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Beam Position Monitor: 
Detector Principle, Hardware and Electronics

Peter Forck, Piotr Kowina and Dmitry Liakin
Gesellschaft für Schwerionenforschung, Darmstadt

Outline:
Signal generation → transfer impedance
Consideration for capacitive shoe box BPM
Consideration for capacitive button BPM
Other BPM principles: stripline → traveling wave, 
inductive → wall current, cavity → resonator for dipole mode

Electronics for position evaluation
Some examples for position evaluation and other applications
Summary
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General Idea: Detection of Wall Charges

The image current at the vacuum wall is monitored on a high frequency basis
i.e. the ac-part given by the bunched beam.

For relativistic velocities, the electric field is mainly transversal:

Beam Position Monitor BPM 
equals Pick-Up PU

)()( ,, tEtE restlab ⊥⊥ ⋅= γ
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Usage of BPMs

A BPM is an non-destructive device
It has a low cut-off frequency i.e. dc-beam behavior can not be monitored

(exception: Schottky spectra, here the physics is due to finite number of particles)
⇒Usage with bunched beams!
It delivers information about:
1. The center of the beam

Closed orbit 
i.e. central orbit averaged over a period much longer than  a betatron oscillation

Bunch position on a large time scale: bunch-by-bunch → turn-by-turn → averaged position 
Single bunch position → determination of parameters like tune, chromaticity, β-function
Time evolution of a single bunch can be compared to ‘macro-particle tracking’ calculations
Feedback: fast bunch-by-bunch damping → precise (and slow) closed orbit correction   

2. Longitudinal bunch shapes 
Bunch behavior during storage and acceleration
For proton LINACs: the beam velocity can be determined by two BPMs
Low current relative measurement down to 10 nA.
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Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current Iim at the plate is given by the beam current and geometry:
Iim(t) ≡ dQim/dt = A/πal · dQbeam(t)/dt = A/πal·l/βc · dIbeam/dt = A/πa ·1/βc·iωIbeam(ω)
Using a relation for Fourier transformation: Ibeam = I0eiωt ⇒ dIbeam/dt = iωIbeam.
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Transfer Impedance for capacitive BPM

At a resistor R the voltage Uim from the image current is measured.
The transfer impedance Zt is the ratio between voltage Uim and beam current Ibeam

in frequency domain: Uim(ω) = R · Iim(ω) = Zt(ω, β) · Ibeam(ω).

This is a high-pass characteristic with  ωcut= 1/RC:

Capacitive BPM: 
•The pick-up capacitance C: 

plate ↔ vacuum-pipe and cable.
•The amplifier with input resistor R.
•The beam is a high-impedance current source:



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesP. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008   Beam Position Monitors: Principle and Realization  6

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM.

Uim(ω)=Zt(ω) · Ibeam(ω)

Large signal strength  → high impedance
Smooth signal transmission → 50 Ω

Compromise → ≈1.8 kΩ by transformer e.g. Nprim/Nsec=2:12
Impedance Zprim=(Nprim/Nsec)2·Zsec voltage Uim=Nsec/Nprim ·Uprim
→ Smooth signal chain, medium cut-off frequency, but lower usable voltage
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Parameter for shoe-box BPM:
C=100pF, l=10cm, β=50%
fcut= ω/2π=(2πRC)
for R=50 Ω⇒ fcut= 32 MHz
for R=1 MΩ⇒ fcut= 1.6 kHz
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Signal Shape for capacitive BPMs: differentiated ↔ proportional

Depending on the frequency range and termination the signal looks different:
High frequency range  ω >> ωcut:

⇒ direct image of the bunch. Signal strength Zt α A/C i.e. nearly independent on length
Low frequency range ω << ωcut:

⇒ derivative of bunch, single strength Ztα A, i.e. (nearly) independent on C 
Example from synchrotron BPM with 50 Ω termination (reality at p-sychrotron : σ>>1 ns):
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Examples for differentiated & proportional Shape

Proton LINAC, e--LINAC&synchtrotron:
100 MHz < frf < 1 GHz typically
R=50 Ω processing to reach bandwidth
C≈5 pF ⇒ fcut =1/(2πRC)≈ 700 MHz  
Example: 36 MHz GSI ion LINAC

Proton synchtrotron:
1 MHz < frf < 30 MHz  typically
R=1 MΩ for large signal i.e. large Zt
C≈100 pF ⇒ fcut =1/(2πRC) ≈10 kHz  
Example: non-relativistic GSI synchrotron 
frf : 0.8 MHz → 5 MHz

Remark: During acceleration the bunching-factor is increased: ‘adiabatic damping’.
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Example Shoe-box BPMs

Shoe-box BPMs used at low β proton & ion synchrotron for  1MHz <  frf < 10MHz.
Example: HIT cancer therapy synchrotron 0.8 MHz < frf < 5 MHz 
Aperture 180x70 mm2
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Transfer Impedance Measurement

With a network analyzer and an antenna the BPM properties can be determined.  

Test BPM of 250x 80 mm2

using a stripline antenna 
of 300 MHz bandwidth 

R=1 MΩ

R=1.8 kΩ
fcut=1 MHz

R=50 Ω
fcut=27MHz

9 kHz 200 MHz

15 dB
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Calculation of Signal Shape: Single Bunch

The transfer impedance is used in frequency domain! The following is performed: 
1. Start: Time domain Gaussian function Ibeam(t) having a width of σt

2. FFT of Ibeam(t) leads to the frequency domain Gaussian Ibeam(f) with σf=(2πσt)
-1

3. Multiplication with Zt(f) with fcut=32 MHz leads to Uim(f)=Zt(f)·Ibeam(f)
4. Inverse FFT leads to Uim(t)

Ibeam(f)

Uim(f)
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Calculation of Signal Shape: Bunch Train

Fourier spectrum is composed of lines separated by acceleration rf
Envelope given by single bunch Fourier transformation 
Baseline shift due to ac-coupling 

Remark: 1 MHz< frf <10MHz ⇒ Bandwidth ≈100MHz=10·frf for broadband observation 

Example for low energy proton synchrotron: Train of bunches with R=1 MΩ

R=1 MΩ⇒ fcut=2kHz, Zt=5Ω
all buckets filled, no amp
C=100pF, l=10cm, β=50%, σt=100 ns ⇒ σl=15m

Calucalation of signal shape:
→ Bunch train Ibeam(t)
→ FFT delivers Ibeam(ω)
→ Uim(ω)=Zt·Ibeam(ω)
→ IFFT delivers Uim(t)
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Calculation of Signal Shape: Bunch Train

Low frequency cut-off due to fcut=32 MHz
Differentiated bunches, 15 fold lower amplitude
Modified Fourier spectrum with low amplitude value, maximum shift to higher frequencies

Train of bunches with R=50 Ω termination: 

Parameter:
R=50 Ω⇒ fcut=32 MHz
all buckets filled, no amp
C=100pF, l=10cm, β=50%, σt=100 ns
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Calculation of Signal Shape: Bunch Train with empty Buckets 

Fourier spectrum is more complex, harmonics are broader
Varying baseline with τ=1/3fcut=3 μs
Baseline shift calls for dedicated restoring algorithm for time domain processing.

Synchrotron during filling: Empty buckets, R=10 kΩ termination: 

Parameter:
R=10 kΩ⇒ fcut=160 kHz
4 empty buckets
C=100pF, l=10cm, β=50%, σ=100 ns
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Calculation of Signal Shape: Bunch Train with Cable Damping 

Bunch signal is damped; 8 fold lower amplitude, higher frequencies are damped stronger 
Bunch signal gets asymmetric, baseline did not reach zero
⇒ ‘Good cables’ are a precaution for broadband signal transmission

Effect of cable or other electronics:

Parameter:
R=10 kΩ, 4 empty buckets
Cable damping with fe=0.5 MHz (too low to be realistic…)
C=100pF, l=10cm, β=50%, σ=100 ns

Cable damping given by:

fe: amplitude damping by ≈10 dB

Here: fe=0.5 MHz

ee ffiff
cable eeZ //)( −− ⋅=ω
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Calculation of Signal Shape: Filtering of Harmonics 

Calculation via FFT:
Remark: For electronics calculation, time domain filters (FIR and IIR) are more appropriated

Generally:     Ztot(ω) = Zcable(ω) · Zfilter(ω) · Zamp(ω) · … ·Zt(ω)
)()()()()()( tUIZUItI im

invFFT
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Parameter:
R=10 kΩ, 4th order 
Butterworth filter at fcut=2 MHz
C=100pF, l=10cm, β=50%, σ=100 ns
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nth order Butterworth Filter:
(Math. simple, but not well suited)

Effect of filters, here bandpass:

Ringing due to sharp cutoff 
Other filter types more appropriate 
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Principle of Position Determination with BPM

The difference between plates gives the beam’s center-of-mass 
→most frequent  application

Sometimes the transverse transfer impedance is defined via UΔ= Z┴(ω) · xIbeam

It can be assumed: Z┴(ω,x)=k(ω,x)·Zt(ω)
with k(ω,x) or S(ω,x)=1/k(ω,x) called displacement sensitivity
They are geometry dependent, non-linear function, which have to be optimized. 
Units: k=[mm] and S=[%/mm] or S=[dB/mm]

‘Proximity’ effect leads to different voltages at the plates:
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Beam Position Monitor: 
Detector Principle, Hardware and Electronics 

Outline:
Signal generation → transfer impedance
Consideration for capacitive ‘shoe box’ = ‘linear cut’ BPM

position sensitivity calculation, crosstalk, realization
Consideration for capacitive button BPM
Other BPM principles: stripline → traveling wave, 
inductive → wall current, cavity → resonator for dipole mode

Electronics for position evaluation
Some examples for position evaluation and other applications
Summary
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Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz<frf<10 MHz ⇒ bunch-length >> BPM length.

Signal is proportional to actual plate length:

In ideal case: linear reading 
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Shoe-box BPM:
Advantage: Very linear, low frequency dependence
Disadvantage: Large size, complex mechanics

high capacitance

Size: 200x70 mm2
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Boundary Contribution  ⇒ FEM Calculation required

Boundary condition by the environment can significantly influence BPM properties

⇒ real properties have to be calculated numerically by Finite Element Method:
Examples are: CST-Studio (MAFIA), Comsol, HFFS
General idea of FEM calculations:

Volume is divided in 3-dim meshes with typically 106 to 107 nodes 
Fixed boundary conditions at the mechanical parts 
and eventually source terms
Goal: Field distribution within the meshes 
The Maxwell equations are solved by 
iterative matrix inversion
Time domain: Propagation of source terms 
(here: Gaussian shaped pulse 
corresponding to 200 MHz bandwidth) 
Frequency domain: e.g. eigenmodes
Output: time dependent signal, frequency dependences, S-parameters, field distribution etc. 
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212 211
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Optimization of Position Sensitivity

Simulation: Gaussian pulse travels on wire on different positions 
→ induced voltage calculated on matched output ports
→ calculation of ΔU/ΣU
Criteria of optimization: linearity, sensitivity, offset reduction, x-y plane independence

δ+
Σ
Δ

=
U
Ukx

Result:
Nearly perfect behavior: kx=104mm, δx=-0.4mm (ideal value kx=90mm, δ=0)

ky=38mm,   δy=-0.04mm (ideal value ky=35mm, δ=0) at 1 MHz

Aperture: 180x70 mm2
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Frequency Dependence of Position Sensitivity

-50
0

50

0

50

100

150

200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

beam position [mm]

freq [MHz]

ΔU
/Σ

U

-50
0

50

0

50

100

150

200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

beam position [mm]

freq [MHz]

ΔU
/Σ

U

)()( ωδω +
Σ
Δ

=
U
Ukx

without ring with ringWith/without guard ring

Displacement sensitivity is nearly frequency 
independent only with separation ring
Sensitivity with separating rings is a factor of 
two larger as without ring.
Capacitive coupling spoils the sensitivity
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Plate—to-Plate Cross-Talk reduces Sensitivity

•Capacitive coubling determines position 
sensitivity 

•Plate-to-plate cross talk caused by ceramic 
permittivity ε=9.6 resulting in high coupling 
capacitance between adjacent plates
⇒Insertion of the guard-ring between plates 
reduces cross talks by more than 10dB

separating 
rings on the 

ground 
potential

Sig. input

output

Remark: If guard rings are too large: E-field in-homogeneities occur
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Technical Realization of Shoe-Box BPM

Quadropole

Linear Ampl. 

Beam
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channel

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→440 MeV/u
BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm.
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Technical Realization of Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u→440 MeV/u
BPM clearance: 180x70 mm2, standard beam pipe diameter: 200 mm.
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Other Types of diagonal cut BPM

Round type: cut cylinder
Same properties as shoe-box:

Wounded strips:

Same distance from beam and 
capacitance for all plates
But horizontal-vertical coupling.

Vertical BPM

Horizontal BPM

Guard RingSignal Out

Other realization: Full metal plates
→ No guard rings required
→ but mechanical alignment more difficult
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Beam Position Monitor: 
Detector Principle, Hardware and Electronics 

Outline:
Signal generation → transfer impedance
Consideration for capacitive shoe box BPM
Consideration for capacitive button BPM
simple electro-static model, low β effect, modification for synch. light source
Comparison shoe box button BPM
Other BPM principles: stripline → traveling wave, 
inductive → wall current, cavity → resonator for dipole mode

Electronics for position evaluation
Some examples for position evaluation and other applications
Summary



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesP. Forck, P. Kowina, D. Liakin, GSI, CAS, May 30th, 2008   Beam Position Monitors: Principle and Realization  28

Button BPM for short Bunches

LINACs, e--synchrotrons: 100 MHz < frf < 3 GHz → bunch length ≈ BPM length
→ 50 Ω signal path to prevent reflections

Button BPM with 50 Ω ⇒
dt

dI
ac

ARtU beam
im ⋅

⋅
⋅=

πβ
)(

Example: LHC-type inside cryostat:  
∅24 mm, half aperture a=25 mm, C=8 pF 
⇒ fcut=400 MHz, Z∞ = 1.3 Ω: 

From C. Boccard (CERN)
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2-dim Model for Button BPM 

‘Proximity effect’: larger signal for closer plate
Ideal 2-dim case: Cylindrical pipe → image current density 
via ‘image charge method’ for ‘pensile’ beam:
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2-dim Model for Button BPM

Current density can also be calculated by Laplace equation for Fourier components 

)2/exp(:bunchesGaussian for     )cos(2 222

1
0 tn

n
nbeambeambeam nAtnAIII σωω −=⋅+= ∑

∞

=

In addition, frequency dependence can be calculated by this method.

button

Ideal 2-dim model: Non-linear behavior and hor-vert coupling:
Sensitivity: x=k·Δ/Σ =1/S·Δ/Σ with k [mm], S [%/mm] or [dB/mm]
For this example: center part S=7.4%/mm ⇔ k=1/S=14mm
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button
Beam envelope
Image envelope

Estimation of finite Beam Size Effect for Button BPM

Ideal 2-dim model:
Due to the non-linearity, the beam size enters in the position reading.

Finite beam size:
Calculation of signal response
at different location
‘Averaging’ of image position

⇒ Can not be corrected !

Remark: For most LINACs: Linearity is less important, because beam has to be centered
→ correction as feed-forward for next macro-pulse.

Image center

beam center
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FEM Calculation for Button BPM simple Test Case

For realistic beam, 3-dim FEM calculations are required.
Example: Button BPM at  r=3 cm beam-pipe, flat, round ∅ 4cm

frequency frf=150 MHz, effect for higher harmonics calculated

Nearly same result as ideal case!
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Rup

Rdown

Low Velocity Effect: General Consideration 

Simple Lorentz transformation of single point-like charge:
Lorentz boost and transformation of time:  ' and )'(')( tttEtE →=⊥ γ

( )[ ] 2/322
04

)(
ctR

RetE
γβ

γ
πε +

⋅=⊥E-field of a point-like charge:
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FEM Calculation of low β Effect for p-LINAC

3frf

2frf

f0

Effect increases with frf
Can also be calculated by 
Fourier-components.

β=0.08, evaluation at frf β=0.08, evaluation at 3frf
frf=150 MHz
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Position Measurement for Button BPM

Example LHC type: Measurement with movable 50 Ω matched antenna:   

Polynôme de Linéarisation pour l'Axe X

y = 2.424E-05x5 - 1.295E-14x4 - 4.647E-05x3 - 4.686E-12x2 + 1.030E+00x + 6.219E-10
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Non-linearity and 
horizontal-vertical coupling 
⇒ Polynomial fit with x and y dependence

From C. Boccard, C. Palau-Montava et al.(CERN).
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Realization of Button BPM at LHC

Example LHC: ∅ 24 mm, half aperture a=25 mm, installed inside cryostat 
Critically: 50 Ω matching of button to standard feed-through.  

From C. Boccard, C. Palau-Montava et al.(CERN).
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Button BPM at Synchrotron Light Sources

Example: Booster of ALS, BerkeleyThe button BPM can be rotated by 450 

to avoid exposure by synchrotron light: 

Frequently used at boosters for light sources

4321
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Button BPM at Synchrotron Light Sources

4321

3142 )()(1:horizontal
UUUU
UUUU

S
x

x +++
+−+

⋅=

4321

4321 )()(1: vertical
UUUU
UUUU

S
y

y +++
+−+

⋅=

U1
U2

U4
U3

Beam position swept with 2 mm steps
Non-linear and inter-plane dependent sensitivity
At center Sx=8.5%/mm in this case

Due to synchrotron radiation, the button insulation might be destroyed 
⇒buttons only in vertical plane possible ⇒ increased non-linearity
Optimization: horizontal distance and size of buttons

From S. Varnasseri, SESAME, DIPAC 2005
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Button BPM at Synchrotron Light Sources

2 mm distance between dots

From S. Varnasseri, SESAME, DIPAC 2005

dAB=24 mm

dAB=24 mm

horizontal

vertical

Result:

Hori. Sx=8.5%/mm

Vertical Sy=5.6%/mm

x&y dependent 
polynomial fit possible

dAB=24 mmdAB
2-dim electro-static simulation:
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Button BPM at Synchrotron Light Sources

Beam position swept with 2 mm steps From S. Varnasseri, SESAME, DIPAC 2005

dAB=24 mm

dAB=30 mm

Result:

Distance dAB influences the sensitivity 

Larger dAB has the effect:  

higher sensitivity in x-direction

lower sensitivity in y-direction

linearity in influenced

⇒ Numerical optimization required

dAB
2-dim electro-static simulation:
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Comparison Shoe-Box and Button BPM

Shoe-Box BPM Button BPM
Precaution Bunches longer than BPM Bunch length comparable to BPM

Shape Rectangular, cut cylinder Orthogonal or in-plane orientation

Cutoff frequency (typical) 0.01… 10 MHz (C=30…100pF) 0.3… 1 GHz (C=2…10pF)

BPM length (typical) 10 to 20 cm length per plane ∅1 to 3 cm per button

Bandwidth (typical) 0.1 to 100 MHz 100 MHz to 5 GHz

Coupling 1 MΩ or   ≈1 kΩ (transformer) 50 Ω

Linearity Very good, no x-y coupling Non-linear, x-y coupling

Sensitivity Good, care: plate cross talk Good, care signal matching

Usage At (low energy) proton 
synchrotrons 

All electron acc., proton Linacs, 
high energy synchrotrons 
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