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Lectures 1 and 2 summary

In Lecture 1, we:

• discussed the effect of synchrotron radiation on the (linear) motion of 

particles in storage rings;

• derived expressions for the damping times of the vertical, horizontal 

and longitudinal emittances;

• discussed the effects of quantum excitation, and derive expressions for 

the equilibrium horizontal and longitudinal beam emittances in an 

electron storage ring in terms of the synchrotron radiation integrals.

In Lecture 2, we:

• derived expressions for the natural emittance in different types of 

lattice (FODO, DBA, multi-bend achromats, TME):

• considered how the natural emittance in an achromat could be reduced 

by "detuning" from the achromat conditions.
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Lecture 3 objectives: emittance computation and tuning

In this lecture, we shall:

• learn how to compute the emittance in a lattice with coupling;

• discuss different sources of vertical emittance, and some of the issues 

involved in tuning a lattice for ultra-low vertical emittance.
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Emittance computation in practice

The formulae for the natural emittance using the synchrotron radiation 

integrals are useful for ideal (error-free) lattices without betatron coupling.

When coupling is present, things get more cumbersome, though the same 

principles still apply.  Usually, we turn to more numerical methods for 

computing the emittance in practical cases.

There are at least two common methods used for computing the equilibrium 

emittances in coupled lattices:

– Chao's method

• A. Chao, "Evaluation of beam distribution parameters in an electron 

storage ring," Journal of Applied Physics, 50, 595-598 (1979).

– The "envelope" method

• e.g. K. Ohmi, K. Hirata, K. Oide, "From the beam-envelope matrix to 

synchrotron radiation integrals," Phys. Rev. E 49, 751-765 (1994).

In this lecture, we shall discuss only the envelope method.
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Back to basics: the sigma matrix and the beam emittances

The sigma matrix is defined as the matrix of second-order moments of the 

beam distribution:

This can be conveniently written as:

where the brackets   indicate an average over all particles in the bunch.

In the absence of coupling, the sigma matrix will be block diagonal.  We are 

interested in the more general case, where coupling is present.
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Back to basics: the sigma matrix and the beam emittances

The emittances and the lattice functions can be calculated from the sigma 

matrix, and vice-versa.

Consider the (simpler) case of one degree of freedom.  The sigma matrix in 

this case is:

Note that given a sigma matrix, we can compute the emittance as follows.

First, define the matrix S:

Then:

the eigenvalues of ·S are ix

The proof is left as an exercise for the student!
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Back to basics: the sigma matrix and the beam emittances

Now, we can show that, under certain assumptions, the emittance is 

conserved as a bunch is transported along a beam line as follows.

The linear transformation in phase space coordinates of a particle in the 

bunch between two points in the beam line can be represented by a matrix M:

If (for the moment) we neglect radiation and certain other effects, and 

consider only the Lorentz force on the particles from the external 

electromagnetic fields, then the transport is symplectic.

Physically, this means that the phase-space volume of the bunch is 

conserved as the bunch moves along the beam line.

Mathematically, this means that M is a symplectic matrix, i.e. M satisfies:
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Back to basics: the sigma matrix and the beam emittances

Now consider how the sigma matrix transforms.  Since it is written as the 

product of the phase-space coordinates averaged over the bunch, we have:

Since S is a constant matrix, we can write:

Then, using the fact that M is symplectic, we have:

But the eigenvalues of ·S are conserved under a transformation of this 

type.  Therefore, since the eigenvalues are just the bunch emittance, the 

eigenvalues are conserved under linear, symplectic transport.
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Back to basics: the sigma matrix and the beam emittances

All the above immediately generalises to three degrees of freedom.

If we define the matrix S in three degrees of freedom by:

In three degrees of freedom, the six eigenvalues of ·S are just:

and these quantities are conserved under linear symplectic transport.

Even if, as is generally the case, the sigma matrix is not block-diagonal (i.e. 

there is coupling present), we can still find three conserved emittances using 

this method, without any modification.
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The matched distribution in a storage ring

If M is a matrix that represents the linear single-turn transformation at some point in a 

storage ring, then an invariant or "matched" distribution is one that satisfies:

This is not sufficient to determine the beam emittances – though this condition will 

determine the lattice functions (which can be obtained from the eigenvectors of ·S).

In other words, the matched distribution condition determines the shape of the bunch, 

but not the size of the bunch.  This makes sense: after all, in a proton storage ring, we 

can have a matched beam with any emittance.

However, in an electron storage ring, we know that radiation effects will damp the 

emittances to some equilibrium values.

How can we apply the concept of a matched distribution to find the equilibrium 

emittance values?

 TMM

M
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The matched distribution in a storage ring

In an electron storage ring, we must make two modifications to the single-

turn transformation to account for radiation effects:

1. The matrix M will no longer be symplectic: this accounts for 

radiation damping.

2. As well as first-order terms in the transformation (represented by 

the matrix M), there will be zeroth-order terms: these will turn out to 

correspond to the quantum excitation.

The condition for a matched distribution should then be written:

where M and D are constant (non-symplectic) matrices that represent the 

first-order and zeroth-order terms in the single-turn transformation, 

respectively.

This equation is sufficient to determine the sigma matrix uniquely – in other 

words, using just this equation (with known M and D) we can find the bunch 

emittances and the matched lattice functions.

DMM  T
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The envelope method

The envelope method for finding the equilibrium emittances in a storage ring 

consists of three steps:

1. Find the first-order terms M and zeroth-order terms D in the single-

turn transformation:

2. Use the matching condition:

to determine the sigma matrix.

3. Find the equilibrium emittances from the eigenvalues of ·S

Note: strictly speaking, since M is not symplectic, the emittances are not conserved 

as the bunch moves around the ring.  Therefore, we may expect to find a different 

emittance at each point around the ring.  However, if radiation effects are fairly small, 

the variations in the emittances will be small.
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The envelope method: finding the transformation matrices M and D

As an illustration of the transformation matrices M and D, we shall consider 

a thin "slice" of a dipole.

The details of the calculation are given in Appendix A; in the main part of the 

lecture, we just indicate the principles, and state the results.

The thin slice of dipole is an important case:

– in most storage rings, radiation effects are only significant in dipoles;

– "complete" dipoles can be constructed by concatenating the maps for 

a number of slices.

Once we have the map for a thin slice of a dipole, we simply need to 

concatenate the maps for all the elements in the ring, to construct the map 

for a complete turn starting at any given point.
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The transformation matrices M and D in a thin slice of a dipole

Recall (from Lecture 1) the transformation of the phase space variables in 

the emission of radiation carrying momentum dp is:

where P0 is the reference momentum.  In general, dp is a function of the 

coordinates.

To find the transformation matrices M and D, we find an explicit expression 

for dp/P0, and then write down the above transformations to first order…
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The transformation matrices M and D in a thin slice of a dipole

For a thin slice of dipole, of length ds, the radiation effects can be 

represented by the matrices (see Appendix A):
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Concatenating the transformations

To construct the full transformation for a dipole (or for an entire lattice) we 

need to concatenate the maps.

It is straightforward to do this numerically using a computer.  We only need 

to be careful about how we handle the D matrices.

For example, given the sigma matrix at a location s0, we find the sigma 

matrix at a location s1 = s0 + ds from:

Then the sigma matrix at s2 is given by:

Hence:
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Concatenating the transformations

Continuing the process, we find we can write:

Using a computer, it's actually not too difficult to concatenate the maps.  In a 

dipole, we have to remember to "interleave" the radiation maps with the 

usual symplectic transport map for thin slice of dipole.
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Solving the matching condition

Having obtained the maps M and D for an entire ring, we now need to solve 

the equation:

to find the sigma matrix for the equilibrium distribution.

To solve this equation for the sigma matrix, we make use of the 

eigenvectors U and the (diagonal matrix of) eigenvalues L of M:

Defining     and     by:

the solution for the sigma matrix can be written:
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Comments on the envelope method: (1) What do we learn?

Vertical emittance can be generated by:

– Coupling between the vertical and longitudinal planes in regions where 

radiation is emitted; i.e. by vertical dispersion in dipoles.

– Coupling between the vertical and horizontal planes in regions where radiation 

is emitted; i.e. by betatron coupling in dipoles.

Here, we need to be very careful in how we use the word "coupling".  In this 

context, coupling means the presence of non-zero off-block-diagonal 

components in the single-turn matrix, M.

Full characterisation of the coupling requires complete specification of all 

these off-block-diagonal components.

It is quite possible to have coupling in a storage ring, and not generate any 

vertical emittance…
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Comments on the envelope method: (2) Applications

Numerical computational procedures (such as the envelope method) for 

finding the equilibrium beam distribution in a storage ring are important 

because they provide a means to calculate the equilibrium emittances in 

complex, coupled lattices.

Note that a variety of non-symplectic effects (including, for example, 

intrabeam scattering) can be included in the computation: not just 

synchrotron radiation.

Often, coupling comes from magnet alignment errors (as we shall discuss 

next), which are not completely known in an operating machine.

However, at the design stage, it is important to characterise the sensitivity of 

a lattice to magnet alignment errors, particularly regarding the vertical 

emittance.

Having a means to compute the beam emittances in a storage ring with 

coupling errors present allows us to simulate the effects of various types and 

sizes of alignment error – and (we hope) to optimise the lattice design to 

minimise the sensitivity to likely errors.
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Example: y sensitivity to sextupole alignment in the ILC damping rings

To achieve the machine 

luminosity goals, the 

damping rings of the 

International Linear Collider 

will need to produce beams 

with 2 pm vertical emittance.

2 pm is more than a factor of 

two smaller than the smallest 

vertical emittance so far 

demonstrated in an electron 

storage ring.

Sensitivity to coupling errors 

must be well-understood, 

and effective techniques for 

correcting or compensating 

for coupling errors will have 

to be applied.
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Case study: the KEK-ATF prototype linear collider damping ring

The main components are a 1.28 GeV S-band linac, a 1.28 GeV storage ring, and an 

extraction line.  The extraction line is presently being extended (ATF2) to provide a 

test facility for linear collider beam delivery systems.

Vertical emittances in light sources are typically of order several 10's of pm, 

corresponding (usually) to 1% of the horizontal emittance.

The KEK-ATF presently holds the record for the smallest vertical emittance 

achieved in an accelerator: 4.5 pm.
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(Clockwise) ATF injector; damping ring; laser wire; extraction line
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Achieving a low emittance starts with achieving good magnet alignment

Vertical alignment of the magnets is critical:

– Vertical alignment errors on the quadrupoles generates vertical orbit 

distortion and vertical dispersion.

– Vertical orbit offset in the sextupoles (by orbit distortion or sextupole 

alignment errors) generates vertical dispersion and betatron coupling.

Rotational (tilt) alignment of the quadrupoles is also critical, to avoid skew 

quadrupole components that will generate coupling.
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Tuning for low emittance proceeds in stages 

Simulations of emittance tuning in the 

ATF damping ring.

Top: after correction of vertical closed orbit 

distortion.

Middle: after further correction (combined 

vertical closed orbit and vertical 

dispersion).

Bottom: after correction of betatron 

coupling.

Each plot shows a histogram of 500 cases 

with random errors:

Additional magnet offset 30 mm

Magnet rotation 300 mrad

BPM offset 300 mm

BPM rotation 20 mrad

K.Kubo, "Simulation Study of Low Emittance Tuning of 

the Accelerator Test Facility Damping Ring at KEK," 

Phys.Rev.ST-AB 6, 092801 (2003).

Errors in the 

diagnostics 

dominate over 

errors in the 

magnets!
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Understanding the BPM offsets is essential for low emittance tuning

Beam-based alignment in the KEK-ATF damping ring:

Red line: vertical BPM reading as a function of vertical bump amplitude.

Blue line: beam-quad vertical offset as a function of bump amplitude.

The beam-quad offset at each bump amplitude is determined by changing the 

strength of the quadrupole, and measuring the resulting change in the closed orbit.

In this case, when the beam is centered in the quadrupole, the adjacent BPM reads a 

beam position of -650 mm.

M.D.Woodley et al, "Beam Based Alignment at the KEK ATF Damping Ring," Proc. EPAC 2004.
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Steering to quadrupole centres helps reduce vertical dispersion in the ATF

If the vertical dispersion is generated by random errors, the contribution of the vertical 

dispersion to the vertical emittance may be estimated from (see Appendix B):

With rms vertical dispersion 1.7 mm, the contribution of the vertical dispersion to the 

vertical emittance in the ATF is of order 0.5 pm, which is much less than 4.5 pm…
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Correction of betatron coupling

In the KEK-ATF, after correcting the vertical closed orbit distortion and 

vertical dispersion, most of the remaining emittance is generated by betatron 

coupling.

Correction of betatron coupling is achieved using skew quadrupoles 

distributed around the ring.  There are various techniques used to determine 

the optimum settings for the skew quadrupoles.

Generally, one measures the changes in the vertical closed orbit in 

response to changes in horizontal steering magnet strengths, and vice-

versa.  Analysis of the data yields settings for the skew quadrupoles to 

minimise the cross-plane orbit response.

The effectiveness of this technique depends on rotational alignment 

accuracy of the steering magnets and the BPMs.  If this alignment is not 

precise, one can "measure" cross-plane orbit response even when no 

coupling is in fact present.
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Measurement of picometer emittances

Beams with vertical emittance of a few picometers will generally have vertical beam 

size of a few microns.

This presents a challenge for the instrumentation used to measure beam sizes and 

emittances.  However, there are various types of instrument, such as X-ray 

synchrotron radiation monitors, that provide the necessary resolution.

At the KEK-ATF, a laser wire is used to measure the vertical beam size.
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ATF beam shows emittance growth from IBS with y ~ 5 pm
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Summary 1: computing equilibrium emittances

In a lattice with coupling errors:

– the analytical formulae using the synchrotron radiation integrals are 

not the most useful for calculating the equilibrium emittances;

– various methods do exist for computing the equilibrium beam 

distributions, from which the emittances can be found.

The envelope method is based on computing the zeroth-order (D) and first-

order (M) terms in the single-turn transfer map (including the effects of 

radiation, and – possibly – other non-symplectic processes), and then 

finding the matched distribution:

The emittances are the eigenvalues of ·S.

DMM  T
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Summary 2: ultra-low vertical emittance in electron storage rings 

Vertical emittance in synchrotron storage rings is generated by coupling with 

the longitudinal motion (vertical dispersion) and horizontal motion (betatron 

coupling).

Generally, synchrotron light sources operate with vertical emittances of 

some 10's of picometers, corresponding to ~ 1% of the horizontal emittance.

Some applications – notably linear colliders – demand much smaller vertical 

emittances, of order 2 pm.  Issues involved in achieving such emittances 

include:

– sensitivity of the lattice to a range of coupling errors (including vertical 

alignment of sextupoles, and rotational alignment of quadrupoles);

– accuracy and precision of magnet alignment;

– performance of instrumentation, particularly BPMs and beam-size monitors;

– use of a range of beam-based techniques for characterising and 

compensating for the coupling errors.

At ultra-low vertical emittances, collective effects which are not normally 

relevant in ultra-relativistic beams can start to impact performance.  

Examples include intrabeam scattering and space charge, 
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

For an ultra-relativistic particle, the momentum lost through radiation can be 

expressed in terms of the synchrotron radiation power, P (energy loss per 

unit time):

where  is the radius of curvature of the reference trajectory.

Recall (from Lecture 1) that the radiation power from a particle of charge e

and energy E in a magnetic field B is given by:

The dipole may have a quadrupole gradient:

The particle may have some energy deviation:

Substituting these expressions, we find (after some manipulation)…
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

where k1 is the normalised quadrupole gradient in the dipole:

Hence, the normalised momentum loss may be written:

Expanding to first order in the phase space variables:
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

Given the expression for dp/P0 on the previous slide, the transformations of 

the phase space variables become:

The first-order terms give us components in M.

There is already a zeroth-order term that will contribute to D, in the (6,6) 

component, but we have not yet taken proper account of the quantum 

nature of the radiation…
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

Note that the zeroth-order term in the map is going to be found from:

where u2 is the mean square of the photon energy.

We use the results (quoted in Lecture 1):

to find that, to zeroth-order in the phase space variables:

Note that this term is first-order in ds, whereas the first contribution we found 

is second-order in ds; hence the first contribution vanishes in the limit ds  0.
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Appendix A: the transformation matrices M and D in a thin slice of a dipole

Hence, we find that, for a thin slice of dipole of length ds, the radiation 

effects can be represented by the matrices:
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Appendix B: Vertical dispersion and vertical emittance

In the absence of betatron coupling, the vertical emittance may be 

calculated from:

where:

Assuming that the vertical dispersion is generated by random errors around 

the machine, we can make the approximation:

Hence, the expression for the vertical emittance becomes:
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Appendix B: Vertical dispersion and vertical emittance

Now, compare the definition of the curly-H function:

with the action of a particle performing betatron oscillations:

Just as we can write the vertical coordinate in terms of action-angle 

variables:

so we can write the dispersion:

Hence:

Thus, we have:
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