

The ,, not so ideal world "

15.) The $\square \Delta p / p \neq 0$ " Problem

ideal accelerator: all particles will see the same accelerating voltage. $\rightarrow \Delta p / p = 0$

"nearly ideal" accelerator: Cockroft Walton or van de Graaf

 $\Delta p / p \approx 10^{-5}$

Vivitron, Straßbourg, inner structure of the acc. section

MP Tandem van de Graaf Accelerator at MPI for Nucl. Phys. Heidelberg

Linear Accelerator

Energy Gain per "Gap":

 $\boldsymbol{W} = \boldsymbol{q} \boldsymbol{U}_0 \sin \boldsymbol{\omega}_{\boldsymbol{R}\boldsymbol{F}} \boldsymbol{t}$

1928, Wideroe

schematic Layout:

drift tube structure at a proton linac

* **RF Acceleration:** multiple application of the same acceleration voltage; brillant idea to gain higher energies

500 MHz cavities in an electron storage ring

Problem: panta rhei !!! (Heraklit: 540-480 v. Chr.)

Example: HERA RF:

 $\frac{\Delta p}{p} \approx 1.0 \ 10^{-3}$

typical momentum spread of an electron bunch:

16.) Dispersion: trajectories for $\Delta p / p \neq 0$

Question: do you remember last session, page 12 ? ... sure you do

Force acting on the particle

$$F = m \frac{d^2}{dt^2} (x + \rho) - \frac{mv^2}{x + \rho} = e B_y v$$

remember: $x \approx mm$, $\rho \approx m \dots \rightarrow$ develop for small x

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = eB_y v$$

consider only linear fields, and change independent variable: $t \rightarrow s$

$$\boldsymbol{B}_{y} = \boldsymbol{B}_{0} + \boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}$$

$$x'' - \frac{1}{\rho} (1 - \frac{x}{\rho}) = \underbrace{e \quad B_0}_{mv} + \underbrace{e \quad x \quad g}_{mv}$$

$$p = p_0 + \Delta p$$

... but now take a small momentum error into account !!!

Dispersion:

develop for small momentum error $\Delta p \ll p_0 \Rightarrow \frac{1}{p_0 + \Delta p} \approx \frac{1}{p_0} - \frac{\Delta p}{p_0^2}$

$$\boldsymbol{x}'' - \frac{1}{\rho} + \frac{\boldsymbol{x}}{\rho^2} \approx \frac{\boldsymbol{e} \cdot \boldsymbol{B}_0}{\boldsymbol{p}_0} - \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0^2} \boldsymbol{e} \boldsymbol{B}_0 + \frac{\boldsymbol{x} \boldsymbol{e} \boldsymbol{g}}{\boldsymbol{p}_0} - \boldsymbol{x} \boldsymbol{e} \boldsymbol{g} \cdot \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0^2} - \frac{1}{\rho} \quad \boldsymbol{k} \ast \boldsymbol{x} \quad \boldsymbol{\epsilon} \boldsymbol{0}$$

$$\boldsymbol{x}'' + \frac{\boldsymbol{x}}{\boldsymbol{\rho}^2} \approx \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0} * \frac{(-\boldsymbol{e}\boldsymbol{B}_0)}{\boldsymbol{p}_0} + \boldsymbol{k} * \boldsymbol{x} = \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0} * \frac{1}{\boldsymbol{\rho}} + \boldsymbol{k} * \boldsymbol{x}$$

$$x'' + \frac{x}{\rho^2} - kx = \frac{\Delta p}{p_0} \frac{1}{\rho} \qquad \longrightarrow \qquad x'' + x \left(\frac{1}{\rho^2} - k\right) = \frac{\Delta p}{p_0} \frac{1}{\rho}$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. \rightarrow inhomogeneous differential equation.

Dispersion:

$$x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p} \cdot \frac{1}{\rho}$$

general solution:

$$x(s) = x_h(s) + x_i(s)$$

Normalise with respect to $\Delta p/p$:

$$D(s) = \frac{x_i(s)}{\frac{\Delta p}{p}}$$

$$\begin{cases} x_h''(s) + K(s) \cdot x_h(s) = 0\\ x_i''(s) + K(s) \cdot x_i(s) = \frac{1}{\rho} \cdot \frac{\Delta p}{p} \end{cases}$$

Dispersion function *D*(*s*)

- * is that special orbit, an ideal particle would have for $\Delta p/p = 1$
- * the orbit of any particle is the sum of the well known x_{β} and the dispersion
- * as D(s) is just another orbit it will be subject to the focusing properties of the lattice

Calculate D, D'

$$D(s) = S(s) \int_{s0}^{s1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{s0}^{s1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}$$

(proof: see appendix)

Example: Drift

$$M_{Drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} \qquad D(s) = S(s) \int_{s_0}^{s_1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{s_0}^{s_1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}$$
$$= 0 \qquad = 0$$

Example: Dipole

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}_0 \qquad \qquad K = \frac{1}{\rho^2}$$

$$M_{Dipole} = \begin{pmatrix} \cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} \\ -\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho} \end{pmatrix} \longrightarrow \qquad D(s) = \rho \cdot (1 - \cos \frac{l}{\rho}) \\ D'(s) = \sin \frac{l}{\rho}$$

Example: Dispersion, calculated by an optics code for a real machine

$$\boldsymbol{x}_D = \boldsymbol{D}(\boldsymbol{s}) \, \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}}$$

* D(s) is created by the dipole magnets ... and afterwards focused by the quadrupole fields

Dispersion is visible

rinting	Optionen Ko	orrekturen	Offsets Sav	ve File	Select File	Set Optics	Set Bund	n Spezial	Orbit View	Expert				
Ŀ														
y. 0	ու <mark>րեղեր</mark>	ս _թ ու,ե	սել	<u>li,</u> ,i	t,,ht,,u	¹ ,		l., ,,, ,		.i.,ii _t .li.		. تى الى تى	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ئالىتىلى
ktion	^ (VV)		S		= Monitor I	Number ==>	Ó		**		N	×.		Ŵ
-														
4														
1														
7														
/ 0														
	- Darstellung -						Maschin	e : HER/	p	Proto	nen	WL1	97 MX-	
7	- Darstellung - © Orbit		• Orb-R	ef	C Ref		Maschin	e : HER/	k-p RMS-wer	Proto Energ	nen e 39.73	WL1 Abla	97 MX – ge (mm)	-0.348
	- Darstellung - © Orbit Closed Orbit		• Orb-R	ef ch1	C Ref		Maschin N X / hor.	e : HER/ dittelwert .0000	A-p RMS-wer .5559	Proto Energ Strom	nen e 39.7: 4.4	WL1 Abla Statu	97 MX ge (mm) is	-0.348 OK
	Darstellung Orbit Closed Orbit		● Orb-R Scrato	tef Ch1	C Ref		Maschin N X / hor. Z / vert.	e : HER4 Aittelwert .0000 .0001	A-p RMS-wer .5559 .0893	Proto Energ Strom Bunch	nen e 39.73 4.4 Nr ???	WL1 Abla Statu B/	97 MX – ge (mm) is 10	0.348 OK 7.7 / .00
/	Darstellung Orbit Closed Orbit		● Orb-R Scrate hpi40	tef ch1	© Ref = 39.726		Maschin N X / hor.	e : HERA ittelwert .0000 .0001	A-p RMS-wer .5559 .0893	Proto Energ Strom Bunch Machi	nen e 39.7: 4.4 Nr ??? ne hpi40	WL1 Abla Statu β/	97 MX ge (mm) is 10	0.348 OK 7.7 / .00
/	-Darstellung Orbit Closed Orbit Jan 28 15:30	:16 2004	• Orb-R Scratc hpi4(2004	tef ch1 On Ep : 4-01-28	Ref = 39.726 15:29:12		Maschin N X / hor. Z / vert. dp/p	e : HERA littelwert .0000 .0001 Ip/p Aus	A-p RMS-wer .5559 .0893	Proto Energ Strom Bunch Machi (gelad	nen e 39.7: 4.4 Nr ??? ne hpi40 en] hpi40	MUL1 Abla Statu β/	97 MX – ge (mm) JS 10	0.348 OK 7.7 / .00
	Darstellung Orbit Closed Orbit Jan 28 15:30	:16 2004 ct	Orb-R Scratc hpi40 2004 osed Orbit -	tef ch1 On Ep: 4-01-28	Ref = 39.726 15:29:12	.	Maschin N X / hor. Z / vert. dp/p	e : HER4 littelwert .0000 .0001 lp/p Aus	A-p RMS-wer .5559 .0893	Proto Energ Strom Bunch Machi [gelad	nen e 39.73 4.4 Nr ??? ne hpi40 en] hpi40	B WL1 Abla Statu β/	97 MX ge (mm) is 10	0.348 OK 7.7 / .00

dedicated energy change of the stored beam

→ closed orbit is moved to a dispersions trajectory

$$x_{D} = D(s) * \frac{\Delta p}{p}$$

Attention: at the Interaction Points we require D=D'=0 HERA Standard Orbit

HERA Dispersion Orbit

17.) Momentum Compaction Factor: a_p

particle with a displacement x to the design orbit \rightarrow path length dl ...

$$\frac{dl}{ds} = \frac{\rho + x}{\rho}$$
$$\rightarrow dl = \left(1 + \frac{x}{\rho(s)}\right) ds$$

circumference of an off-energy closed orbit

$$l_{\Delta E} = \oint dl = \oint \left(1 + \frac{x_{\Delta E}}{\rho(s)} \right) ds$$

remember:

$$x_{\Delta E}(s) = D(s)\frac{\Delta p}{p}$$

$$\delta l_{\Delta E} = \frac{\Delta p}{p} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

* The lengthening of the orbit for off-momentum particles is given by the dispersion function and the bending radius.

Definition:

$$\frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

$$\rightarrow \alpha_p = \frac{1}{L} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

For first estimates assume:

$$\frac{1}{\rho} = const.$$

$$\int D(s) ds \approx l_{\Sigma(dipoles)} \cdot \langle D \rangle_{dipoles}$$

$$\boldsymbol{\alpha}_{p} = \frac{1}{L} \boldsymbol{l}_{\Sigma(dipoles)} \cdot \langle \boldsymbol{D} \rangle \frac{1}{\rho} = \frac{1}{L} 2\pi \rho \cdot \langle \boldsymbol{D} \rangle \frac{1}{\rho} \quad \rightarrow \qquad \boldsymbol{\alpha}_{p} \approx \frac{2\pi}{L} \langle \boldsymbol{D} \rangle \approx \frac{\langle \boldsymbol{D} \rangle}{R}$$

Assume: $v \approx c$

$$\rightarrow \frac{\delta T}{T} = \frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

 a_p combines via the dispersion function the momentum spread with the longitudinal motion of the particle. Introduction to Transverse Beam Optics

Bernhard Holzer

IV.) Errors in Field and Gradient

The "überhaupt nicht ideal world"

Quadrupole Errors

go back to Lecture I, page 1
single particle trajectory

$$\begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{x'} \end{pmatrix}_2 = \boldsymbol{M}_{\boldsymbol{Q}F} * \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{x'} \end{pmatrix}_1$$

Solution of equation of motion

$$\boldsymbol{x} = \boldsymbol{x}_0 \cos(\sqrt{k} \boldsymbol{l}_q) + \boldsymbol{x}_0' \frac{1}{\sqrt{k}} \sin(\sqrt{k} \boldsymbol{l}_q)$$

$$\boldsymbol{M}_{QF} = \begin{pmatrix} \cos(\sqrt{k} \ \boldsymbol{l}_q) & \frac{1}{\sqrt{k}} \sin(\sqrt{k} \ \boldsymbol{l}_q) \\ -\sqrt{k} \sin(\sqrt{k} \ \boldsymbol{l}_q) & \cos(\sqrt{k} \ \boldsymbol{l}_q) \end{pmatrix} , \quad \boldsymbol{M}_{thinlens} = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

$$M_{turn} = M_{QF} * M_{D1} * M_{QD} * M_{D2} * M_{QF} \dots$$

Definition: phase advance of the particle oscillation per revolution in units of 2π $Q = \frac{\Psi_{turn}}{2\pi}$

Matrix in Twiss Form

Transfer Matrix from point ,,0" in the lattice to point ,,s":

$$M(s) = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} (\cos \psi_s + \alpha_0 \sin \psi_s) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos(\psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s)}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} (\cos(\psi_s - \alpha_0 \sin \psi_s)) \end{pmatrix}$$

For one complete turn the Twiss parameters have to obey periodic bundary conditions:

 $\beta(s+L) = \beta(s)$ $\alpha(s+L) = \alpha(s)$ $\gamma(s+L) = \gamma(s)$

$$M(s) = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_s & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix}$$

Quadrupole Error in the Lattice

optic perturbation described by thin lens quadrupole

rule for getting the tune

$$Trace(M) = 2\cos\psi = 2\cos\psi_0 + \Delta k ds\beta \sin\psi_0$$

Quadrupole error \rightarrow Tune Shift

$$\psi = \psi_0 + \Delta \psi$$
 \longrightarrow $\cos(\psi_0 + \Delta \psi) = \cos \psi_0 + \frac{\Delta k ds \beta \sin \psi_0}{2}$

remember the old fashioned trigonometric stuff and assume that the error is small !!!

$$\cos \psi_0 \cos \Delta \psi - \sin \psi_0 \sin \Delta \psi = \cos \psi_0 + \frac{k ds \beta \sin \psi_0}{2}$$
$$\approx 1 \qquad \approx \Delta \psi$$

$$\Delta \psi = \frac{kds \beta}{2}$$

and referring to Q instead of ψ :

$$\psi = 2\pi Q$$

$$\Delta \boldsymbol{Q} = \int_{s0}^{s0+l} \frac{\Delta \boldsymbol{k}(s)\boldsymbol{\beta}(s)ds}{4\pi}$$

- ! the tune shift is proportional to the β -function at the quadrupole
- *If field quality, power supply tolerances etc are much tighter at places where* β *is large*
- III mini beta quads: β ≈ 1900 m arc quads: β ≈ 80 m
- IIII β is a measure for the sensitivity of the beam

a quadrupol error leads to a shift of the tune:

$$\Delta Q = \int_{s0}^{s0+l} \frac{\Delta k \beta(s)}{4\pi} ds \approx \frac{\Delta k l_{quad} \overline{\beta}}{4\pi}$$

Example: measurement of β in a storage ring: tune spectrum

Quadrupole error: Beta Beat

$$\Delta \boldsymbol{\beta}(\boldsymbol{s}_0) = \frac{\boldsymbol{\beta}_0}{2\sin 2\boldsymbol{\pi}\boldsymbol{Q}} \int_{s_1}^{s_1+l} \boldsymbol{\beta}(\boldsymbol{s}_1) \Delta \boldsymbol{K} \cos\left(2|\boldsymbol{\psi}_{s_1} - \boldsymbol{\psi}_{s_0}| - 2\boldsymbol{\pi}\boldsymbol{Q}\right) d\boldsymbol{s}$$

19.) Chromaticity: A Quadrupole Error for ∆p/p ≠ 0

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

Chromaticity: Q'

$$k = \frac{g}{\frac{p}{e}} \qquad \qquad p = p_0 + \Delta p$$

in case of a momentum spread:

$$k = \frac{eg}{p_0 + \Delta p} \approx \frac{e}{p_0} (1 - \frac{\Delta p}{p_0}) g = k_0 + \Delta k$$
$$\Delta k = -\frac{\Delta p}{p_0} k_0$$

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$\Delta \boldsymbol{Q} = -\frac{1}{4\pi} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0} \boldsymbol{k}_0 \boldsymbol{\beta}(\boldsymbol{s}) \boldsymbol{ds}$$

definition of chromaticity:

$$\Delta Q = Q' \quad \frac{\Delta p}{p} \quad ; \qquad Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$$

Where is the Problem ?

Tunes and Resonances

avoid resonance conditions: $m Q_x + n Q_y + l Q_s = integer$

- a cy cs c

... for example: $1 Q_x = 1$

... and now again about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q' is a number indicating the size of the tune spot in the working diagram, Q' is always created if the beam is focussed

 \rightarrow it is determined by the focusing strength k of all quadrupoles

$$Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$$

k = quadrupole strength $\beta = beta function indicates the beam size ... and even more the sensitivity of the beam to external fields$

Example: HERA

HERA-p: $Q' = -70 \dots -80$ $\Delta p/p = 0.5 * 10^{-3}$ $\Delta Q = 0.257 \dots 0.337$ →Some particles get very close to resonances and are lost

in other words: the tune is not a point it is a pancake

Tune signal for a nearly uncompensated cromaticity (Q' ≈ 20)

Ideal situation: cromaticity well corrected, ($Q' \approx 1$)

Tune and Resonances

 $m^*Q_x + n^*Q_y + l^*Q_s = integer$

Correction of Q':

Need: additional quadrupole strength for each momentum deviation $\Delta p/p$

1.) sort the particles according to their momentum

🚮 He	ra P New BPM Display				
Printing	Optionen Korrekturen C)ffsets Save File Select File Set (Optics Set Bunch Spezial Orbit View E	xpert	
5 💽					
Ноя. 0					
Injektion	^ (M)	S == Monitor Numbe	r ==> 0	N	
Vert	·····			يتارياني داريان	
-5					
	Darstellung	Cont Pro Cont	Maschine : HERA-p	Protonen 20.72	NR344 MX
	Closed Orbit	Scratch4	X / hor. 2.0538 2.3572	Strom 4.7 1 1	Status wrong t
	Feb 08 23:09:16 2006	hpi40n Ep = 39.746 2006-02-08 23:07:15	dp/p Aus -1.482	Machine hpi40n [geladen] hpi40n	β / ♦ 128.3 / 6 Release Γ

Correction of Q':

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$B_{x} = \tilde{g}xy
 B_{y} = \frac{1}{2}\tilde{g}(x^{2} - y^{2})
 B_{y} = \frac{1}{2}\tilde{g}(x^{2} - y^{2})
 d = \frac{\partial B_{x}}{\partial y} = \frac{\partial B_{y}}{\partial x} = \tilde{g}x
 d = \tilde{g}x$$

Sextupole Magnet:

normalised quadrupole strength:

$$k_{sext} = \frac{gx}{p / e} = m_{sext} x$$

$$k_{sext} = m_{sext} D \frac{1}{p}$$

corrected chromaticity:

$$Q' = -\frac{1}{4\pi} \oint \{k(s) - mD(s)\}\beta(s)ds$$

sextupole magnet in a storage ring ... placed close to the quadrupole lens

quadrupole magnet

.) Insertions

Insertions

... the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters α , β , γ if we stop focusing for a while ...?

$$\begin{pmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \\ \boldsymbol{\gamma} \end{pmatrix}_{S} = \begin{pmatrix} C^{2} & -2SC & S^{2} \\ -CC' & SC' + S'C & -SS' \\ C'^{2} & -2S'C' & S'^{2} \end{pmatrix} * \begin{pmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \\ \boldsymbol{\gamma} \end{pmatrix}_{0}$$

transfer matrix for a drift:

$$M = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \longrightarrow$$

$$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$$
$$\alpha(s) = \alpha_0 - \gamma_0 s$$
$$\gamma(s) = \gamma_0$$

β-Function in a Drift:

let's assume we are at a symmetry point in the center of a drift.

$$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$$

as
$$\alpha_0 = 0$$
, $\rightarrow \gamma_0 = \frac{1 + \alpha_0^2}{\beta_0} = \frac{1}{\beta_0}$

and we get for the β function in the neighborhood of the symmetry point

$$\beta(s) = \beta_0 + \frac{s^2}{\beta_0} \qquad \qquad !!$$

Nota bene:

- 1.) this is very bad !!!
- 2.) this is a direct consequence of the conservation of phase space density (... in our words: ε = const) ... and there is no way out.
- 3.) Thank you, Mr. Liouville !!!

... clearly there is an

But: ... unfortunately ... in general high energy detectors that are installed in that drift spaces

are a little bit bigger than a few centimeters ...

Example of a long Drift: The Mini-β Insertion:

Luminosity: given by the total stored beam currents and the beam size at the collision point (IP)

How to create a mini β insertion:

* symmetric drift space (length adequate for the experiment) * make the beat values as small as possible $\sigma = \sqrt{\epsilon\beta}$

* ... where is the limit ???

Mini-β Insertions: some guide lines

* calculate the periodic solution in the arc

* *introduce the drift space needed for the insertion device (detector ...)*

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

parameters to be optimised & matched to the periodic solution:

... and now back to the Chromaticity

Resume ':

quadrupole error: tune shift

$$\Delta \boldsymbol{Q} \approx \int_{s0}^{s0+l} \frac{\Delta \boldsymbol{k}(s) \,\boldsymbol{\beta}(s)}{4\pi} ds \approx \frac{\Delta \boldsymbol{k}(s) \,\boldsymbol{l}_{quad} \,\boldsymbol{\beta}}{4\pi}$$

beta beat $\Delta \boldsymbol{\beta}(\boldsymbol{s}_0) = \frac{\boldsymbol{\beta}_0}{2\sin 2\pi \boldsymbol{Q}} \int_{s_1}^{s_1+l} \boldsymbol{\beta}(\boldsymbol{s}_1) \Delta \boldsymbol{k} \cos\left(2(\boldsymbol{\psi}_{s_1} - \boldsymbol{\psi}_{s_0}) - 2\pi \boldsymbol{Q}\right) d\boldsymbol{s}$

chromaticity

$$\Delta Q = Q' \frac{\Delta p}{p}$$

$$\boldsymbol{Q}' = -\frac{1}{4\pi} \oint \boldsymbol{k}(s) \boldsymbol{\beta}(s) ds$$

momentum compaction

$$\frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

$$\boldsymbol{\alpha}_{p} \approx \frac{2\boldsymbol{\pi}}{\boldsymbol{L}} \left\langle \boldsymbol{D} \right\rangle \approx \frac{\left\langle \boldsymbol{D} \right\rangle}{\boldsymbol{R}}$$

Appendix I:

Dispersion: Solution of the inhomogenious equation of motion

Ansatz:

$$D(s) = S(s) \int_{s0}^{s1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{s0}^{s1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}$$

$$D'(s) = S'^* \int \frac{1}{\rho} C \, dt + S \frac{1}{\rho} C - C'^* \int \frac{1}{\rho} S \, dt - C \frac{1}{\rho} S$$
$$D'(s) = S'^* \int \frac{C}{\rho} \, dt - C'^* \int \frac{S}{\rho} \, dt$$

$$D''(s) = S'' * \int \frac{C}{\rho} d\tilde{s} + S' \frac{C}{\rho} - C'' * \int \frac{S}{\rho} d\tilde{s} - C' \frac{S}{\rho}$$
$$= S'' * \int \frac{C}{\rho} d\tilde{s} - C'' * \int \frac{S}{\rho} d\tilde{s} + \frac{1}{\rho} (CS' - SC')$$
$$= \det M = 1$$

remember: for Cs) and S(s) to be independent solutions the Wronski determinant has to meet the condition

$$W = \begin{vmatrix} C & S \\ C' & S' \end{vmatrix} \neq 0$$

and as it is independent
of the variable ",s"
$$\frac{dW}{ds} = \frac{d}{ds}(CS' - SC') = CS'' - SC'' = -K(CS - SC) = 0$$
we get for the initial
conditions that we had chosen ...
$$C_0 = 1, \quad C'_0 = 0$$

$$S_0 = 0, \quad S'_0 = 1$$

$$W = \begin{vmatrix} C & S \\ C' & S' \end{vmatrix} = 1$$

$$D'' = S'' * \int \frac{C}{\rho} d\tilde{s} - C'' * \int \frac{S}{\rho} d\tilde{s} + \frac{1}{\rho}$$

remember: S & C are solutions of the homog. equation of motion:

S'' + K * S = 0C'' + K * C = 0

qed

$$D'' = -K * S * \int \frac{C}{\rho} d\tilde{s} + K * C * \int \frac{S}{\rho} d\tilde{s} + \frac{1}{\rho}$$
$$D'' = -K * \left\{ S \int \frac{C}{\rho} d\tilde{s} + C \int \frac{S}{\rho} d\tilde{s} \right\} + \frac{1}{\rho}$$
$$=D(s)$$
$$D'' = -K * D + \frac{1}{\rho} \qquad \dots \text{ or } \qquad D'' + K * D = \frac{1}{\rho}$$

Appendix II:

Quadrupole Error and Beta Function

a change of quadrupole strength in a synchrotron leads to tune sift:

$$\Delta Q \approx \int_{s_0}^{s_0+l} \frac{\Delta k(s)\,\beta(s)}{4\pi} ds \approx \frac{\Delta k(s)^* l_{quad}^* \,\overline{\beta}}{4\pi}$$

tune spectrum ...

tune shift as a function of a gradient change

But we should expect an error in the β-function as well shouldn't we ???

Quadrupole Errors and Beta Function

a quadrupole error will not only influence the oscillation frequency ... "tune" ... but also the amplitude ... "beta function"

split the ring into 2 parts, described by two matrices A and B

$$M_{turn} = B * A \qquad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \\ B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

matrix of a quad error
$$M_{dist} = \begin{pmatrix} m_{11}^* & m_{12}^* \\ m_{21}^* & m_{22}^* \end{pmatrix} = B \begin{pmatrix} 1 & 0 \\ -\Delta k ds & 1 \end{pmatrix} A$$

between A and B

$$M_{dist} = B \begin{pmatrix} a_{11} & a_{12} \\ -\Delta k ds a_{11} + a_{12} & -\Delta k ds a_{12} + a_{22} \end{pmatrix}$$

â

B

S₀

A

 S_1

$$M_{dist} = \begin{pmatrix} \sim & b_{11}a_{12} + b_{12}(-\Delta k ds a_{12} + a_{22}) \\ \sim & \sim \end{pmatrix}$$

the beta function is usually obtained via the matrix element "m12", which is in Twiss form for the undistorted case

$$m_{12} = \beta_0 \sin 2\pi Q$$

and including the error:

$$m_{12}^* = b_{11}a_{12} + b_{12}a_{22} - b_{12}a_{12}\Delta kds$$
$$m_{12} = \beta_0 \sin 2\pi Q$$

(1)
$$m_{12}^* = \beta_0 \sin 2\pi Q - a_{12}b_{12}\Delta k ds$$

As M^* is still a matrix for one complete turn we still can express the element m_{12} in twiss form:

(2)
$$m_{12}^* = (\beta_0 + d\beta) * \sin 2\pi (Q + dQ)$$

Equalising (1) and (2) and assuming a small error

$$\beta_0 \sin 2\pi Q - a_{12} b_{12} \Delta k ds = (\beta_0 + d\beta)^* \sin 2\pi (Q + dQ)$$

$$\beta_0 \sin 2\pi Q - a_{12} b_{12} \Delta k ds = (\beta_0 + d\beta)^* \sin 2\pi Q \cos 2\pi dQ + \cos 2\pi Q \sin 2\pi dQ$$

$$\approx 1$$

$$\beta_0 \sin 2\pi Q - a_{12}b_{12}\Delta k ds = \beta_0 \sin 2\pi Q + \beta_0 2\pi dQ \cos 2\pi Q + d\beta_0 \sin 2\pi Q + d\beta_0 2\pi dQ \cos 2\pi Q$$

ignoring second order terms

$$-a_{12}b_{12}\Delta kds = \beta_0 2\pi dQ \cos 2\pi Q + d\beta_0 \sin 2\pi Q$$

remember: tune shift dQ due to quadrupole error: $dQ = \frac{\Delta k \beta_1 ds}{4\pi}$ (index "1" refers to location of the error)

$$-a_{12}b_{12}\Delta kds = \frac{\beta_0 \Delta k\beta_1 ds}{2}\cos 2\pi Q + d\beta_0 \sin 2\pi Q$$

solve for $d\beta$

$$d\beta_0 = \frac{-1}{2\sin 2\pi Q} \{ 2a_{12}b_{12} + \beta_0\beta_1\cos 2\pi Q \} \Delta k ds$$

express the matrix elements a_{12} , b_{12} in Twiss form

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}$$

$$d\beta_{0} = \frac{-1}{2\sin 2\pi Q} \{ 2a_{12}b_{12} + \beta_{0}\beta_{1}\cos 2\pi Q \} \Delta kds$$
$$a_{12} = \sqrt{\beta_{0}\beta_{1}}\sin \Delta \psi_{0\to 1}$$
$$b_{12} = \sqrt{\beta_{1}\beta_{0}}\sin(2\pi Q - \Delta \psi_{0\to 1})$$

$$d\beta_0 = \frac{-\beta_0 \beta_1}{2\sin 2\pi Q} \{ 2\sin \Delta \psi_{12} \sin(2\pi Q - \Delta \psi_{12}) + \cos 2\pi Q \} \Delta k ds$$

... after some TLC transformations ... $= \cos(2\Delta \psi_{01} - 2\pi Q)$

$$\Delta\beta(s_{0}) = \frac{-\beta_{0}}{2 \sin 2\pi Q} \int_{s_{1}}^{s_{1}+l} \beta(s_{1})\Delta k \cos(2(\psi_{s_{1}} - \psi_{s_{0}}) - 2\pi Q) ds$$
Nota bene: ! the beta beat is proportional to the strength of the error Δk
!! and to the β function at the place of the error ,
!!! and to the β function at the observation point,
(... remember orbit distortion !!!)
!!!! there is a resonance denominator