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Introduction
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RF Power Transportation

4

RF éenerator(s)

----------------------------------------------------------

-------------------------------------------

-Purpose Transm|SS|on of RF power of several kW up to several MW at
frequencies from the MHz to GHz range. The RF power generated by an RF
generator or a number of RF generators must be combined, transported and
distributed to a load or cavity or a number of loads or cavities.

*Requirements: low loss, high efficieny, low reflections, high reliability, <

. , o
adjustment of phase and amplitude, .... ( B\ES{\,
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Transmission Lines for RF
Transportation

e Two-wire lines
(Lecher Leitung)

— often used for indoor
antenna (eg radio or TV) conductor

— problem: radiation to the
environment, can not be
used for high power
transportation

e Strip-lines conductor

— often used for microwave dielectric
integrated circuits

— problem: radiation to the
environment and limited
power capability, can not be
used for high power
transportation

conductor

conductor
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Transmission Lines for RF
Transportation (2)

e Coaxial transmission lines

— often used for power RF
transmission and connection of
RF components

— problem: high loss above a
certain frequency due to heating
of inner conductor and dielectric
material and limited power / “ conductor
capability at higher frequencies dielectric, gas or vacuum
due to small dimensions

conductor

 Waveguides
(rectangular,cylindrical or
elliptical)

— often used for high power
RF transmission (mostly
rectangular)

— problem: waveguide . .
plumbing, rigidity dielectric, gas or vacuum @
DESY
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Theory of Electromagnetic Waves
In Waveguides

{«/b’f/\
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Strategy for Calculation of Fields In
Lines for Power Transportation

 start with Maxwell equation
e derive wave equation

* Ansatz: separation into transversal and longitudinal field
components

e wave equation for transversal and longitudinal
components

e rewrite Maxwell equation in transversal and longitudinal
components

* solve eigenvalue problem for three cases
TEM (E,=H,=0), TE (E,=0, H,20), TM (H,=0, E#0)
» derive properties of the the solutions
0@
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Maxwell Equations

VxH=9&D+]

vsz—gés
V-D=p
V.-B=0

Amperes law

Faradays law

Gauss law

B magnetic field, H magnetic intensity, D electric displacement,

E electricfield

with p =0 (no external charges), j = 0 (no external current),
B =uH (upermeability)and D =¢E (& permittivity) one gets

VxH = 59/E

VxE——y/q

V-E=0
V-H=0
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Wave Equation

The wave equation can be derived from the Maxwell equations.

start with VxE=—u %t H and apply curl
— VxVxE:—,qu%tH
useof VxH=s0LE and VxVx=V(V:)-V?

—~  V(V-E)-VE-= —,uga%tz E
use V-E=0

= | V’E—ue a%tz E=0 wave equation for E

In the same way for H

V°H - ue 5%t2 H=0 | waveequation for H

/002
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Ansatz for Wave Egquation

Separation of fields in a function depending on transversal
coordinates only and a wave moving to the right depending
on longitudinal coordinate and time.
E(x,y,z,t)=E(X,y)expi(wt — £2)
H(X,y,z,t)=H(X, y)expi(wt — [z)
resultsin :

V°E + usw’E =0

with :k* = yso® and y =ip -

VIE+(y* +k*)E=0 N l—'

Note : y X

V. operates on transversal coordinates only, e.g. X, y (or r, ®).

E(x,y),H(x, y) are still vectors with longitudinal and transversal components
but they depend only on transversal coordinates.

0.
DESY
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Derivation of Maxwell Equation for

transversal and longitudinal Components

With VxE =-iouH
VxE=(V,—ife,)x(E,+E,)=-iou(H, +H,)

V. xE, —ife,xE, +V,xE, —ife, xE, =—louH, —iouH,

V.xE, =V, xe E, =—e,xV,E,

Now one can see

VtXEt ” €,

e,xE, L e,

V.xE, Le,

e,xE, =0

Separation of longitudinal and transversal components

V. xE, =—louH,

—ife,xE, +V, xE, = B
—ife, xE, —e,xV.E, =-louH, {/.\0/)\
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Derivation Maxwell Equation for transversal
and longitudinal Components (2)

With VxH =1wsE In the same manner

V. xH, =lweE,
e, xH, +e,xV H, =-iweE,

With V-H =0
V,-H, =ipH,
With V-E =0
vV, -E, =ipE,

f’/.\ - \
\ DESY |
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Equations of transversal and longitudinal
Components as Function of transversal
Coordinates
VIE+(y*+k*)E=0

VIH+(y* +k?)H =0

Wave equation

V. xE, =—louH,

. . Maxwell
—13e, xE, —e, xV.E, =—-louH, AXWE

equation for

V. xH, =lwsE,

e xH, +e.xV.H. —io, transversal and
V.oH —ipH longitudinal
V,-E, =ifE, components

/002
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TEM-, TE-, TM- Waves

1. E,=H,=0 TEM
2. E,=0and H,#0 TE (or H-wave)
3. H,=0andE,#0 TM (or E-wave)

On the next slides we will try to find solutions for
TE-waves. The treatment for TM- modes is similar.

For TEM modes the treatment is even easier, but
TEM-modes do not exist in hollow transmission

lines, because transversal E components require
longitudinal H components and transversal H
components require longitudinal E components.

These are 0 in TEM fields. TEM-modes exist in

coaxial lines since on the inner conductor we

might have J=O0. TR

( DESY )
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Derivation of TE-Wave Equations

With wave equation

VIH+(y*+k*)H=0 and »°+k* =k’
VIH+k’H =0

or for transversal and longitudinal components
VIH, +k’H, =0

VIH,+k’H, =0

With E, =0 in Maxwell equations
V. xE, =—louH,
—ipe, xE, =—louH,

V.,xH, =0

e, xH, +e,xV.H, =—-iweE,

V.-H, =ipH,

Vi-E =0 ’/B\g/v)\
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Derivation of TE-Wave Equations(2)
Application of curlon V, xH, =0 givesV, xV, xH, =0

With V. xV x=V (V,-)-VZ and V’H,+k*H,=0

=V (V,-H,)+k’H, =0

and withV,-H, =i14H,

V. (ipH,)+k*H, =0

H, =—:<12th2

c

Now
€, ><(IBez ><Et):ﬂ(ez(ez 'Et)_Et(ez 'ez)):_lBEt = WUE, X Ht

E, :_%eszt :_\/Zﬂele_lt ==L herHt
p e p p

H, can be calculated from H, and E, from H, and therefore from H, too. <o
/@ W o\
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Derivation of TE-Wave Equations(3)
Impedance of a TE-Wave

Z. =./— Impedance of an electromagnetic wave in free space
&
Le=2_ % Impedance of a TE - wave (H - wave)
E E, : :
L= HX = for TE - wave moving to the right
y X

/0@ .\
\ D E 8 Y |
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TE-Wave Equation in rectangular Waveqguides

ViH, +k’H, =0

H, =—:§VIHZ TE wave equation

c

E, =—Ze,xH

z t

0’ L2 H +%2 H,+k’H, =0 Eigenvalue problem

H --Pa/ y
ok sox :

5 - TE wave equation
== Yoy written in components
Ex:_ZTE :(iza 6y Hz

i
Ey:ZTE k_ﬁza 5X Hz

be:)

o,
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Solution of TE- Wave Equation

%%;2H2+€Z%2Hz+kaZ:o

Ansatz : Separation into x and y coordinates.
H =f-g with f=1f(x)and g=g(y)

1 42 1 42
TdAXZf—I_EdAyzg—'_kf:O
id%xzf:_kf

1

i/fg__w

+k2

C

{/.\‘/ \
( DESY.
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Solution of TE-Wave Equation(2)

f = A cosk x+ A,sink x |
g =B, cosk,y+B,sink,y
b |

Boundary conditions :
Normal component of H:H, =0on surface
H =0 for x=0 and x=a a
H,=0 for y=0 and y=b

— y
%) _ _ _ J—~
AXHZ_Ofor x=0 and x=a «

%yHZ:Ofor y=0 and y=b

/o8 N\
\ DESY |
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Solution of TE-Wave Equation(3)

— Ak sink x+ Ak cosk x=0 for x=0 and x=a
=
A, =0 from x=0
kxzﬂzﬂnm X=a
a
n=012,..
In the same manner
B,=0 from y=0

mrz
kyzj;fmm y=D

m=012,....

NzX

H,(x,y)=H,, cos chZNMMhn=042”rn:QLZ”mnn:mio
a

/0@ .\
| DESY |
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Solution of TE-Wave Equation(3)

2 2 1/2
k {(n”j +(Tj} cut off wave number

cnm

a
k2 =y"+k*
Kenm = Vo + K’
with
y=1p
expi(at — fz)
Kenm = K* = B
Bom =K =K
fork > k... p., ISreal= propagation
fork <k, pf., 1Simaginary = exponential decay

%%3 )
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TE,, . -Fields

E.(xy.z,1)=0

E (X yiz1t)__ﬂ mz

ok Ziem H, cos( Zx)sin(mTﬂy)sin(a)t—ﬂnmz)

cnm

E,(xy z1)=- i{‘l’(“?ﬂ Zwe o H nmsin(%zx) COS(mTﬂijin(a)t —f..Z)

cnm

H,xyz)=H cos(%xj cos(mTﬂyj cos(wt — B 2)

H., Xy z1t)= —'BLZWZ H nmsin(n?ﬂxj cos(mTﬂyjsin(a)t —f..7)
H (X,y,z,t)= ,Bbkzm H nmcos(%zxjsin(mTﬂyjsin(a)t—,Bnmz)
{/‘\‘/\

n. DESY |
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Cut Off Frequency and Wavelength

forp.=0isk=k_,

sincek,, . = on _ 2% f
cnm C
2 2 1/2
fn= - (nﬂj +(@j cut off frequency
2|\ a b

Aeom = : pTF cut off wavelength
n m
N _|_ -
[BES)

Waves with frequency lower than the cut off frequency
(f<f..,) or wavelength longer than the cut off wavelength

(A>4m) €aN not propagte in nm-mode. _
/.\‘;‘,\\

( DESY )
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Guide Wavelength

B, =k* =Kz, propagation constant of mode nm

27 27 1 A
ﬂ/gnm — — — —
N e F pe
12 - 12 1_ 12
Ay 18 Called guide wavelength of mode nm.

It gives the distance after which the mode pattern
repeats in the waveguide.
Agam > A

/0@ .\
| DESY |

RF Power Transportation, S. Choroba, DESY, CERN School on RF for Accelerators, 8-17 June 2010, Ebeltoft, Danmark \{Q\y



H,=0andE, #0 TM-WaveS

In the same manner as for TE — Waves one calculates
nzy

E,=E,_ sin n—ﬂxsinT withn=1.2,..and m=1,2,...

a
and the other field components. One also obtains :

2 > 11/2
Kenm = an) +(%j } cut off wave number
a

2 o 1/2
f .= c (nﬂ) +(Mj cut off frequency
2|\ a b
2
Aenm = : 172 cut off wavelength
n m
S + S
BRG]

_ P

ZTMnm -

Z, impedance of the TM wave

A0

( DESY
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TM__-Fields

E (xy.zt)= Enmsin(%jsin(%) cos(awt — . 7)

Ex(x,y,z,t):’i”;(“znﬂ nmcos(%zx)sin mTﬂy sin(et — 5.,.2)

E (X,Y,2,t) = 'B”m Enmsin(n—ﬂx)cos mszy sin(awt — B..2)
cnm a'
H.,(xyzt)=0
Pz 1 . (nnxj (mnyj .
X,Y,Z,t)= sin| — |coS| — |SIN(wt — f,,..Z
HX( y ) bk(:,an ZTMnm Enm a b (a) ﬂ )

BNt 1 Nzx)\ . (mzay ) .
X, Y,z cos| — (SIn| — |SIn(wt - S, Z
H,xy.20 =202 "—E,, (aj (b (@t = Bn2)

cnm

{/.\‘/ \
( DESY.
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Rectangular Waveguide Mode Pattern

CST Wim CST Wim
Congii o 244 Congii o o
198 436
167 363
= 137 = l:Fd
186 235
6 168
45.6 181 1
@ @
-45.56 -181
=76 166
=186 =235
=137 =302
=167 =363
=198 =436
~243 =537
Typa = E-Fipld (pesk) Type = E-Fipld (penk)
Honitor = e=field (F=2.6) [1(1)] Honitor = e=field (f=2.6) [1(3)]
Component = Normal Companent = Normal
Raximum=3d = F43. 164 U/m ot S.50333 / SH.9643 / FHB.HEY Haximum=3d = 553.851 U/m ot =3H.5733 7/ 35.37H6 / Zo0
Frequency = 2.6 Frequency = 2.6
Phase = 188 degrees Phase = 117.5 degrees
CST CST AN
Compurar Sraition Compurar Sraition
Techecsiony Techecsiony 723
88
497
- - 187
EiL
226
136
@
-136
-226
=316
=187
=447
=58H
-7z3
Typa = E-Fipld (pesk) Type = E-Fipld (penk)
Honitor = e=field (f=2.6) [1(2)] Honitor = e=field (f=2.6) [1(4)]
Component = Normal Component = Normal
Haximum=3d = 541.978 U/m at 49.53 / 47.1714 7 Z8@ Haximum=3d = FZ7.573 Usim ot 71.5433 f 471714 J 322.287
Frequency = 2.6 Frequency = 2.6
Phase = 117.5 degrees Phase = 337.5 degrees
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Rectangular Waveguide Mode Pattern(2

T 18726 Trshekon B25
834 - S8 -
a5 438
¥ 577 ¥ 352
449 274
321 195
192 117
a a
-192 =117
=321 =195
-449 -274
-577 -352
-785 -43a
-831 -508
~18Z6 -625
Type = E-Field (peak) Type = E-Field (peak)
Monitor = ge-field (F=Z.6) [1(E}] Monitor = e-field (F=Z.6) [1(53]
Component = Normal Component = Normal
Haximum—3d = 1833.08 V/m at -38.5233 / 78.7571 / 166.667 Haximum—3d = 637.948 V/m at 5.50333 / 35.3786 / 177.778
Frequency = 2.6 Frequency = 2.6
Phase = B degrees Phase = 337.5 degrees
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TE- and TM- Mode Pattern

Mode pattern images can be found for instance in

*N. Marcuvitz, Waveguide Handbook, MIT Radiation
Laboratory Series, Vol. 10, McGraw Hill 1951

*H. J. Reich, P. F. Ordung, H. L.Krauss, J. G. Skalnlik,
Microwave Theory and Techniques, D. van Nostrand 1953

and probably in other books, too.

/0@ N
\ D E 8 Y |
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Waveguide Size and Modes

It is common to use a = 2b in a retangular waveguide system.
2a

(n2 + 4m2)“2
TE —modes cutoff wavelengths
Acyo =28, Ay =8, Ay = Za/\E’ Aczo =8,

Ay =8/2, A, =238/8, .......
= for 4, =a< A< 4, =2aonly TE,, can propagate.

— ﬁ“cnm =

TM — modes cutoff wavelength

)Lcll = Za/\/g’ ﬁ’ch = Za/\/§’ -------

TM - mode with lowest frequency (longest wavegenth), which can propagate in

a half height waveguide is TM_,with cut off wavelength 4, = 2a/ \J5
— for a < A <2a onlythe TE,, —mode can propagate

/o8 N\
\ DESY |
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*The mode with lowest frequency
propagating in the waveguide is the
TE,, (Hyg) mode. For a<i<2a only
this mode can propagate.

E,(xy,zt)=0
E&xyzy=0

). S LR
E (X y’ Z t) ZTE H —Sln( )Sln(a)t _ﬂz)m“..... o degrer
d

H.xy.zt)=H, cos( " jcos(a)t yord) E-Field ]
H.xyzt)=H nmk—sm( " ]sm(a)t pz) H-Field g
P~ N
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Some TE,, Properties

cut off frequency f, =
2a

cut off wavelength 4, =2a
A

guide wavelength 4, =

()

—> guide wavelength 4, > A free space wavelength

example: WR650at f =1.3GHz
A=23.1cmbut 1, =32.2cm

377€

-(3)

Impedance Z =

impedance/ohm

12000

10000 -
8000 -
6000 -
4000 A
2000 ~

TE10 Impedance

cult off

—

10 20 30

wavelength/cm

40
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Some TE,, Properties (2)

2 2 2
propagation constant ,Bg = 2;\/1-[;] = \/(ij _(Ej
c a

= f3, depends on A :dispersion

. ),
phase velocity v, =—= = >C

but

d 10 2
group velocity v, = [ dﬂgj — C_Igg L ¢
Vv

/0@
( DESY |
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Some Standard Waveguide Sizes

Waveguide a b f0 frequency range
type (in) (in) (GHz) (GHz)

WR 2300 23.000 11.500 .256 .32—-.49

WR 2100 21.000 10.500 281 .35-.53

WR 1800 18.000 9.000 .328 41 -.62
WR975 9.750 4.875 .605 /5-1.12
WR770 7.700 3.850 (67 .96 —1.45
WR650 6.500 3.250 .908 1.12-1.70
WR430 4.300 2.150 1.375 1.70 - 2.60
WR284 2.84 1.34 2.08 2.60 — 3.95
WR187 1.872 872 3.16 3.95-5.85
WR137 1.372 622 4.29 5.85-8.20
WR90 .900 450 6.56 8.2-12.4
WR62 .622 311 9.49 12.4 - 18

0® .
DESY
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Some Waveguides of different Size

WR1800 WRG650 WR284
e.g. for 500MHz e.g. for 1.3GHz e.g. for 3GHz
P-Band L-Band S-Band @
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Power In TE,,-Mode

Poynting Vector :S=ExH

e _dxdydt

O'—.—|

e

O'—-.U

Power transported in TE %

—
H..[ab( B 2
an = = ZTEnm
2‘E‘On‘g‘Om kcnm
with ¢,, =1forn=0and g,, =2forn =0
with ¢,, =1form=0and g,, =2form =0

for TE,, one can caluclate:

P = 6.63-10_4a[cm]b[cm(%gj(E[V lcm])2

{/.\‘/ \

n DESY
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Theoretical Power Limit in TE,,

The maximum power which can be transmitted theoretically in a
waveguide of certain size a, b and frequency f is determined by the
electrical breakdown limit E_ ..

In air it is E,,=30kV/cm. From this one can find the maximum
handling power in air filled waveguides.

1000
—_—\WR284
§ 100 = ——WR650
= - WR770
q;') WR1800
o o ——\WR2100
o 10 = = \\/R2300
1
100 1000 10000
Frequency/MHz —
/0@ N
| DESY |
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Attenuation in TE,

 The walls of the waveguides are not perfect conductors.
They have finite conductivity o, resulting in a skin depth of

S, =(wuc12)™*

 Due to current in the walls of the waveguides loss
appears and the waves are attenuated.

* The attenuation constant for the TE, IS:

2
1 b 4
7_|_7 -
1 2 al 2a
a|dB/m]=0.2026k,

b 2 1/2
[cm],/4 [cm] (7
| 2a

ki=1.00Ag, 1.03 Cu, 1.17 Au, 1.37 Al, 2.2 Brass /e ® N
( DESY |
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Attenuation in Al-Waveguides in TE,,

1
£ 01
ah]
©
c
2 0,01
o
-
c
Q
£ 0,001
0,0001

100

1000
Frequency/MHz

10000

- \WR284
— WR650
WR770
WR1800
— WR2100
— WR2300

{

0@ N
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Reflection and Impedance

Er

p =— reflection coefficient,

=
E, and E amlitude of the reflected and incoming wave

_ L2—271
L2t /71
+Er . :
VSWR = ‘Ef‘ ‘E ‘ = L+p voltage standing wave ratio
‘Ef‘ _‘Er‘ 1_10
En V- V- E,
VAV VAV
Erl ‘
“1 £ (3%)
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u/m CST

_Travelling and Standing Wave

¥
L
- x
nnnnnnnnnnnnnnnnnnnn

eeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeee

TE,, travelling wave TE,, standing wave due to
full reflection p=1.

The maximum electrical field strength in the standing
wave is double the strength of the travelling wave. The
same field strength can only be found in a travelling

wave of 4-times power. <y
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