Beam Position Monitor: Detector Principle, Hardware and Electronics Peter Forck, Piotr Kowina and Dmitry Liakin Gesellschaft für Schwerionenforschung, Darmstadt

Outline:

- ➤ Signal generation → transfer impedance
- Consideration for capacitive shoe box BPM
- Consideration for capacitive button BPM
- ➤ Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- Electronics for position evaluation
- Some examples for position evaluation and other applications
- > Summary

C 55 1

General Idea: Detection of Wall Charges

The image current at the vacuum wall is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

For relativistic velocities, the electric field is mainly transversal: $E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t)$

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

- It has a low cut-off frequency i.e. dc-beam behavior can not be monitored (exception: Schottky spectra, here the physics is due to finite number of particles)
- \Rightarrow Usage with bunched beams!
- It delivers information about:
- 1. The center of the beam
- Closed orbit
 - i.e. central orbit averaged over a period much longer than a betatron oscillation
- → Bunch position on a large time scale: bunch-by-bunch → turn-by-turn → averaged position
- Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- > Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- ➢ Feedback: fast bunch-by-bunch damping → precise (and slow) closed orbit correction

2. Longitudinal bunch shapes

- Bunch behavior during storage and acceleration
- ➢ For proton LINACs: the beam velocity can be determined by two BPMs
- ≻ Low current *relative* measurement down to 10 nA.

C 55 1

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry: $I_{im}(t) \equiv dQ_{im}/dt = A/\pi a \cdot dQ_{beam}(t)/dt = A/\pi a \cdot l/\beta c \cdot dI_{beam}/dt = A/\pi a \cdot l/\beta c \cdot i\omega I_{beam}(\omega)$ Using a relation for Fourier transformation: $I_{beam} = I_0 e^{i\omega t} \Rightarrow dI_{beam}/dt = i\omega I_{beam}$.

G 55 H

At a resistor R the voltage U_{im} from the image current is measured. The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam} in *frequency domain*: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

- •The pick-up capacitance *C*:
 - plate \leftrightarrow vacuum-pipe and cable.
- •The amplifier with input resistor *R*.
- •The beam is a high-impedance current source:

$$U_{im} = \frac{R}{1 + i\omega RC} \cdot I_{im}$$

= $\frac{A}{\pi a} \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam}$
= $Z_t(\omega, \beta) \cdot I_{beam}$

equivalent circuit

This is a high-pass characteristic with $\omega_{cut} = 1/RC$: It is: $|Z_t(\omega)| = \frac{A}{\pi a} \frac{1}{\beta cC} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1+\omega^2/\omega_{cut}^2}}$ and phase $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$

F F F T

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM.

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range *and* termination the signal looks different: \rightarrow *High frequency range* $\omega \gg \omega_{cut}$:

$$Z_t \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \to 1 \Longrightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{\pi a} \cdot I_{beam}(t)$$

 \Rightarrow direct image of the bunch. Signal strength $Z_t \alpha A/C$ i.e. nearly independent on length

b Low frequency range $\omega \ll \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \to i\frac{\omega}{\omega_{cut}} \implies U_{im}(t) = R \cdot \frac{A}{\beta c \cdot \pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot \pi a} \cdot \frac{dI_{beam}}{dt}$$

 \Rightarrow derivative of bunch, single strength $Z_t \alpha$ A, i.e. (nearly) independent on C

Example from synchrotron BPM with 50 Ω termination (reality at p-sychrotron : $\sigma >>1$ ns): derivative intermediate proportional

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron: 100 MHz $< f_{rf} <$ 1 GHz typically *R*=50 Ω processing to reach bandwidth $C\approx$ 5 pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx$ 700 MHz *Example:* 36 MHz GSI ion LINAC

Proton synchtrotron:

1 MHz $< f_{rf} < 30$ MHz typically $R=1 \text{ M}\Omega$ for large signal i.e. large Z_t $C \approx 100 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 10 \text{ kHz}$ **Example:** non-relativistic GSI synchrotron $f_{rf}: 0.8 \text{ MHz} \rightarrow 5 \text{ MHz}$ time $[\mu s]$ 3 begin acceleration .: 11 MeV 50 100 200 150 synchrotron circumference [m] time [µs] 0.20.3 0.40.50.60.70.8 end acceleration: 1000 MeV 50 100 200 150 synchrotron circumference [m]

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

G 55 1

Example Shoe-box BPMs

Shoe-box BPMs used at low β proton & ion synchrotron for $1 \text{MHz} < f_{rf} < 10 \text{MHz}$. *Example:* HIT cancer therapy synchrotron 0.8 MHz $< f_{rf} < 5 \text{ MHz}$ Aperture 180x70 mm² horizontal

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

9

Transfer Impedance Measurement

With a network analyzer and an antenna the BPM properties can be determined.

Calculation of Signal Shape: Single Bunch

The transfer impedance is used in frequency domain! The following is performed:

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008 11

Calculation of Signal Shape: Bunch Train

➢ Baseline shift due to ac-coupling

Remark: 1 MHz $< f_{rf} <$ 10MHz \Rightarrow Bandwidth \approx 100MHz=10 $\cdot f_{rf}$ for broadband observation

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Calculation of Signal Shape: Bunch Train

Train of bunches with $R=50 \Omega$ termination: 6 ounch current I_{beem} [mA] 0.8 5 ngle bunch power spectrum bunch train 0.6 4 З 0.42 0.2 1 0 0.0 4 6 time [µs] 2 8 10 0 2 10 120 6 6 frequency [MHz] 2 $[M_{\rm m}]$ **Parameter:** signal voltage U_m $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$ 0 all buckets filled, no amp *C*=100pF, *l*=10cm, β =50%, σ_t =100 ns -22 4 6 time [μs] 10 \blacktriangleright Low frequency cut-off due to $f_{cut}=32$ MHz Differentiated bunches, 15 fold lower amplitude

> Modified Fourier spectrum with low amplitude value, maximum shift to higher frequencies

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, R=10 k Ω termination:

> Fourier spectrum is more complex, harmonics are broader

> Varying baseline with $\tau = 1/3 f_{cut} = 3 \mu s$

► Baseline shift calls for dedicated restoring algorithm for time domain processing.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

G 55 11

Calculation of Signal Shape: Bunch Train with Cable Damping

Effect of cable or other electronics:

Bunch signal is damped; 8 fold lower amplitude, higher frequencies are damped stronger
 Bunch signal gets asymmetric, baseline did not reach zero

 $\succ \Rightarrow$ 'Good cables' are a precaution for broadband signal transmission

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

15

Beam Position Monitors: Principle and Realization

G 55 II

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass: nth order Butterworth Filter: (Math. simple, but **not** well suited) 1.4 bunch current I_{beem} [mA] single bunch 1.2 $|Z_{low}| = \frac{1}{\sqrt{1 + (\omega / \omega_{cut})^{2n}}}$ bunch train 1.0 0.8 0.6 $|Z_{high}| = \frac{(\omega / \omega_{cut})^n}{\sqrt{1 + (\omega / \omega_{cut})^{2n}}}$. 0.4 0.20 0.0 2 4 6 time [µs] 10 8 0 0 10 2 8 frequency [MHz] 0.8 $Z_{filter} = Z_{high} \cdot Z_{low}$ □ 0.6 ំ0.4 ផ្ទ Ringing due to sharp cutoff **Parameter:** 0.2 $R=10 \text{ k}\Omega, 4^{\text{th}} \text{ order}$ \triangleright Other filter types more appropriate -0.0Butterworth filter at *f_{cut}*=2 MHz -0.2, -0.4 $C=100 \text{pF}, l=10 \text{cm}, \beta=50\%, \sigma=100 \text{ ns}$ -0.62 4 6 frequency [MHz] n Generally: $Z_{tot}(\omega) = Z_{cable}(\omega) \cdot Z_{filter}(\omega) \cdot Z_{amp}(\omega) \cdot \dots \cdot Z_{t}(\omega)$ Calculation via FFT: $I_{beam}(t) \xrightarrow{FFT} I_{beam}(\omega) \rightarrow U_{im}(\omega) = Z_{tot}(\omega) \cdot I_{beam}(\omega) \xrightarrow{invFFT} U_{im}(t)$ Remark: For electronics calculation, time domain filters (FIR and IIR) are more appropriated

Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass \rightarrow most frequent application

'Proximity' effect leads to different voltages at the plates:

It can be assumed: $Z_{\perp}(\omega, x) = k(\omega, x) \cdot Z_t(\omega)$

with $k(\omega, x)$ or $S(\omega, x) = 1/k(\omega, x)$ called displacement sensitivity

They are geometry dependent, non-linear function, which have to be optimized.

Units: *k*=[mm] and *S*=[%/mm] or *S*=[dB/mm]

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008 17

G 55 11

Beam Position Monitor: Detector Principle, Hardware and Electronics

Outline:

- ➤ Signal generation → transfer impedance
- > Consideration for capacitive 'shoe box' = 'linear cut' BPM

position sensitivity calculation, crosstalk, realization

- **Consideration for capacitive button BPM**
- ➤ Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- > Electronics for position evaluation
- Some examples for position evaluation and other applications
 Summary

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz $\leq f_{rf} \leq 10$ MHz \Rightarrow bunch-length >> BPM length.

Boundary Contribution \Rightarrow FEM Calculation required

Boundary condition by the environment can significantly influence BPM properties

- \Rightarrow real properties have to be calculated numerically by Finite Element Method: Examples are: CST-Studio (MAFIA), Comsol, HFFS General idea of FEM calculations:
- \blacktriangleright Volume is divided in 3-dim meshes with typically 10⁶ to 10⁷ nodes
- Fixed boundary conditions at the mechanical parts and eventually source terms
- ≻Goal: Field distribution within the meshes
- The Maxwell equations are solved by iterative matrix inversion
- Time domain: Propagation of source terms (here: Gaussian shaped pulse corresponding to 200 MHz bandwidth)
- ≻Frequency domain: e.g. eigenmodes

>Output: time dependent signal, frequency dependences, S-parameters, field distribution etc.

Simulation: Gaussian pulse travels on wire on different positions

- \rightarrow induced voltage calculated on matched output ports
- \rightarrow calculation of $\Delta U/\Sigma U$

Criteria of optimization: linearity, sensitivity, offset reduction, x-y plane independence

Nearly perfect behavior: k_x =104mm, δ_x =-0.4mm (ideal value k_x =90mm, δ =0) k_y =38mm, δ_y =-0.04mm (ideal value k_y =35mm, δ =0) at 1 MHz

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Frequency Dependence of Position Sensitivity

Plate—to-Plate Cross-Talk reduces Sensitivity

- •Capacitive coubling determines position sensitivity
- •Plate-to-plate cross talk caused by ceramic permittivity ϵ =9.6 resulting in high coupling capacitance between adjacent plates
- ⇒Insertion of the guard-ring between plates reduces cross talks by more than 10dB

-18

-161 -384 -913

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008 25

Other Types of diagonal cut BPM

Round type: cut cylinder Same properties as shoe-box:

Other realization: Full metal plates

- \rightarrow No guard rings required
- \rightarrow but mechanical alignment more difficult

Wounded strips:

Same distance from beam and capacitance for all plates But horizontal-vertical coupling.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

G 55 1

Beam Position Monitor: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- Consideration for capacitive button BPM simple electro-static model, low β effect, modification for synch. light source Comparison shoe box button BPM

27

- ➤ Other BPM principles: stripline → traveling wave, inductive → wall current, cavity → resonator for dipole mode
- > Electronics for position evaluation
- > Some examples for position evaluation and other applications
- > Summary

LINACs, e⁻-synchrotrons: 100 MHz $\leq f_{rf} \leq 3$ GHz \rightarrow bunch length \approx BPM length

Button BPM with 50 $\Omega \Rightarrow U_{im}(t) = R \cdot \frac{A}{\beta c \cdot \pi a} \cdot \frac{dI_{bea}}{dt}$ Example: LHC type incide on BeCu CENTER SMA TYPE -CONDUCTOR //OLYBDENU// ENTER PIN Example: LHC-type inside cryostat: ALUMINA Ø24 mm, half aperture a=25 mm, C=8 pF \Rightarrow f_{cut}=400 MHz, Z_∞ = 1.3 Ω : CuN HOUSING 51.5 CM BUTTON From C. Boccard (CERN) G 5 1 P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008 28 Beam Position Monitors: Principle and Realization

 \rightarrow 50 Ω signal path to prevent reflections

2-dim Model for Button BPM

'Proximity effect': larger signal for closer plate <u>Ideal 2-dim case:</u> Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current: Integration of finite BPM size:

plate
current density
$$I_{im} = \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$$

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

29

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.

Remark: For most LINACs: Linearity is less important, because beam has to be centered

 \rightarrow correction as feed-forward for next macro-pulse.

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

Beam Position Monitors: Principle and Realization

G 55 11

FEM Calculation for Button BPM simple Test Case

For realistic beam, 3-dim FEM calculations are required. *Example:* Button BPM at r=3 cm beam-pipe, flat, round \emptyset 4cm frequency f_{rf} =150 MHz, effect for higher harmonics calculated

Low Velocity Effect: General Consideration

Simple Lorentz transformation of single point-like charge: Lorentz boost and transformation of time: $E_{\perp}(t) = \gamma E'(t')$ and $t \rightarrow t'$

E-field of a point-like charge:

$$E_{\perp}(t) = \frac{e}{4\pi\varepsilon_0} \cdot \frac{\gamma R}{\left[R^2 + \left(\gamma\beta ct\right)^2\right]^{3/2}}$$

Beam Position Monitors: Principle and Realization

FEM Calculation of low B Effect for p-LINAC

P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

34

Position Measurement for Button BPM

Example <u>L</u>HC type: Measurement with movable 50 Ω matched antenna:

Non-linearity and horizontal-vertical coupling

 \Rightarrow Polynomial fit with x and y dependence

20

16

12

16

20

Realization of Button BPM at LHC

Example LHC: \emptyset 24 mm, half aperture a=25 mm, installed inside cryostat Critically: 50 Ω matching of button to standard feed-through.

From C. Boccard, C. Palau-Montava et al.(CERN).

The button BPM can be rotated by 45° to avoid exposure by synchrotron light:

Frequently used at boosters for light sources

horizontal:
$$x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical: $y = \frac{1}{S} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

Example: Booster of ALS, Berkeley

Beam Position Monitors: Principle and Realization

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity Optimization: horizontal distance and size of buttons 08

х

15

38 P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008

-15

39

Beam position swept with 2 mm steps
 P. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008
 40

From S. Varnasseri, SESAME, DIPAC 2005 -Beam Position Monitors: Principle and Realization

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
Shape	Rectangular, cut cylinder	Orthogonal or in-plane orientation
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 3 cm per button
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	1 M Ω or $\approx 1 \text{ k}\Omega$ (transformer)	50 Ω
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care signal matching
Usage	At (low energy) proton synchrotrons	All electron acc., proton Linacs, high energy synchrotrons
	vertical	
rck P. Kowing D. Ligkin GSI CAS	guard rings on ground potential Be	am l d Realize