaticity
 - Transverse feedback
 - Beam scrubbing

Dr. Rhodri Jones – CERN Beam Instrumentation Group B

Tune, Coupling & Chomaticity Measurement

Machine Tune

Machine Tune

Characteristic Frequency of the Magnetic Lattice Given by the strength of the Quadrupole magnets

Parameters per plane

- Q : Full betatron tune
- q : Fractional tune (operating point)

Real life more complex

- horizontal & vertical oscillations couple
- betatron motion at large amplitudes non-linear

Tune Measurement

- Integer tune
 - can be seen in orbit response
 - H: 59, V: 64 for LHC

• Fractional tune (q)

- Seen from turn-by-turn signal of single BPM if beam is given a kick
- Fast Fourier Transform (FFT) of oscillation data gives resonant frequency (q)

Tune Measurement – the principle

Beam size

- defined by incoherent betatron motion of all particles
- Particles have momentum spread
 - gives spread in focussing by quadrupoles
 - gives rise to spread in the frequency of the betatron oscillations (chromaticity)
 - coherent oscillations will de-cohere
- Hadrons do not forget!
 - once hit they oscillate (practically) forever
 - any excitation must be kept very small

Tune Measurement – the principle

- Observable is typically turn-by-turn position from a BPM
- BPM electrode signal has temporal shape related to the temporal structure (intensity profile) of the passing beam
 - Most of the signal produced is linked to intensity
- On top we look for very small variations linked to position
 Such signals are very difficult to simulate in the lab

Tune Measurement – the principle

• A typical perfect detection scheme

Reality

CERN

Dynamic range issues

- Signals related to betatron oscillations are small with respect to beam offset signals
- Even for centred beam leakage is of order 1-10 % (of 100V!) for ns beam pulses

CERN

The LHC Tune Measurement System

Direct Diode Detection – the advantages

- Single RF Schottky diode can handle up to 50 V pulses
 - Higher with a few diodes in series (LHC detector has 6 diodes)
- Betatron modulation downmixed to below the revolution frequency
 - Allows efficient signal processing with inexpensive, high resolution ADCs
- Just AM receiver so what's new?
 - Slow discharge & use of low noise, high impedance amplifiers
 - Brutal filtering of revolution line & everything outside band of interest

LHC Tune System Performance

Real-Time Tune Display

FR!

Tune Measurement in the LHC

- Tune diagnostics throughout the ramp
 - Early ramps had poor tune control
 - Beam loss observed every time tune crossed a resonance line

Tune Feedback in the LHC

- Routinely used to compensate fill-to-fill variations
 - Uses peak fit on FFT with 0.1..0.3 Hz bandwidth
 - Feedback on trim quadrupoles

Coupling Measurement Start with decoupled machine Only horizontal tune shows up in horizontal FFT Gradually increase coupling FFT of Horizontal Vertical mode shows up & frequencies shift **Acquisition Plane** Ver Set Tunes Amplitude Hor

Frequency

Coupling & Tune Control

Set Measured

$$Q_{x,0} = Q_1 + \frac{1}{2}\Delta - \frac{1}{2}\sqrt{\Delta^2 + |C^-|^2}$$

- Measured tunes the physical observables
 - Often called the 'normal modes' or 'eigenvalues'
- Set tunes
 - What tunes would be in absence of coupling
 - Can be calculated with knowledge of coupling
- The coupling coefficient C⁻
 - Often called 'minimum tune split' or ΔQ_{min}
 - 'Forbidden zone' in a system of coupled oscillators
- Set tune split Δ
 - Difference between the set horizontal & vertical tunes
- When C^- greater than Δ
 - Conventional tune control no longer works
 - Magnet system applies correction to the wrong plane
 - Tune feedback becomes unstable

Coupling & Tune Feedback

- Measurement from RHIC during acceleration cycle
 - At several points measured tune is defined by coupling
 - Tune feedback breaks down at these points

Coupling & Tune Feedback

- Coupling Feedback at RHIC
 - Measure coupling & feed-back on skew quadrupole families
 - Maintains a decoupled machine
 - Coupling & Tune feedback ON
 - Easily tracks & correct tune throughout acceleration cycle

Machine Chromaticity

Optics Analogy: Lens [Quadrupole] Tune E Cont Achromatic incident light [Spread in particle energy]

Spread in the Machine Tune due to Particle Energy Spread Controlled by Sextupole magnets

First Order $\Delta Q = Q' \frac{\Delta p}{p} = \left(\frac{1}{\gamma^2} - \alpha\right)^{-1} Q' \frac{\Delta f}{f}$ $\xi = \frac{Q'}{Q}$

CERN

Measurement Techniques

Tune change for different beam momenta	\$ Standard method used on all machines. Can be combined with PLL tune tracking to give on-line measurement
Width of tune peak or damping time	\$ Model dependent, non-linear effects, not compatible with active transverse damping
Amplitude ratio of synchrotron sidebands	\$ Difficult to exploit in hadron machines with low synchrotron tune, Influence of collective effects?
Width ratio of Schottky sidebands	\$ Used on many machines & ideally suited to unbunched or ion beams. Measurement is typically very slow
Bunch spectrum variations during betatron oscillations	\$ Difficult to disentangle effects from all other sources – e.g. bunch filling patterns, pick-up & electronics response
Head-tail phase advance (same as above, but in time domain)	\$ Good results on several machines but requires kick stimulus → emittance growth!

RF Momentum Modulation Techniques

Slow RF Variation

- Apply time varying RF modulation
- Continuously measure the tune
 - Amplitude of tune variation proportional to chromaticity

Example from the LHC

- Sinusoidal RF modulation at 0.05Hz
- Tune continuously tracked in all planes of both beams
- Chromaticity calculated once acquisition complete

RF Momentum Modulation Techniques

Slow RF Variation

- Apply time varying RF modulation
- Continuously measure the tune
 - Amplitude of tune variation proportional to chromaticity

Example from CERN-LEP

- Triangular RF modulation
- Allows sign of chromaticity to be easily determined

Applied Frequency Shift

 $Q_h \& Q_v$ Variation

Example from LEP β-squeeze

FR!

BI) Dr. Rhodri Jones – CERN Beam Instrumentation Group

Example from LHC Acceleration Ramp

- Dynamic Measurement Examples
 - LHC Ramp
 - RF continuously modulated
 - Tune measured continuously

$$\Delta Q = Q' \frac{\Delta p}{p} = \left(\frac{1}{\gamma^2} - \alpha\right)^{-1} Q' \frac{\Delta f}{f}$$

Chromaticity calculated from tune modulation amplitude

Example from RHIC

Chromaticity measurement with feedbacks on

- RHIC Example
 - RF continuously modulated
 - Tune feedback maintains tunes constant
 - Chromaticity calculated from feedback corrections to tune

Chromaticity still well computed with effects of other feedbacks taken into account

CERN

Measurement Techniques

Tune change for different beam momenta	\$ Standard method used on all machines. Can be combined with PLL tune tracking to give on-line measurement
Width of tune peak or damping time	\$ Model dependent, non-linear effects, not compatible with active transverse damping
Amplitude ratio of synchrotron sidebands	\$ Difficult to exploit in hadron machines with low synchrotron tune, Influence of collective effects?
Width ratio of Schottky sidebands	\$ Used on many machines & ideally suited to unbunched or ion beams. Measurement is typically very slow
Bunch spectrum variations during betatron oscillations	\$ Difficult to disentangle effects from all other sources – e.g. bunch filling patterns, pick-up & electronics response
Head-tail phase advance (same as above, but in time domain)	\$ Good results on several machines but requires kick stimulus → emittance growth!

An

Amplitude of Synchrotron Sidebands

- Recently demonstrated at DIAMOND
 - RF modulation changes orbit not compatible with user operation
 - Looking for technique to measure chromaticity on-line
 - Measure Beam Transfer Function (BTF) on single bunch
 - Using transverse bunch by bunch feedback system
 - Emittance blow-up of single bunch irrelevant

Amplitude of Synchrotron Sidebands

- Must be Careful with High Intensity Effects
 - Modification of tune spectra by space charge & impedance
 - Measurements performed at GSI

CFR

- Relative heights & mode structure given by chromaticity
 - Can be calculated with simplified analytical models

Dr. Rhodri Jones – CERN Beam Instrumentation Group Beam Instrumentation and Diagnostics - CAS 2017

Diagnosing Machine Issues using Beam Instrumentation

\mathbb{R} LEP Beams Lost During β -Squeeze

- Extract from LEP logbook (when pen & paper still used!)
 - OK when stepping through the β -squeeze slowly
 - Beams lost when attempting to go straight through

Straight through to grand. At ~97-98 GW e lage vertical oscillation OPAL trigger. Maybe a bit too ambitions Big vadiation spikes in all expts. 22 Gev 4950. Breakpaint at 93 Bev. 01:40 6404A .234 /.164 5.27. At 01-58-36 URMS ~0 93 Gel 4QSO Tunehistory 01-50-25 fill 7066

The Diagnostics

- Tune Variation
 - Tracked for different power converter ramp rates

The Explanation

- Master-Slave Configuration for Power Converter
 - Each converter can deliver full DC current
 - Slave converter not working
 - Slave only needed to give increased voltage for fast current changes

LEP – No Circulating Beam

No Circulating Beam after Technical Stop

Phase advance from BPMs show that optics no longer correct after specific quadrupole

The Explanation

- After many trials open vacuum chamber in QL10.L1
 - & 10m to the right …..

Unsociable sabotage Both bottles were empty!!

Summary

- You now hopefully have a first impression of how to build and use beam instrumentation to run & optimise accelerators
- It should also be clear that there are two distinct types
 - "Bread & butter" instrumentation for standard operation
 - Innovative instrumentation to address specific requirements or new techniques to use traditional instrumentation in non-conventional ways

Want to know more?

Then Join the Beam Instrumentation Afternoon Course

- 3 Sessions on BPM design
 - Simulation software & "hands-on" laboratory measurements
- 1 Session on Tune Measurement
 - Program and measure using your own DSP
- 2 Sessions on Profile Measurements
 - "Hands-on" laboratory measurements
- Final Session
 - Group presentation of your BI proposals for an accelerator

