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guadrupole
sextupole

octupole

tune diagram and fixed pointsresonances 

non!linear resonances 

fixed points and slow extraction
amplitude growth and detuning

driving terms and magnetic multipole expansion

perturbation treatment of non!linear maps 

resonance islands

pendulum model equation of motion and phase space

Hills equations in Cylindrical coordinates

resonance islandsexamples 

smooth approximation 

equation of motion 

Non−Linear Imperfections

higher order perturbation treatment 

Poincare section 

Hills equation

normalized coordinates

sine and cosine like solutions + one turn map
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stability:
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stability of low order resonances?!!

everywhere
there are resonances
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higher order resonances:
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sources for resonance driving terms?
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every point is mapped on itself
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after n turns!

resonances are not driven
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every point is a ’fixed point’

Resonances II
fixed points in the Poincare section:



Non−Linear Resonances I

Magnet errors:

pole face accuracy

geometry errors

eddy currents

edge effects

Vacuum chamber:

LEP I welding

Beam−beam interaction

careful analysis of all 
components

Sextupoles + octupoles
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chain of resonance islands

island structure
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angle variable: 

chain of resonance islands
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generic signature of non!linear resonances:

pendulum dynamics:

pendulum coordinates:

Pendulum Dynamics I
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but we can now treat distributed perturbations!
similar expressions as with the map approach

similar expressions as with the map approach
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d
L

= 

d s
        lk

d R
d s

Q

k         (3+1)

96    (p/4 ! Q  )0

(% / 

2
3k         (3!1)

096    (p/4 ! Q  )

2$   / 4( and

0 3
> Q  <  p/4; k  > 0

2
3

+

!1
24  L

= 1
48  L

3

3

22

2

0

0

"

turn =      p

l

"

$

"l

4%

 R 4%

R / turn = 0

fixed point conditions:

%

sin(     )

" 3 + cos(      ) R

Examples for Equation of Motion IV

fixed point

fixed point

%        = $/2; $; 3$/2; 2$

%        = $/4; 3$/4; 5$/4; 7$/4

R            =

R            =fixed point

2$

fixed point

$

p = 41/4 resonance  :



x

x´

!9

!9

Example Octupole

lk  = 4 m!3
3

Q = 0.2495
L = 4.7 km:
" =3000

% / $

R 10
6

R = 2 10

R = 1 10



s

        lk

d   R

d s
d

Q = Q 

= 

L

d s

1

1

        lk

L

Q   s / L r = 4     R

        lk

Q

Q

        lk

0 48

fix

2

1
348  L

+
fix

20

fix

1

!1
24  L

3+

1
348  L

3

=

fix

2

fix

=

2

2

(

2$

2$% + %   + (%

 R "

 R "
$

change to new angular variable:

Examples for Equation of Motion V

(

%

+

 R

 R( "

expand motion around stabel fixed point:

R = R   +    R( (and keep only first order in     R

" 4(%sin(      )

4(%

4(%

3 − cos(      )

3 − cos(      )

with

+ = 4% ) 8$ 



        lkG =   

F =   

d r
= −F  

d
d s

d s

        lk
24  L

2
fix

2

2

fix

fix

3

3

max

24  L

= G    r

3
4

max

1

resonance width increases with decreasing k   !

 R      = 2

pendulum approximation:

 R

with

(

and

 R

resonance width:

resonance width equals twice the stable fixed point

(

"

(

(

Examples for Equation of Motion VI

"

+

 r    = 4  F / G   = 8 

sin(   )+

 R
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Example Octupole

% / $

3lk  = 2 m

% / $

!3

R 10
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lk  = 4 m



stabilization by an octupole term?

ds
d% = G   r

the pendulum approximation requires

an amplitude dependent tune!

dependent tune (to first order)

why did we not find islands for a sextupole?

Example Sextupole

the sextupole perturbation has not amplitude

%)$ +$

r

hyperbolic fixed points
unstable



6

sextupole
only

x

% / $

Example Sextupole

x´

R 10



6

octupole

Example Sextupole + Octupole

x

% / $

x´

sextupole
plus

R 10



Q  s/L

(s) (s)

with: 

R = R   +     R

and kept only first order terms in    R

O

R(s) = R  (s)  +    R  (s) +     R  (s) + O(     )

(s)

,

(s)

, ,

match powers of ´   ´ ,

, = ("        )fix

(n+1)/2
n

,

so far we assumed on the right!hand side:

Higher Order

(

higher  order perturbation treatment:

match powers of    :

solve next order etc

solve lowest order without perturbation

substitute solution in next higher order equations

R              lk    / L

0 fix
%  = 2$          + %    + (%

(fix

3
0 1

2
2

0 1
2

2%    = %     + , %     + , %      +   (,  )3



]

ds
dr %d

ds

single sextupole kick:

1[ ]g    

e
e%

dR f    F    

G    
ds
d% 2$Q

L

2$Q
L

% %= F (r,   ) = G(r,    )

, +  O(     ),2 3
,=             +    g + 

, +  O(     ),2
=     f + , 3

ds r    e
e

1r   + %
1[

e
e%

r    e
e

1r   + %

expand equation of motion into a Taylor series

%

around zero order solution

% %

Higher Order II

F = f(R)    [sin(3     ) + 3 sin(   )] 

G = g(R)   [cos(3     ) + 3 cos(  )] +%



3  cos(                       )

,  :

substitute into equation of motion 
and solve for             and 

first order:

,

[

]

[

s +
L ]

(s) s +Q
L

R  (s)  = R

s +
L

s +
L

Q

Q

sin(                 3      )/3 +

s +
L
Q

Q

cos(                 3      )/3 +

3  sin(                       )

n

(s) r  (s)

(Q = p +     )-

(s)

R  (s)

1 1

6$

2$

% 0

% 0

% 0

% 0

3$

1

0

%     

% 0
6$

1

match powers of and solve equation of motion

in ascending order of

Higher Order III

0
zero order: %      =

0

2$

%



g    

second order:

ds

you get terms of the form: =  2

=  

ds
dr

r    e
e

1r   + %
1]

e
e%

g    

r    e
ef    

1r   + %
1][

[ds
d%

d%

(s) r  (s)

, 2

substitute            and            into equation

of motion and order powers of 

, nhigher order resonances:

a single perturbation generates ALL resonances

driving term strength and resonance width

decrease with increasing  order!

ds
dr

e
e%

f    

%

1

% %

% % %cos(6    ); cos(4   ); cos(2    ); 1

%

%sin(6    ); sin(4    ); sin(2   )

%%sin(3    )    cos(3   );  sin(3   )  cos(  );  sin(   )  cos(  )

Perturbation IV

% %cos(3    )   cos(3   ); cos(3   )  cos(  ); cos(   )  cos(   )% % % %

% % %

1
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% / $

x´

sextupole
only

Q = 0.18
k  = !0.06m

R 10
6
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2

Perturbation V



deterministic system

Poincare section for two degrees of freedom:
motion lies on closed curves 

indication of integrability 

integrable systems:
all trajectories lie on invariant surfaces

n degrees of freedom

n dimensional surfaces

x

x

two degrees of freedom:

x, s motion lies on a torus 

Integrable Systems

trajectories in phase space do not intersect



predictable

the separatrix motion 
re!introduction of the other resonances ’perturbs’ 

motion can ’change’ from libration to rotation

generation of a layer of ’chaotic motion’

so far we removed all but one resonance
(method of averaging)

dynamics is integrable and therefore

’chaos’ and non!integrability:

no hope for exact deterministic solution in this area!

Non−Integrable Systems



resonance:
motion near 1/4

x´

island sctructure

pendulum

appears on all

scales!

renormalization
theory

x´
x

x

Sextupole + Octupole



if more than one resonance are present their

for 1 degree of freedom (plus ’s’ dependence)

the particle amplitude is bound by neighboring

integrable lines

not true for more than one degree of freedom

resonance islands can overlap

the particle motion can jump from one

resonance to the other

fast particle losses and dynamic aperture

’global chaos’

particles can stream along the ’stochastic layer’

Non−Integrable Systems

global ’chaos’ and fast particle losses:

slow particle loss:



Summary

Complex dynamics:

Non−linear Perturbation:

amplitude growth 

detuning with amplitude 

coupling 

3 degrees of freedom

+ 1 invariant of the motion

non−linear dynamics+

no global analytical solution!

analytical analysis relies on

perturbation theory


