

C	Outline	
•	Halo diagnostic: - What is Halo? - Halo Quantification	
•	 Transversal Halo Measurements with: IPM (Ionization Beam Profile Monitor) LPM (Luminescence Beam Profile Monitor) Laser Wire Scanners and Scrapers (slow) Optical Matheda (feet) 	Monitors have not enough dynamic range. Slides can be found after the last slide of talk
·	 Oprical Methods (Tast) Longitudinal Halo Bunch Purity "Beam in Gap" Coasting Beam 	

What's Halo?			
because of the beam distribution's phase-space rotations, the obse 1D oscillates, so that halo at different locations along the beam line in differing degrees. For example, at some locations the halo may pro- strongly along the spatial coordinate and only weakly along the mome coordinate, while at others the reverse is true, and the halo can be h spatial projection. In most circumstances, the beam halo from simula as an irreversible effect, when observed in the 2D phase-space distr Therefore, it is also important to search for another definition of hap phase-space distributions	erved halo in is observable oject ntum idden in the tion appears ibutions. alo in the 2D		
- it became clear that even at this workshop (HALO 03) a general do "Beam Halo" could not be given, because of the very different req different machines, and because of the differing perspectives of instrumentation specialists and accelerator physicists.	efinition of uirements in		
From the diagnostics point of view, one thing is certainly clear - by definition halo is low density and therefore difficult to measure			

Dust and impurities on lenses

