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Standard Model is

Powerful
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Yet known to be
incomplete ...
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Muon accelerators for particle physics




Standard Model issues: Theoretical:

* Fits to precision * Higgs mass in SM
measurements ‘troublesome’
require the Higgs — Unless 130 < M, < 170 GeV
— But it has not been expect
seen ... ‘new physics’
e ... that is the exciting at low energy
task of the LHC
collaborations!

* Standard Model Higgs |
mechanism: N
— a description, not an

J. Ellis, J.R. Espinosa,

ex p I a n a t i o n ! G.F. Giudice, A. Hoecker, and A. Riotto
e ... an explanation s i _
requires a deeper e .

t h e O ry ! |Og1u(1\f GeV)




I'I- at high energy: the surgeon’s knive!

e LHC discovers
‘tower of states’:

— Require I collider
to ilucidate details
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I'I- colliders: options:
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\ Muon Collider: basis of advantages:
|° Muon mass: 106 Mev/c? Electron mass: 0.511 MeV/c?
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* Consequences:

— Negligible synchrotron
radiation at Muon Collider:

e Rate oc m%;
— Muon Collider reduction
factor: 5 x 1010

e Compact, circular, accelerator
e Small energy spread

e Possible to preserve
polarisation
at ~30% level 0.00

2900 2920 2940 2960 2980 3000 3020
— Yields possibility to determine Center of mass energy £ (GeV)
beam energy precisely (0.003%) i
using (g — 2)
precession

— Strong coupling to Higgs: .

e Production rate oc m?: N
—> Muon Collider enhancement
factor: 5 x 104

e Large data set allows branching
ratios to be measured

3 TeV Muon Collider
3 TeV CLIC

MC: 100% lumineosity in dE/E ~ 0.1%
CLIC 35% in 1% dE/E

e
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Beamstrahlung

in any e+e-

collider
SE/E o y2?

Luminosity density L/L per GeV

110 110.02 110.04
Vs (GeV)




Higgs:
 Opportunities specific to the Muon Collider:
—s-channel Higgs production:
e Can be considered because of enhanced coupling

— Good energy resolution could be exploited to
resolve states with closely similar mass
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Il annihilation at the energy frontier:

Physics case for
lepton-antilepton /ILC Enough
collider likely to be

compelling; —[LHC Results | or
— Direction of I'l

programme will be
decided based on ILC not enough { or
results from LHC
If Il collider is required
for full exploration of ‘terascale physics’, options are:

— CLIC
— Muon Collider

CLIC

Shiltsev Muon collider

Issues to evaluate:
— Does the muon mass give the Muon Collider:
e Superior physics performance;
e Advantages in ‘upgradability’?
— What are the costs and timescales for each of the alternatives?



Standard Model issues: experimental:
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neutrino is:
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Extend SM to include neutrino mass:
 Massive neutrino NOT helicity eigenstate, and ...

— since neutrino has no conserved quantum numbers

e (except, perhaps, a global lepton number)

quantum mechanics implies neutrinos will mix

v, Created

Space or time



Leptons and the weak force:
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Reactor neutrinos: Kamland:




Oscillating electron (anti-)neutrinos
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The neutrino revolution:

* Consequences of neutrino mass:
— |If the neutrino is a ‘Dirac’ fermion:
e Require a new physical law to distinguish neutrino from anti-neutrino
— If the neutrino is its own anti-particle (a ‘Majorana’fermion):
* The neutrino is a NEW STATE of MATTER
e Higgs mechanism can not explain Majorana mass

— Tiny neutrino mass appears to be related to physics at very high energy scales

* Producing the matter-dominated universe:
— CP violation in the quark sector not sufficient

— CP violation in the neutrino sector may make a decisive contribution;
mechanism ‘Leptogensis’:
e ‘Dirac’ phase, 9, not directly responsible;
e Relationship of relevant (Majorana) phases to 0 is model dependent

e Explanation of (absence of) large-scale structure

— Neutrino interacts only weakly — possible means of communication across
large distances?

— In some models, super-symmetric partner to neutrino may be responsible for
inflation



Standard Neutrino Model:
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Facilities for the

orecision era:

m Second generation (i.e. TR IR A

post T2K/NOVA) super-

beam
= CERN, FNAL, BNL, J-

PARCII
MTon H,0O Cherenkov
or LAr

m Neutrino Factory
Magnetised detector

m Beta-beam
MTon H,0 Cherenkov,
liquid argon

Magnetice

FFAG/synchrotron option
Sy
¥ X ™
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ISS 2006 The ISS
comparison:

[ SPL super beam

[ 1T2HK super beam

[ Wide band super beam
[1Neutrino Factory

[ 1Beta beam

o
o

o
B

Fraction of &cp

 The
Neutrino
Factrory
0 : .'I ; | ) GLOBES 2006 | °
107° 107 10°° 107 : offers.

True value of sin®26;
” — Best

discovery
reach

— Best
precision
e The facility
of choice!

sgn(Am%,)

o

o))
Qe
o)

©
S

Fraction of d¢cp

Fraction of dcp
o
o

107 1074 107 1072 : 10" 10°° 102 10"
True value of sin26y5 True value of sin®26;5




Muon accelerators for particle physics

The accelerator facilities

Muon Collider and Neutrino Factory




Muon storage rings:
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Muon Collider accelerator parameters:

Muon Collider | Neutrino Factory
1.5TeV |4 TeV

Luminosity

Muons/bunch

Ring circumference

Beta at IP

dp/p (RMS) :

Ring depth 155 and 440

Transverse emittance mm mrad 4800
Lonitudinal emittance mm mrad

Proton driver rep. rate
Bunch length
Bunches per pulse

Proton driver power

Muon Collider:

— Depth of 4 TeV Muon Collider storage ring required to reduce neutrino-induced
radiation dose off (FNAL) site to below 1 mrem/yr ?
— Low emittance Muon Collider option actively being developed

e Benefits include:
— Reduced proton beam power
— Reduced neutrino radiation

Neutrino Factory:

— Significant synergy in accelerator R&D requirements
e Difference is that Muon Collider requires ‘6D cooling’ to obtain required luminosity




Muon Collider: schematic:

Scheme i Options
8 GeV SC Linac

et ** Probably favored
Existing Recycler

e

Same as Main Injector to 56 GeV
Neutrino

F ) Buncher
actory

Hg Target

20 T Capture Solenoid

Phase Rotation to |12 bunches
Linear Transverse Cooling
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Ring Designs X FFAG
Collider Ring

:

More R&D needed to confirm viability and narrow the options




Neutrino Factory: accelerator facility:

FFAG/synchrotron option Linac option
—

\
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Proton driver:
Beam power 4 MW  |Production rate .
Beam energy Optimum pion production

Bunch length 1-2ns [Pion/muon capture

 Proton driver is the accelerator system most
likely to be constrained by requirements of host-

site
e IDS-NF approach:

— Consider two ‘generic’ options:

* LINAC:

— Possible development option for SPL (CERN) or Project-X
(FNAL)

— Requires accumulator/compressor rings

* Rings:
— Development option for J-PARC or RAL or possible ‘green-field’
option
— Requires bunch compression




CERN SPL as proton driver:

 Accumulator and compressor ring scheme:
— Two options: 6 bunches or 3 bunches

Compression t=0pus

e SPL:

— Staged scenario under consideration (Myers):
* Low power SPL to serve LHC

* High power SPL to serve applications such as Neutrino
Factory



SPL accumulator/compressor ring design:

° Accumulator ring: E.Benedetto, M.Aiba

— |Isochronous:  Cod HEADTAL

Physical model

 Reduce bunch length for given

[dp/p]....
» No RF

— Instabilities considered

* Instabilities are small or 5. Long. phase space
can be managed 1] - Rotated

e Compressor ring:

— Two options studied:

e Superconducting or
normal

— Phase rotation studied ;
 Including space charge

RF phase/3 (deq.)




Ring-based proton driver:

* Greenfield options:

— H linac to 180 MeV;

— Achromat for phase
rotation

— RCS and/or FFAG to
reach final energy and
for bunch compression

e |SIS upgrade options:

— ISIS upgrade:
e MW class, short pulse
neutron spallation source
— J-PARC upgrade:

 Upgrade to 1.66 MW
planned
— Ultimate power?
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Example: ISIS upgrade as proton driver:

e 3.2 GeV RCS feeds booster/compressor ring:

— Two options considered: 6.4 & 10.3 GeV

e 3.2 GeV RCS circulates 4 [5] bunches at 50 Hz
delivering 4-5 MW

e Extract to neutron target and Neutrino Factory target

Neutrino Factory RCS parameters

Number of superperiods 6

Neutrino Factory

Target ~—\New transfer line
- / to 15-2

Circumference 708.788 m

Harmonic number

RF frequency 2.4717-2.5289 MHz
Betatron tunes ( Qq, Qv) (7.81,7.78)

Gamma transition 7.9056

Beam power at 6.4 GeV 4 MW for 2 bunches
Bunch area 1.8eVs

Ap/p at3.2 GeV 5.31073

Injection / extraction energy  3.2/6.4[10.3] GeV

800 MeV Linac Repetition rate 50 Hz

Max B field in dipoles 1.2T (at10.3 GeV)

J.Pasterna k Length of long drift 14m




Parameter

Jet velocity
Field at i/p
Field at exit of capture

Nozzle A |
Tube [

Proton \
Beam

= Jminert Target/capture:

Reformation of jet
Pion collection
Pion focusing

Neutrino Factory Study 2 Target Concept

Resistive
Magnets

Mercury
Drains

Mercury

Water-cooled Pool

Mercury Tungsten Shield

Jet
Splash

Mitigator
ORNL/VG
Mar2009

e Baseline: mercury jet, tapered solenoid for pion capture:
— 20T taperingto 1.75Tin~13 m




Target: proof of principal: MERIT:

_ Solenoid Jet Chambe
Secondary Syringe Pump \

Containment \

<

--

e 20 m/s liquid Hg jet in 15 T B field
e Exposed to CERN PS proton beam:

— Beam pulse energy = 115 kJ
— Reached 30 tera protons at 24 GeV




MERIT:

e ‘Disruption length’: 28 cm
e ‘Refill’ time: 14 ms
— Corresponds to 70 Hz

e Hence:

—Demonstrated operation at:
e 115 k) x 70 Hz = 8 MW



Target station engineering:

OVERHEAD MANIPULATOR

Graves

TYPICAL STACKED
SHIELDI MG

DECAY CHANHEL
CRYOSTATS MERCUEY PROCESS

HATH CEYOSTAT CELL

({TARGET REGION)

PBEH
YESSEL



ANSYS

Target engineering:

e Splash mitigation:
— Study 2: Tn balls
* |ssues:

— Effective circulation
of liquid mercury

— Best drain topology
 Need for prototype!



Davenne

Damage from high-velocity droplets:

ALUTODYN-30 v11.0 from Century Dynamics
ABE WVEL. [mfs)
0.000e+00

0. 000e -+HI0
0.000e-+H10
0, 000e-+10
0. 000e-+10
0. 00D e-+HI0
0. 000 e-+10
0. 000e-+H10
0.000e-+10
0.000e-+10

0. 00 e-+H10

retry!

Cycle O

Time 0.000EHIOD ms
Units mm, mg, ms




Davenne

Damage from high-velocity droplets:

7 E00e+01
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7 B00eH
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Parameter Value [Comment "
E -spread after P.R. 10% Subsequent accel. - - o
Freg. after P.R. 201.25 MHz
Emittance at exit 7.4 mm rad |Subsequent accel.
farget drift buncher rf rotator cooling

1 - . Jd £ 5 %
q 12 111 1ol 216 T 3 3
= 5 N R
AE = \
= \
: \
® .' E 'xx
Dirift ri-Buncher '.. 1'f-H-:-tnti[111' ' l ' ' ' ' i"-i
° i
» ° M""---—
ot ;HII ._; -
e lengt b "'?irl}

RF gradients up to 17 MV/m at 201 MHz




Alternative front-end schemes:

e Shorter phase rotation and bunching sections:
— Improved yield, but higher gradients required

* Re-visit 44/88 MHz scheme:

— Outline:

e Bunching, phase rotation, intial cooling, and
acceleration to 280 MeV at 44 MHz, ~ 2 MV/m

e Cooling and acceleration to 1 GeV at 88 MHz, ~10
MV/m
— Issues:
e Longer channel, larger cavities

e Gradients high for low frequency cavities
— Effect of magnetic fields?

 May require reconsideration of other parts of complex

Buncher Rotator Cooler

~60m 60m G . Prior ~100

~80 m




lonisation cooling:

e Muon beam after phase rotation and bunching:
—Wide — o, ~ 10(+) cm
— Divergent — o, ™~ 150(+) mr
—i.e. large normalised emittance:
| I

—— (0303, -0,,)" > froo,  atafocus
y7,

e Cooling required:

— To increase by a factor of 2—10 the number of
muons in acceptance of subsequent accelerator

* |onisation cooling is the only practical solution:
— Muon lifetime is short (2 us at rest)



lonisation cooling: principal:
 Exponential decrease in normalised emittance:
de, -¢, <dE> N ,(0.014 GeV)’

dX.

dX pE 25°Em, X,

e Competition between:
—dE/dx [cooling] and MCS [heating]

ommu: I
FoM | cooling

—Low Z, large X, W1 2s26]
JEEEnt focus He | 2| 1829| 0.524
—H, gives best

c | s 760] o091
JpRormance A 1n 368| 0024



Muon ionisation cooling experiment

m MICE:

= Design, build, commission and operate a realistic
section of cooling channel

= Measure its performance in a variety of modes of
operation and beam conditions ...

... I.e. results will allow Neutrino Factory complex

to be optimised



Cooling performance:

i

Flux shield
Flux shield
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e 15% cooling in MICE channel from 5% E loss per absorber
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MICE Schedule as of Sept 2009 Run date:

STEPI Sep-Dec 2009

_’K" “I STEP II Q2/Q3 2010

ll step iy e 2010 -5 2011

] e—

[ e |

\ll STEP IV 2011

' 3' 2012

“II STEP VI
2013




:




Brunel, FNAL, IIT, Imperial, LBNL, Riverside,
UCLA, NWU

e Tracker:

— Extended cosmic test of
trackers #1 and #2

 Spectrometer solenoids:

— Issues related to cool down of
solenoid #1 imply mechanical
modifications

— Modifications are being
implemented on solenoid #2
— Plan:

e Complete solenoid #2 at
vendor (Nov/Dec09)

e Magnetic mapping at FNAL
(Dec09/Jan10)

e Magnet sipped to RAL (Mar10)
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Oxford, KEK,
Mississippi

Absorber/focus-coil module:

* Focus coil module:
— Contract awarded to TESLA

— Presently in ‘detailed
design’ phase:

 Production readiness review
(MICE/TESLA) last week

— First module, summer 2010
 Absorber:

— Prototype tested at KEK
— Production has started:

 Will match focus-coil schedule




[ LBNL icsT | RF/coupling-coil module:

 Coupling coil manufacturing o IR
has started at ICST, Harbin, N
China

— First coil for MuCool
programme

— Second coil for MICE

* RF cavity production:
— Design for cavities complete

Prototype coil
being prepared

* Production readiness review for cold test

Oct08 at Harbin
e Ship first RFCC moduleto =
RAL 2011 |
Design for
RF cavity
module




MuCool: RF breakdown in magnetic field:
* Principal issue for cooling channel:

— Gradient required in baseline cooling channel:
e 17 MV/m from 201MHz cavities

e MuCool: study breakdown in presence of
magnetic field

— 805 MHz:

 Reduction of factor
of ~2 in max.
gradient

— 201 MHz:

* In absence of B have
achieved 19MV/m

— Test in magnetic field
planned

Solenoid Magnetic Field (T)



Mitigation of RF gradient risk:

- - - . C.R
e Various options being considered: i

— Modified lattices, magnetic return, bucking
coils, gas filled cavities...

— Studies emphasise:

* Priority: expedite MICE and MuCool programmes!

lonisation cooling 0 RF cawty development

=G I'.. - =7 i ,':{;- = ; ’ ‘: Y __!' _',:;-_-_L_. g
Lyt - g |\ |

il B ".‘ solenoid T8 (IS 77
MICE A el v e e

(under construction at RAL) MuCool (part of US NFMCC)




lonistion cooling and the Muon Collider:

e Muon Collider requires much more aggressive
cooling:

— Must reduce emittance in all 6 phase-space
dimensions

— Requires ‘emittance’ exchange

Incident Muon B eam

— The most challenging R&D programme for the
Muon Collider
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6D cooling scheme components:

Multilayer scheme Guggenheim Helical cooling channel

rf cavities

Liquid Hydrogen 50 T Solenoids

(simulated)

—JEg. . S

6D ionisation cooling experiment under

discussion: Re-accela ation & MatChlng

— Possible use of MICE Muon Beam once MICE ('not simulated)
is complete : :

— Critical issue: high-gradient RF in magnetic field

Final cooling




fin (Ge " ;
- [Em(Gev)[comment Muon acceleration:

Pre-accel. Linac 0.9 Change in y
RLAI 3.6 Switch-yard congestion
RLAI 12.6 Switch-yard congestion
FFAG 25.0 Large acceptance, use of RF
e Linac/RLAs: e FFAG:
— Development of optics — Lattice specification
e Graded focussing update
— Tracking with OPTIM and . . .
MAD-Xg — Analysis of distortions &
— Error-tolerance analysis for chromaticity
droplet arcs — Evaluation of injection
— Ready for end-to-end and extraction systems
trackinge

0.9-3.6 GeV Linac to
RLA 0.9 GeV

(}——Q

3.6-12.6 GeV RLA

12.6-25 GeV FFAG




A.Bogacz Pre-accelerator, RLA | & II

e Solenoid focusing lattice for 0.9 GeV linac
— Optics and first tracking complete

* Transfer section for injection into RLA I:
— Optics and first tracking complete

e Lattice for linacs | and Il complete:
— Quadrupole focusing

 Droplet return arcs

— Optics, first tracking, and match linacs
performed

Arcs RLA | Arcs RLA I




ik Muon nsFFAG: EMMA:

F Magnet
| D Magnet

" Beamdirection

e EMMA (at DL):

— Electron ‘model’ of muon
non-scaling FFAG

 Demonstrate feasibility of
concept

Studies:
Longitudinal dynamics;
Transmission;
Emittance growth
Influence of resonances




Status of EMMA:

e Component
fabrication close to
completion

e Commissioning
starts early 2010




S.Berg, J.Pasternak, D.Kelliher |V|u0n FFAG'
e Lattice revision required to:

— Provide drift spaces for installation of kickers

e Various options:

— Doublet, triplet, FODO, single and
‘doublet’ of cavities

— Some indicative estimate of cost
e How to converge on a single,
optimised design?
* Kicker schemes under
development:

FODO case
Kickers

!I

Inject 6 Inject 10

Kicker field (T 0. 12 0. O 0. 10
0

Septum fleld ( )

4.

e Orbit distortions related to e Chromaticity (sextupole)
magnet apertures in injection and corrections required to mitigate
extraction sections under study time-of-flight differences



MCTF

. e-"’\)\‘mo ,a %
# Acceleration Scheme r}f(

» Early Acceleration (to 25 GeV ?) could be the
same as NF. Needs study.

- Main Acceleration - Attractive Candidates

- RLAs (extension of NF accel. scheme ?)
- Rapid cycling synchrotron - needs magnet R&D
- Fast ramping RLA

» Options need further study — particle
tracking, collective effects, cavity loading, ...

Steve Geer CERN Neutrino Workshop October 1-3, 2009 61



Storage rings:

Type Race track |Triangle as backup C.Pri
.Prior

N gecays /b.1. /yr Baseline flux (10" / yr total)
Min, bunch spaci Event separation

* Three muon bunches per pulse:
— Either (both?) u* and @ in each storage ring
— If counter-rotating, opposite sign bunch trains are
interleaved:
e 80 201-MHz bunches per bunch train (total length 397.5 ns)
e At injection ‘gap’ between pu* and p bunch trains is 497 ns

* |ssues:
— Require RF to maintain inter-bunch-train separation during store
— Shielding against decay electrons
— Chromaticity corrections and dynamic aperture

u= or p~ injection
60,2 m

collimation tune control rf cavities
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* Muons circulate for ~1000 turns in the ring
. Need high field dipoles ||, "&k —
operating in decay back-

1) |
grounds — R&D ]M i /K

* First lattice designs exist ¢ s 10 150 200 250 a0o

e New ideas — conceptual designs for various options | WE
e Comparison of different schemes, choice of the baseline | - ARE
e Detailed lattice design with tuning and correction “knobs” HERE

e Dynamic aperture studies with magnet nonlinearities,
misalignments and their correction

DESIGN PROCESS

e Transient beam-beam effect compensation

e Coherent instabilities analysis
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Muon accelerators for particle physics

Opportunities and timescales
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Neutrino Factory roadma
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Muon Collider roadmap:

US Strateqy

Energy .
Frontier Tevatron (LHC) ILC / u Collider
technolo
protons . 9y
Injector
: injector
Intensity NuMl —> NuM| —> —> v Factory
Frontier
(260kW) (700kW)
Booster
MINOS NOVA 1300km baseline v
MiniBooNE WC/ LAr
SciBooNE MINERVA (+Proton Decay,..)
ArgoNeuT  MicroBooNE
MuZ2e MuZ2e Il
H g-2 nog-2ll
K* (KK, K1
EDM (u, A, Z%) II

time Nuclear Physics

US Superbeam Strategy: Young-Kee Kim, Oct. 1-3, 2009 # Fermilab
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Muon accelerators for particle physics

Conclusions




Conclusions:

e Muon accelerators have the potential to serve:
— Charged lepton flavour violation search
— Precision measurements of neutrino oscillations
— I*I collisions at the energy frontier

A fantastic physics potential!

* Accelerator systems and technologies highly challenging:
— 4 MW, pulsed, proton driver with ns-scale bunches
— High-power target
— lonisation cooling
— High-gradient normal- and super-conducting RF
— High-field, high-T_ superconducting magnets
e Scientific imperative:
make muon accelerators an option for the field:
— Impact potentially as significant as that of the synchrotron
— Huge potential for knowledge exchange — medicine, energy ...
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