
Linear Imperfections

equations of motion with imperfections: 
smooth approximation

orbit correction for the un-coupled case

transfer matrices with coupling: element and one-turn

what we have left out (coupling)

perturbation treatment: driven oscillators and resonances
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sources for linear imperfections:
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Sources for Linear Field Errors

-magnetic field errors: b0 , b1 , a0 , a1

-powering errors for dipole and quadrupole magnets

-energy errors in the particles  change in normalized strength

-feed-down errors from quadrupole and sextupole magnets

 example: feed down from a quadrupole field

 dipole + quadrupole field component

-roll errors for dipole and quadrupole magnets
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Skew Multipoles: Example Skew Quadrupole
normal quadrupole: clockwise rotation by 45o  skew quadrupole
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Sources for Linear Field Errors 

-magnet positioning in the tunnel
transverse position +/- 0.1 mm
roll error  +/- 0.5 mrad

-tunnel movements:
slow drifts
civilization
moon
seasons
civil engineering

-closed orbit errors  beam offset inside magnetic elements

-energy error:  dispersion orbit

sources for feed down and roll errors:
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Equation of Motion I
Smooth approximation for Hills equation:

perturbation of Hills equation:

in the following the force term will be the Lorenz force of a 
charged particle in a magnetic field: 
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Equation of Motion I
perturbation for dipole field errors:

perturbation of Hills equation:
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perturbation for quadrupole field errors:
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Coupling I: Identical Coupled Oscillators


 

mode:
 

mode:
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fundamental modes for identical coupled oscillators:
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weak coupling (k << k0 ):

 description of motion in unperturbed ‘x’ and ‘y’ coordinates

 degenerate mode frequencies
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solution by decomposition into ‘Eigenmodes’:

distributed coupling: )()()( 1
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Coupling II: Equation of Motion in Accelerator
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take second derivative of  q1 and q2 :
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Coupling II: Equation of Motion in Accelerator
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very different unperturbed frequencies:
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Coupled Oscillators Case Study: Case 1

expansion of the square root:
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almost equal  frequencies:
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Coupled Oscillators Case Study: Case 2
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measurement of coupling strength:

12

Coupled Oscillators Case Study: Case 2

measure the difference in the Eigenmode frequencies while 
bringing the unperturbed tunes together:
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Coupled Oscillators Case Study: Case 2

with

initial oscillation only in horizontal plane:
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modulation
of the
amplitudes

sum rules for sin and cos functions:



Beating of the Transverse Motion: Case I

modulation of the oscillation amplitude:

frequencies can not be distinguished and energy can be 
exchanged between the two oscillators

two almost identical  harmonic oscillators with weak coupling:

-mode and =mode frequencies are approximately identical!
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Driven Oscillators

 large number of driving frequencies!

equation of motion 
 

driven un-damped oscillators:
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Perturbation treatment:
substitute the solutions of the homogeneous equation of motion:

into the right-hand side of the perturbed Hills equation and
express the ‘s’ dependence of the multipole terms by their Fourier
series (the perturbations must be periodic with one revolution!)
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Driven Oscillators

general solution: )()()( swswsw sttr 
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single resonance approximation:

consider only one perturbation frequency (choose                ):

without damping the transient solution is just the HO solution

)sin()( 00   saswtr

0 

Lyx mlk  2



Driven Oscillators

resonance condition:

0 n
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where ‘’ is the driving angular frequency!
and W() can become large for certain frequencies!
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 justification for single resonance approximation:

 all perturbation terms with: 0 n de-phase with the transient

 no net energy transfer from perturbation to oscillation (averaging)!



Resonances and Perturbation Treatment
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example single dipole perturbation:

resonance condition:
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avoid integer tunes!

(see general CAS school for more details) 18

CO(s)  (s)
2sin(Q)

 k0(t)  (t)  cos(|(t) (s) |Q) dt

Fourier series of 
periodic -function



Resonances and Perturbation Treatment 
integer resonance for dipole perturbations:
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 dipole perturbations add up on consecutive turns!  Instability

assume:

Q = integer



Resonances and Perturbation Treatment 
integer resonance for dipole perturbations:
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dipole perturbations compensate on  consecutive turns! 
 stability

assume:

Q = integer/2



Resonances and Perturbation Treatment
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example single quadrupole perturbation:

resonance condition:

avoid half integer tunes!

(see general CAS school for more details) 22
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Resonances and Perturbation Treatment
half integer resonance for quadrupole perturbations:
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quadrupole perturbations add up on consecutive turns! 
 Instability

assume:
Q = integer + 0.5

feed down error:

ybvqFybB yx  11



Resonances and Perturbation Treatment

nQQLn yx
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example single skew quadrupole perturbation:

resonance condition:

avoid sum and difference resonances!
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difference resonance  stable with energy exchange 
sum resonance  instability as for externally driven dipole



coupling with:
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 drive and response oscillation de-phase quickly
no energy transfer between motion in ‘x’ and ‘y’ plane

 small amplitude of ‘stationary’ solution:

 no damping of oscillation in ‘x’ plane due to coupling

 coupling is weak  tune measurement in one plane will 
show both tunes in both planes but 

with unequal amplitudes 

 tune measurement is possible for both planes
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Resonances and Perturbation Treatment: Case 1



coupling with:
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

 
drive and response oscillation remain in phase and energy
can be exchanged between motion in ‘x’ and ‘y’ plane:



 
large amplitude of ‘stationary’ solution:



 
damping of oscillation in ‘x’ plane and growth of
oscillation amplitude in ‘y’ plane

 ‘x’ and ‘y’ motion exchange role of driving force!

 each plane oscillates on average with:

 Impossible to separate tune in ‘x’ and ‘y’ plane!
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Resonances and Perturbation Treatment: Case 2



Exact Solution for Transport in Skew Quadrupole
coupled equation of motion: 01  yx 



01  xy and
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can be solved by linear combinations of ‘x’ and ‘y’:
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solution as for focusing and defocusing quadrupole

transport matrix for ‘x-y’ and ‘x+y’ coordinates for 1 > 0:
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Transport Map with Coupling
transport map for skew quadrupole:

transport map for linear elements without coupling:
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Transport Map with Coupling
coefficients for the transport map for skew quadrupole:

with:
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One-Turn Map with Coupling
one-turn map around the whole ring:
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Parametrization of One-Turn Map with Coupling
uncoupled system: parameterization by Courant-Snyder variables
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T is a 2 x 2 matrix  4 parameters

T is symplectic  determines 1 parameter

 3 independent parameters



Parametrization of One-Turn Map with Coupling
rotated coordinate system:

 using a linear combination of the horizontal and vertical position 
vectors the matrix can be put in ‘symplectic rotation’ form

or:
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One-Turn Map with Coupling
rotated coordinate system:
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rotated coordinate system:

 new Twiss functions and phase advances for the rotated coordinates
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Summary One-Turn Map with Coupling

coupling changes the orientation of the beam ellipse along the ring

34

 a global coupling correction is required for a restoration of  the
uncoupled tune values (can not be done by QF and QD adjustments)

coupling changes the Twiss functions and tune values in the
horizontal and vertical planes

 a local coupling correction is required for a restoration of  the 
uncoupled oscillation planes 

( mixing of horizontal and vertical kicker elements and correction dipoles)



What We Have Left Out

dispersion beat:

-beat: skew quadrupole perturbations generate -beat
similar to normal quadrupole perturbations
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integer tune split and super symmetry

skew quadrupole perturbations generate vertical dispersion

the (1,-1) coupling resonance in storage rings with super
symmetry can be strongly suppressed by an integer tune split

general definition of the coupling coefficients:
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Orbit Correction
deflection angle:
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trajectory response:
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closed orbit bump

compensate the trajectory response with additional dipole
fields further down-stream  ‘closure’ of the perturbation
within one turn 



Orbit Correction
3 corrector bump:
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SVD Algorithm I
linear relation between corrector setting and BPM reading:

38

global correction:

),...,,( 21 mcccCOR  
 

vector of corrector strengths

CORABPM 

problem  A is normally not invertible 
(it is normally not even a square matrix)!

),...,,( 21 nbbbBPM  
 

vector of all BPM data

A being a n x m matrix

BPMACOR  1

solution  minimize the norm: CORABPM 



SVD Algorithm II
solution:
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singular value decomposition (SVD):


 

find a matrix B such that
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any matrix can be written as:

where O1 and O2 are orthogonal matrices and D is diagonal 

CORBABPM 

attains a minimum with B being a m x n matrix and:
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tOO 1



SVD Algorithm III
diagonal form:
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define a pseudo inverse matrix:
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1k being the k x k unit matrix



SVD Algorithm IV
correction matrix:
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main properties:


 

define the ‘correction’ matrix:

    k
tt ODOODOBA 11221 



 SVD allows you to adjust k corrector magnets

tt ODOB 12 




 if k = m = n one obtains a zero orbit (using all correctors)

 for m = n SVD minimizes the norm (using all correctors)

 the algorithm is not stable if D has small Eigenvalues


 
can be used to find redundant correctors!

),min( mnk 



Harmonic Filtering
Unperturbed solution (smooth approximation):
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orbit perturbation

spectrum peaks around Q = n  small number of relevant terms!

periodicity:
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Most Effective Corrector
the orbit error is dominated by a few large perturbations:
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brut force:

 minimize the norm: CORBABPM 

using only a small set of corrector magnets

select all possible corrector combinations
 time consuming but god result

selective: use one corrector at the time + keep most effective
 much faster but has a finite chance to miss best 

solution and can generate 
 

bumps

MICADO: selective + cross correlation between orbit
residues and remaining correcotr magnets



Example for Measured & Corrected Orbit Data 
LEP:
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