Introduction to Insertion Devices

Pascal ELLEAUME

European Synchrotron Radiation Facility

Grenoble, France

What is an Insertion Device?

- Oscillating Magnetic field create a beam undulation
- Also called Undulators and Wigglers
- Can be 1 to 20 m long, with period 15 to 200 mm
- Operated with a small magnetic gap (5 to 15 mm)
- Use :

- Intense Source of Radiation in electron storage rings

- Control of damping times in Electron Colliders (LEP, CESR,...)
- Reduce emittance in advanced light sources (Petra III, NSLS II)

Table of Content

- Electron beam Dynamics
- Synchrotron radiation
- Technology

Electron beam dynamics

Electron Trajectory in an Insertion Device

$$\frac{v_x(s)}{c} = -\frac{e}{\gamma mc} \int_{-\infty}^{s} B_z(s') ds'$$
$$x(s) = -\frac{e}{\gamma mc} \int_{-\infty}^{s} \int_{-\infty}^{s'} B_z(s'') ds'' ds'$$

and similar expression for $v_z(s)$ and z(s)

Electron Trajectory in a Planar Sinusoidal Undulator

$$Consider \vec{B} = (0, B_0 \sin(2\pi \frac{s}{\lambda_0}), 0)$$
$$\frac{\frac{v_x}{c} = \frac{K}{\gamma} \cos(2\pi \frac{s}{\lambda_0})$$
$$\frac{\frac{v_z}{c} = 0}{\frac{v_s}{c} = 1 - \frac{1}{2\gamma^2} (1 + K^2 \cos^2(2\pi \frac{s}{\lambda_0}))$$
$$x \approx -\frac{\lambda_0}{2\pi} \frac{K}{\gamma} \sin(2\pi \frac{s}{\lambda_0})$$
ith
$$K = \frac{eB_0 \lambda_0}{2\pi mc} = 0.0934 B_0 [T] \lambda_0 [mm]$$

wi

K is a fundamental parameter called : Deflection Parameter

Example : ESRF, Energy=6GeV, Undulator
$$\lambda_0 = 35 \text{ mm}, B_0 = 0.7 \text{ T}$$

=> $K = 2.3, \quad \frac{K}{\gamma} = 200 \text{ } \mu \text{ rad}, \quad \frac{\lambda_0}{2\pi} \frac{K}{\gamma} = 1.1 \text{ } \mu \text{ m } \text{!!}$

$$B_{x} = 0$$

$$B_{z} = B_{0} \cosh(2\pi \frac{z}{\lambda_{0}}) \cos(2\pi \frac{s}{\lambda_{0}})$$

$$B_{z} = -B_{0} \sinh(2\pi \frac{z}{\lambda_{0}}) \sin(2\pi \frac{s}{\lambda_{0}})$$
Undulator Field Satisfying
Maxwell Equation
$$2^{\text{nd}} \operatorname{Order} \text{ in } \gamma^{-1}$$

$$\frac{d^{2}x}{ds^{2}} = 0$$

$$\frac{d^{2}z}{ds^{2}} = -\frac{1}{2} \left(\frac{eB_{0}}{\mu c}\right)^{2} \frac{\lambda_{0}}{4\pi} \sinh(4\pi \frac{z}{\lambda_{0}}) \cong -\frac{1}{2} \left(\frac{eB_{0}}{\mu c}\right)^{2} z$$

$$K_{z} = \frac{1}{2} \left(\frac{eB_{0}}{\mu c}\right)^{2}$$

A vertical Field Undulator is Vertically Focusing !

$$\frac{1}{F_z} = \int_{ID} K_z ds = \frac{1}{2} \left(\frac{eB_0}{\gamma mc}\right)^2 L$$

Interference with the beam dynamics in the ring lattice

- An Insertion Device is the first component of a photon beamline. Its field setting is fully controlled by the users of the beamline . The change of field results in a change of beam dynamics in the whole ring.
- As far as the lattices are concerned, **Insertion devices** should ideally behave like **drift space** but the reality is different :
 - Closed Orbit distortion (by non zero field integrals=dipole error)
 - Betatron tune shift (by nominal field and by quadrupole errors)
 - Coupling (skew quadrupole errors)
 - Reduction of dynamic aperture (=>Lifetime reduction & reduced injection efficiency)
 - Through a break of the lattice periodicity
 - A change of the focusing versus injection point x,z
 - Very high field IDs may change the damping time, emittance, energy spread ...
- By combining carefull manufacture, magnetic field shimming and local active corrections, many perturbations can be compensated.
- The problem of the reduction of dynamic aperture is most severe on low energy rings with many insertion devices.

Synchrotron Radiation from an Insertion Device

Bending Magnet

Synchrotron Radiation is emitted tangentially to the trajectory Inside a cone of angle $1/\gamma$

Radiation by a single electron

Computed for 6 GeV, I = 200 mA, B = 1 tesla

$$E_c = \frac{3hc}{4\pi} \frac{\gamma^3}{\rho} = \frac{3he}{4\pi m} \gamma^2 B$$

$$E_c[keV] = 0.665 E^2[GeV]B[T]$$

Undulator

Electron trajectory

Electric field in time domain

Electric field and Spectrum vs K

Computed for 6 GeV, I=200 mA, 35 mm period

Wavelength of the Harmonics

$$\lambda_n = \frac{\lambda_0}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2\right)$$

Equivalently, the energy E_n of the harmonics are given by

$$E_n[keV] = \frac{9.5 n E^2[GeV]}{\lambda_0[mm](1 + \frac{K^2}{2} + \gamma^2\theta^2)}$$

 λ_n, E_n : Wavelength, Energy of the nth harmonic n = 1, 2, 3, :: Harmonic number λ_0 : Undulator period $E = \gamma mc^2$: Electron Energy *K* : Deflection Parameter = $0.0934 B_0[T] \lambda_0[mm]$ θ : Angle between observer direction and e – beam P. Elleaume, CAS Darmstadt Sept 28 - Oct 9, 2009

Undulator Emission by a Filament Electron Beam

n : Harmonic number

N : Number of Periods

What happens if the beam presents a finite emittance (size and divergence) and finite energy spread ?

$$\lambda = \frac{\lambda_0}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2\right)$$

Radiation from a filament e- Beam at a wavelength λ

Radiation Spectrum through a narrow aperture

P. Elleaume, CAS Darmstadt Sept 28 - Oct 9, 2009

Broadening of the Harmonics by the Electron Emittance

Broadening of the Harmonics by Electron Energy Spread

P. Elleaume, CAS Darmstadt Sept 28 - Oct 9, 2009

To make optimum use of the Undulators, the magnet lattice of synchrotron light sources should be designed to produce the smallest emittance and smallest energy spread.

Collecting Undulator Radiation in a variable Aperture

Maximum Spectral Flux On-axis on odd harmonics

$F_n [Ph/sec/0.1\%] = 1.431 \ 10^{14} \ N \ I[A] \ Q_n(K)$

Κ

P. Elleaume, CAS Darmstadt Sept 28 - Oct 9, 2009

Brilliance (or Brightness)

$$B_n = \frac{F_n}{\left(2\pi\right)^2 \Sigma_x \Sigma'_x \Sigma_z \Sigma'_z}$$

Electron beam

Single electron emission

Brilliance vs Photon Energy

Angle Integrated Flux

For Large K, the angle integrated spectrum from an Undulator tends toward that of a bending magnet x 2N => Such Devices are called **Wigglers**

Technology

Technology of Undulators and Wigglers

- The fundamental issue in the magnetic design of a planar undulator or wiggler is to produce a periodic field with a high peak field B and the shortest period λ_0 within a given aperture (gap).
- Three type of technologies can be used :
 - Permanent magnets (NdFeB , Sm_2Co_{17})
 - Room temperature electromagnets
 - Superconducting electromagnets

Magnetization is equivalent to a surface current

Air coil with Surface Current Density[A/m]
$$\cong \frac{B_r[T]}{\mu_0}$$

Periodic Array of Magnets

 $B_r = 1 T$, $\lambda_0 = 400 \text{ mm} \Rightarrow \text{Equiv. Current Density} = 8 \text{ A/mm}^2$

> 95 % of Insertion Devices are made of Permanent Magnets !!

Permanent Magnet Undulator

Undulators are Fundamentally Small Gap Devices

• For a permanent magnet undulator, shrinking all dimensions maintains the field unchanged.

• The peak field
$$B_0 \propto B_r \exp(-\pi \frac{gap}{\lambda_0})$$

- Benefits of using small gaps Insertion Devices :
 - Decrease the volume of material (cost driving) $\sim gap^3$
 - The lower the gap, the higher the energy of the harmonics of the undulator emission => the lower the electron energy required to reach the same photon energy

$$\lambda = \frac{\lambda_0}{2\gamma^2} \left(1 + \frac{K^2}{2}\right) \qquad \text{with } K = \frac{eB_0\lambda_0}{2\pi mc}$$

• The most advanced undulators have magnet blocks in the vacuum with an P. Elleaume, Coperating magnetic gap, of 04-6 mm !!

In Vacuum Permanent Magnet Undulators

SPring-8 In-Vacuum Undulator

Application : Build a pure permanent magnet undulator with NdFeB Magnets ($B_r = 1.2 \text{ T}$)

Undulator with K=1 with 6 GeV energy

Gap [mm]	B [T]	Period [mm]	Fundamental [keV] @ 6 GeV	Electron Energy [GeV] Fund = 15.2 keV
5	0.72	15	15.2	6.0
10	0.49	22	10.3	7.3
15	0.38	28	8.2	8.2

Electro-Magnet Undulator

Superconducting Wigglers

High field : up to 10 T => Shift the spectrum to higher energies
Complicated engineering & High costs

Magnetic Field Errors in Permanent Magnet Insertion Devices :

- Field errors originate from :
 - Non uniform magnetization of the magnet blocks (poles).
 - Dimensional and Positional errors of the poles and magnet blocks.
 - Interaction with environmental magnetic field (iron frame, earth field,...)
- Important to use highly uniform magnetized blocks
 - perform a systematic characterization of the magnetization
 - Perform a pairing of the blocks to cancel errors
 - Still insufficient ...
- Two main type of field errors remain
 - Multipole Field Errors (Normal and skew dipole, quadrupole, sextupole,...).
 - Phase errors which reduce the emission on the high harmonic numbers
 - Further corrections :
 - Correction magnets
 - Shimming

Shimming

- Mechanical Shimming :
 - Moving permanent magnet or iron pole vertically or horizontally
 - Best when free space and mechanical fixation make it possible.

- Magnetic Shimming :
 - Add thin iron piece at the surface of the blocks
 - Reduce minimum gap and reduce the peak field

Magnetic shims

HYB

Field Integral and Multipole Shimming

 T_p : time distance between successive peaks

 T_p varies from one pole to the next due to period and peak field fluctuations

The Phase shimming consists of a set of local magnetic field corrections, which make T_p always identical.

Phase Shimming and the single electron spectrum

P. Elleaume, CAS Darmstadt Sept 28 - Oct 9, 2009

- Learning more about Insertion Devices.
 - J.D. Jackson, Classical Electrodynamics, Chapter 14, John Wiley
 - K.J. Kim, Characteristics of Synchrotron Radiation, AIP Conference Proceedings 184, vol. 1 p567 (American Institute of Physics, New York, 1989).
 - R.P. Walker, CAS CERN Accelerator School: Synchrotron Radiation and Free Electron Lasers, Grenoble, France, 22 - 27 Apr 1996, CERN 98-04 p 129.
 - H. Onuki, P. Elleaume "Undulators, Wigglers and their Applications", Taylor and Francis, 2003, ISBN 0 415 28040 0.
 - A. Hofman, "The Physics of Synchrotron Radiation", Cambridge University Press, 2003. ISBN 0 521 30826 7
 - J. A. Clarke , "The Science and Technology of Undulators and Wigglers, Oxford Science Publications, 2004. ISBN 0 19 850855 7
 - CERN Accelerator School, "Synchrotron Radiation & Free-Electron Lasers", Brunnen 2003.