

Ebeltoft – Denmark 8-17 June, 2010

RF GYMNASTICS IN SYNCHROTRONS - Part 1 -

Part 1

Part 2

OUTLINE

- **1. Introduction**
- 2. Longitudinal beam dynamics
- **3. Single bunch gymnastics**
- 4. Multi-bunch gymnastics
- 5. Beam gymnastics with broadband RF systems
- **6. Practical implementation**
- 7. Conclusions

1. Introduction

Frequent need for changing the longitudinal beam characteristics In an accelerator complex. Example:

Conflict between the requirements of high energy hadron colliders and the ones of the lower energy Synchrotrons:

	HIGH ENERGY HADRON COLLIDER	INJECTORS' SYNCHROTRONS
RF frequency	Large because of need for: - high voltage for acceleration - high focusing for luminosity	Small because of need for: - acceptance - large frequency swing - gap without beam for kicker
Bunch frequency	<< RF frequency to maximize luminosity - limited by detector saturation	= RF frequency to maximise bunching factor and minimise Laslett tune-shift

ft – Denmark

8-17 June. 2010

1. Introduction (cont.)

	COLLIDE	INJECTOR COMPLEX	
Name (Lab.)	RF (MHz)	Bunch freq. (MHz)	Injector / Collider bunches
RHIC (BNL)	197	4.7	8/1
LHC (CERN)	400	40	~ 1/12
HERA (DESY)	208	10.4	1/1
Tevatron (FNAL)	53	2.5	~ 11/1

R. Garoby

Ebeltoft – Denmark

8-17 June, 2010

1. Introduction (cont.)

> Need for beam gymnastics in the chain of injectors to change the number of bunches while satisfying the following constraints:

- minimum blow-up of longitudinal emittance,
- minimum (no ?) losses,
- high reliability / high stability of performance,
- low cost (minimum modifications to existing injectors hardware)

Û

Modulation of RF parameters (amplitude, phase, frequency) Non-trivial manipulations are called <u>"RF gymnastics"</u>

Preliminary comments:

- Synchrotron radiation is not considered.
- Large numbers of gymnastics have been invented. Only the most typical and common ones are described.

Ebeltoft – Denmark

8-17 June. 2010

2. Longitudinal beam dynamics [ref. 1 + 2]

Particle parameters:

- charge, energy (rest energy): q, $E(E_0)$
- **speed**, momentum, relativistic parameters: v, p, β, γ
- revolution period (frequency), orbit length: $T(\omega_R/2\pi)$, $2\pi R$

Synchrotron parameters:

 $\boldsymbol{\square}$ $\alpha_{\boldsymbol{\square}}, \gamma_{\boldsymbol{T}}, \eta$

$$\frac{\Delta R}{R} = \alpha_P \frac{\Delta p}{p}, \qquad \alpha_P = \frac{1}{\gamma_T^2}$$
$$\frac{\Delta \omega}{\omega} = -\eta \frac{\Delta p}{p}, \qquad \eta = \frac{1}{\gamma_T^2} - \frac{1}{\gamma^2}$$

- nominal orbit length: $2\pi R_o$
- = energy etc. on nominal orbit: E_0 , v_0 , p_0 , β_0 , γ_0

RF parameters

- frequency, harmonic number: h, ω_R
- voltage (peak voltage), phase: \hat{V}, φ

$$w = h\omega_R$$
$$V = \hat{V}\sin(\omega t + \varphi)$$

 $\omega = h\omega_{-}$

1

Equations of motion

- Synchronous particle = "the particle whose energy E_s and phase φ_s are such that it sees the same voltage at the next revolution"
- Phase slip:

per turn :
$$d\Delta \varphi = h\omega_{RS} (T - T_S)$$

per second : $\frac{d\Delta \varphi}{dt} = h\omega_{RS} \frac{\Delta T}{T_S}$
 $\frac{d\Delta \varphi}{dt} = \frac{h\eta\omega_{RS}}{\beta^2} \frac{\Delta E}{E_S}$
ariation:

Ebeltoft – Denmark

8-17 June, 2010

$$\left(\frac{d\Delta E}{dt} = \frac{q\,\omega_{RS}}{2\pi} \left[V\left(\Delta\varphi + \varphi_{S}\right) - V(\varphi_{S})\right]\right)$$

Phase stability (sinewave & stationary bucket)

R. Garoby

Basic relations and effects of parameters (case of a stationary bucket)

 Synchrotron frequency (for small amplitude oscillations around the synchronous particle)

$$\omega_{S} = \sqrt{\frac{h|\eta|\omega_{RS}^{2}q\hat{V}}{2\pi\beta^{2}E_{S}}}$$

Bucket height

$$\Delta E_{MAX} = \sqrt{\frac{2E_S\beta^2}{\pi h|\eta|}}q\hat{V}$$

Bunch dimensions at constant emittance

$$\Delta \hat{\varphi} \propto \left[\frac{|\eta|}{hE_S q \hat{V}} \right]^{\frac{1}{4}} \qquad \Delta \hat{E} \propto \left[\frac{hE_S q \hat{V}}{|\eta|} \right]^{\frac{1}{4}}$$

Adiabaticity

- Adiabatic = "Parameters are changed at a slow enough rate so that the distribution of particles is always at equilibrium."
- Adiabaticity parameters: ε

$$\varepsilon = \frac{1}{\omega_S^2} \left| \frac{d\omega_S}{dt} \right|$$

Emittance preservation (Liouville's theorem)

Longitudinal motion is conservative (no energy dissipation effect like synchrotron radiation)

Constant local density of particles in the longitudinal phase plane

2. Longitudinal beam dynamics "Micro-" and "Macro-scopic" emittances

Adiabatic RF voltage reduction

R. Garoby

2. Longitudinal beam dynamics "Micro-" and "Macro-scopic" emittances

Non-adiabatic RF voltage reduction

R. Garoby

3. Single bunch gymnastics Bunch compression [ref. 3, 4, 5]

Required to get:

short bunches and/or large energy spread (Liouville !)

Principle:

rotate a mismatched and long bunch in a large bucket.

R. Garoby

Ebeltoft – Denmark

3. Single bunch gymnastics Bunch compression

Bunch stretching techniques

R. Garoby

Ebeltoft – Denmark

3. Single bunch gymnastics Bunch compression

Performance:

depends upon bunch length and normalized emittance

R. Garoby

3. Single bunch gymnastics Bunch compression (experiment)

LHC bunch Compression in the CERN-PS before ejection to the SPS

p = 26 GeV/c

Ebeltoft – Denmark

8-17 June, 2010

Comment

Phase & energy errors are swapped ⇒ phase accuracy depends upon initial energy ⇒ energy accuracy depends upon initial phase

3. Single bunch gymnastics Controlled blow-up [ref. 6, 7, 8]

Required for:

stabilizing the beam at high intensity

Principle:

increase the longitudinal "macroscopic" emittance creating filaments deliberately and accelerating their dilution

Technique:

superpose to the RF holding the beam a phase modulated voltage at a much higher frequency

$$V_H = \hat{V}_H \sin(h_H \omega_R t + \alpha \sin \omega_M t + \theta_H)$$

Resonances are induced which redistribute density inside the bunch. High frequency increases non-linearities and helps smooth the distribution (filamentation).

Ebeltoft – Denmark

8-17 June. 2010

3. Single bunch gymnastics Controlled blow-up

Typical parameters

$\frac{\hat{V_H}}{\hat{V}}$	$\frac{h_{H}}{h}$	α (rad)	$\frac{\omega_{_M}}{\omega_{_S}}$	Duration
0.05 to 0.2	> 10 for fast blow-up	0.8 π to 1.2 π	2 to 7	>10 synchrotron periods

3. Single bunch gymnastics Controlled blow-up (experiment)

Ebeltoft – Denmark 8-17 June, 2010

4. Multi-bunch gymnastics

Iso-adiabatic debunching-rebunching [ref. 9, 10]

Used for changing the number of bunches

Principle:

- Slow (adiabatic) voltage reduction with fast final h₁ RF turn-off
- Drift period without RF
- Fast h₂ RF turn-on followed by slow (adiabatic) voltage increase

4. Multi-bunch gymnastics Iso-adiabatic debunching-rebunching

Performance:

- depends upon adiabaticity and voltages at RF turn-off and -on
- high sensitivity to disturbance during drift without RF
- effect of beam induced voltage in cavities

Û

unavoidable blow-up

+ no gap without beam

Normalised bunch emittance in the final bucket

Ebeltoft – Denmark

8-17 June, 2010

- 4. Multi-bunch gymnastics Splitting (Merging) [ref. 11, 12]
- Changes the numbers of bunches (in multiples of 2 and 3)
- Principle: adiabatically change the focusing voltage for a continuous evolution from the original to the final state
- Technique: apply simultaneously 2 RF voltages on h and 2h (Example of splitting in 2)

$$V_{1} = \hat{V}_{1} \sin(h\omega_{R}t)$$

$$V_{2} = \hat{V}_{2} \sin(2h\omega_{R}t + \pi)$$
Time

4. Multi-bunch gymnastics Splitting in two (simulation)

R. Garoby

Ebeltoft – Denmark

4. Multi-bunch gymnastics Splitting in two (measurement)

R. Garoby

4. Multi-bunch gymnastics Splitting in four (simulation)

Splitting bunches in four at 26 GeV/c

R. Garoby

4. Multi-bunch gymnastics Triple splitting [simulation (1)]

Splitting bunches in three at 3.57 GeV/c in the PS

R. Garoby

Ebeltoft – Denmark

4. Multi-bunch gymnastics Triple splitting [simulation (2)]

4. Multi-bunch gymnastics Triple splitting (measurement)

4. Multi-bunch gymnastics Splitting (Merging)

Advantages with respect to debunching / rebunching:

- Capability to preserve longitudinal emittance: no need for very low RF voltages to minimise blow-up,
- Capability to keep a gap without particles over a fraction of the circumference,
- Good reproducibility: beam is always confined by RFs, and feedback loops can be used for stabilisation,
- Lower risk of microwave instability thanks to the larger (△p/p)²/l in the beam.

