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Introduction / I
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This lecture is an introduction to the most commonly used methods to 
measure the key parameters of an accelerator lattice.

The lattice parameters that will be covered are :

Dispersion function

Twiss parameters:
– Betatron function β, 
– Phase advance μ, 
– Betatron function dericative  α = (1+dβ/ds)/2.   

The errors on β and μ are 
frequently referred to as 

beta-beating and phase-beating



Introduction / II
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The knowledge of the lattice parameters is essential since they have a 
strong influence on machine performance:

• Beam envelope : brightness, luminosity, aperture, emittance growth during transfer ....
• Stability & lifetime (resonances...)
• ...

The actual lattice may deviate from the design lattice due to a variety of 
errors (magnet transfer functions, control system errors... ).

In general the measurements are followed a by second step : the correction 
of the measured lattice errors. This is frequently an iterative process that 
is repeated until the lattice parameters are judged to be satisfactory.



Dispersion

4



Dispersion Definition
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The dispersion function Du(s) defines the local sensitivity of the beam trajectory or 
orbit u(s) to a relative energy error δp/p:

Non-zero dispersion is produced by bending magnets (or any dipole kick).

A perfectly straight transfer line (linear accelerator) has Dx = Dy = 0.
For a planar ring, Dx ≠ 0, Dy = 0.
In a ‚real‘ ring, non-zero vertical dispersion may be produced by coupling (x y) or 
by vertical misalignments of the accelerator elements, in particular quadrupoles.

yxu
pp

susDu ,
/

)()( ==
δ
δ



Dispersion Measurement
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The dispersion function is the lattice parameter that is easiest to measure. Based on 
its definition

one has to measure the orbit/trajectory for different values of δp/p.

The simplest way to induce an energy shift is to change the RF frequency

For synchrotron light sources, the factor γ2 can normally be neglected. This is usually 
not the case for protons, except for very high energy (like LHC).
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Dispersion Measurement : Ring
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Dispersion measured in the CERN SPS ring (protons 14 to 450 GeV/c) for the 
horizontal plane.

- SPS has a simple ~90° lattice.
- 6 long straight sections with low horizontal dispersion.



Dispersion Measurement : Transfer Line
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Dispersion measured in a transfer line, here the 400 GeV/c high intensity proton 
transfer line from the SPS ring to the CERN Neutrino to Gran Sasso target.

- The transfer line bends both horizontally and vertically.
- The dispersion is matched to be 0 at the target.

The dispersion is obtained by varying the RF frequency in the SPS ring and 
measuring the trajectory for different SPS RF frequency settings.

Model
Data fit

• Data

SPS ring 

Target Horizontal 

Vertical 



Twiss Parameters :

K-modulation
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K-modulation
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When the strength K0 of a selected quadrupole (length L) in a ring is changed by a 
small amount ΔK, the associated tune change ΔQ is :

This relation may be used to determine the average betatron function if:
The selected quadrupole is individually powered.
The strength change ΔK is (sufficiently) well known:

• Magnet tranfer function & hysteresis.
• For long magnets,  resp. when β changes significantly over the length of the magnet, 

it is necessary to integrate numerically.
The tune can be measured with high accuracy – for example with a PLL. 

A very elegant way is to modulate the strength in time at a frequency f, for example 

and detect the frequency of the oscillation. In that case more than one magnet can be 
measured at the same time, provided the ΔK‘s are small enough.
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K-modulation Example
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Example of the period tune modulation due to the modulation of a LEP quadrupole 
(here with a square function).

O. Berrig et al, DIPAC01



Twiss Parameters :

Orbit (kick) Response 
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Response to Dipole Kicks
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The orbit or trajectory response matrix relates the position change at 
monitors to the deflection at steering magnets (usually orbit correctors).

The position change Δui at the ith monitor is related to a kick θj at the jth

corrector by :

R = response matrix

Closed orbit

Trajectory

In a linear approximation :

Optics information
is ‘entangled’ in R



Response : remarks…
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R does not provide direct information on the optical function β, μ, …: 
•Step 1 : the model must be adjusted (fit) to match the measured R.
•Step 2 : the optical functions are obtained from the matched model.

In a transfer line the optical functions depend on the initial conditions. The R 
matrix seems to give information on β etc, but in reality it does not ! It only 
provides information on the correctness of the line settings.

The measured R also depends on the BPM and corrector calibrations:

complicates fits, the C’s may depend on amplitude !

R is not limited to linear effects, at large enough amplitudes non-linear effect 
can potentially be observed. Coupling may be included in the data fit.
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Fitting Response Data
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To extract information from response data, it is necessary to compare the 
model matrix with the measured matrix:

The number of fit parameters ci can be very large :
• BPM calibration factors
• Corrector calibration factors
• Quadrupole strengths 
• etc

>> for a large ring :
the number of elements (NxM) can easily exceed 10’000 !
the number of parameters n can easily reach ~ 1000 !

measmodel RR ⇔ number elements :
N monitors x M correctors

),...,( 1 nccc =
r

Parameter vector :



Response Fits : Technique /1
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1) Data preparation :
We build a vector r holding the weighted difference between the measured and 
modeled response for all matrix elements : 
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= ∀ σ is the measurement error

2) Local gradient :
We must now evaluate the sensitivity of each 
element of r with respect our parameters ci.

The gradients may be represented by a matrix G.
For quadrupole gradients or other complex 
parameters, it may be necessary to compute the 
gradient numerically by computing R for ci and 
for ci.+ Δci .
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Response Fits : Technique /2
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3) Least-square minimization :
Try to find the increments to the parameters that minimize the difference 
between data and model.
To this end we must solve the linearised equation for parameter changes Δc:

4) Iteration :
Update c, update G, solve again… until the solution is stable.
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If the errors are distributed according to a gaussian distribution and if the fit 
is good, then the residual converges towards m-n.



‘LOCO’
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There are many versions of response fits available at various laboratories.
A popular version is LOCO (Linear Optics from Closed Orbits), written initially in 
FORTRAN by J. Safranek, which in the meantime exists also as Mathlab version.

G. Portman et al, Beam 
Dynamics Newsletter No. 44



LOCO Results
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Example of the optics of the VUV ring at NSLS before (left) and after (right) 
measurement and correction of the optics using LOCO.

J. Safranek, Beam Dynamics Newsletter No. 44



Transfer Line Example
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Histogram : data * + Line : model fit

Initial measurement :
First Hor corrector data does not fit the 
line model at all !!

>> Perform a fit with quadrupole strengths 
as free parameters. The fit indicates that 
one quadrupole is too weak by 20% !

Second measurement :

After correction of the quadrupole 
strength model and data fit.



Twiss Parameters :

Phase Advance Measurement
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Phase Advance Measurement
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The betatron oscillation of a bunch measured turn by 
turn in a ring at a BPM number i can be expressed as:

k = turn number
A(k) = amplitude at turn k
φ = phase factor
Q = tune

The difference of the phase factors for 2 BPMs is 
nothing but the betatron phase advance  Δμ = μi−μj:  ψμφ

μμφφ
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ψ = overall phase 
factor for all 
BPMs

>> Direct measurement of the betatron phase advance

Example of a damped betatron 
oscillation following a kick



The phase advance may be reconstructed with high accuracy using a Fourier 
Transform provided 

• the betatron oscillation is long enough (damping !).
• the turn-by-turn resolution of the BPMs is good.
>> results do not depend on the BPM calibration !!

The betatron function may be reconstructed at any BPM using the measured 
phase advance to 2 adjacent BPMs:

Attention :
Model information is used to reconstruct β !!

The accuracy on β depends on potential sources of errors within the region. 
Unless the error is huge, this introduced only a small error (~%) on the reconstructed β.

Twiss Parameter Reconstruction
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Betatron Function Reconstruction
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Example for an online reconstruction of the horizontal betatron function (top) 
and betatron beating (bottom, βmeas/βmodel) for a LEP arc.
β,μ, and α may be reconstructed by interpolations (based on the model) for all 
elements located within the region of a BPM triplet.

P. Castro, PAC91



LEP 45 GeV Optics
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Example of measured beta-beating at LEP (45 GeV)
The largest step in beta-beating occur near the interaction points (IP) at the 
low beta insertions.

P. Castro, PHD



Measurement Errors
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The error on the reconstructed b value is given for ‘equidistant’ BPMs by :

The error depends on:
The error on the phase σφ. 
For long oscillations / good BPMs 
an error of less than 1° can be 
obtained.
The phase advance Δμ.
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>> The error increases dramatically 
when Δμ approaches 90°



Beta-beating and 90° Phase Advance
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The β-beating induced by a gradient error ΔK due to an element of length L located 
at position s0 is:

>> The β-beat phase advances 
at twice the betatron phase ! 

For BPMs with Δμ = 90° the β-beat wave phase advances by 180° :
>> At the Nyquist frequency – impossible to measure the amplitude of the β-beat wave

Illustration : depending on the phase of the β-beat wave, the BPMs measure a 
different amplitude – anything from 0 to the right value !

180°



Beam Exciters

28

Classical ‘exciter’ : 

‘Kicker’ magnet

Advanced ‘exciter’ : 

AC dipole

• Forced oscillation.
• Provides long oscillation periods.
• Frequency close to Q, but sufficiently 

far away to avoid emittance blowup 
ideal for protons & ions

O. Berrig et al, DIPAC01



Fits Forever !
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Fits are a great invention, and with the advent of powerful PCs, it is nowadays very 
easy to join the great fitters club.

It is possible to build complicated fits that combined response, dispersion, phase 
advance etc.. The only limit is your imagination !

There are a few things to watch out when you are not yet an experienced ‚fitter‘ :
1.Complicated fits like the response fits may be plagued with singularities that must 
be carefully removed or you may get non-sense:

In LOCO singularities are removed by ‚eigenvalue‘ cuts.

2.Before throwing thousands of parameters at your fit, start with a limited number 
and watch how the results change. 

3.Watch out for redundant fit parameters. For example :
If you are trying to vary the strengths of multiple quadrupoles located between 2 
BPMs, you may get non-sense because you have more parameters than constraints !

4.Checkout your fits with simulations including ‚realistic‘ errors and noise.



Summary

30

Method Requirements Comment Rating

K-modulation • Individually powered quads.
• Accurate Q measurement.
• Magnet transfer function 
accuracy.

Direct measurement of β. ∗∗∗

Response Simple measurement, available anywhere!
Optics reconstruction (β,μ..) requires a 
complicated fit.

**

Multi-turn • Turn-by-turn BPM 
acquisition.

• Exciter (hadrons !).

Direct measurement of μ.
Simple reconstruction of β.
Powerful tool, many other measurements!

∗∗∗∗

My private 
rating !
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