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Introduction to Feedback
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Outline

Feedback Systems in Accelerators

Concept of Feedback

Modelling Dynamic Systems

Analysis of Feedback

Design of Feedback



3
CAS  Accelerator Physics, Sep 2007-S. Simrock

Feedback Systems in Accelerators
Publications 2006/2007 in JACOW 

Commissioning of the LEP Transverse Feedback System

Multi-bunch Feedback Activities at Photon Factory advanced Ring.

State of the SLS Multi-bunch Feedback

Real Time feedback on Beam parameters

Computation of Wake fields and Impedances for the PETRA III     
Longitudinal Feedback Cavity

The design and Performance of the prototype Digital Feedback RF
Control   System For the PLS Storage

The P0 feedback Control System Blurs the Line between IOC and FPGA
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Operation Experiences of the bunch feedback system for TLS

Compensation of BPM Chamber Motion in PLS Orbit Feedback System

LCLS RF Gun Feedback Control

Comparison of ILC Fast Beam-Beam Feedback Performance in the e-e-
and  e+e- Modes of Operation
A Digital Ring Transverse feedback Low-Level RF Control System

Performance of the New Coupled Bunch Feedback System at HERA-p

Transverse Feedback Development at SOLEIL

Publications 2006/07 (C’tnd)

Reference: http://cernsearch.web.cern.ch/cernsearch/Default.aspx?query=doctype:application
/pdf%20url:abstract%20url:accelconf/jacow%20url:accelconf%20title:feedback
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Examples (C’tnd)

Elettra fast orbit feedback:
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Examples (C’tnd)
Beam based feedback for tune, coupling and chromaticity
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Examples (C’tnd)

SLS Multi bunch Feedback :
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1. Feedback Systems
Objective:
The Introduction of Feedback  is concerned with the analysis and design of closed loop 
control systems.

Analysis:
Closed loop system is given           determine characteristics or behavior.

Design:
Desired system characteristics or behavior are specified        configure or synthesize closed 
loop system.

Plant

sensor

Input 

Variable
Measurement of 

Variable

Variable

Control-system components
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1. Feedback Systems
Definition:
A closed-loop system is a system in which certain forces (we call these inputs) are 
determined, at least in part, by certain responses of the system (we call these outputs).

System
inputs 

System
outputs 

Closed loop system 

O O
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Definitions:
The system for measurement of a variable (or signal) is called a sensor.
A plant of a control system is the part of the system to be controlled.
The compensator (or controller or simply filter) provides satisfactory  
characteristics for the total system.

Two types of control systems:

A regulator maintains a physical variable at some constant value in the
presence of perturbances.
A servomechanism describes a control system in which a  physical variable is    
required to follow, or track some desired time function (originally applied in order to 
control a mechanical position or motion).

System 
input Error Plant

Sensor

Manipulated 
variable

Closed loop control system

System 
output

Compensator+

1. Feedback Systems
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1. Feedback Systems
Example 1:  RF control system

Goal:
Maintain stable gradient and phase.

Solution:
Feedback for gradient amplitude and phase.

continued…Phase detector

~~

+-

Phase 
controller

amplitude
controller Klystron cavity

Gradient
set point

Controller
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1. Feedback Systems
Model:
Mathematical description of input-output relation of components combined with block 
diagram.

Amplitude loop (general form):

Klystron
cavity

amplifier

controllerReference
input outputRF power

amplifier

Monitoring 
transducer

_

Gradient detector

plant+
error
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1. Feedback Systems
RF control model using “transfer functions”

A transfer function of a linear system is defined as the ratio of the Laplace 
transform of the output and the Laplace transform of the input with I. C .’s =zero.

Input-Output Relations

Transfer FunctionOutputInput

U(s) Y(s) P(s)K(s)G(s) =

E(s) Y(s)

Y(s)

(s)G(s)HL(s) c=

R(s) L(s)L(s)M(s))1(T(s) 1−+=

Gradient detector

Klystron

cavity

controller

Reference  Input
Error

Output

_

Control input

P(s)K(s)R(s) ( )sHc

M(s)

Y(s)E(s)
U(s)

+
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1. Feedback Systems
Example2:  Electrical circuit

Differential equations:
( ) (t)ν dττi

C
1 i(t)R i(t)R 1

t

0
21 =++ ∫

( ) (t)ν dττi
C
1 i(t)R 2

t

0
2 =+ ∫

Laplace Transform:
(s)VI(s)

Cs
1 I(s)R I(s)R 121 =
⋅

++

(s)VI(s)
Cs

1 I(s)R 22 =
⋅

+

Transfer function:

1s)CR(R
1sCR

(s)V
(s)VG(s)

21

2

1

2

+⋅+
+⋅⋅

==

(t)V1 (t)V2

i(t) 1R

2R
C

1 VInput       ,output   2V
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1. Feedback Systems
Example 3:  Circuit with operational amplifier

+-

.

sCR
1sCR

(s)V
(s)VG(s)

1

2

i

0

⋅⋅
+⋅⋅

−==

It is convenient to derive a transfer function for a circuit with a single operational 
amplifier that contains input and feedback impedance:

+-

(s)Z f

(s)Zi

I(s)

(s)Vi (s)Vo

.

iV
oV

1i 1R 2R C

(s)  IR(s)V 11i = (s)I
Cs

1R(s)V 12o ⎟
⎠
⎞

⎜
⎝
⎛

⋅
+−=and

(s) I(s) Z(s)V ii = (s)Z
(s)Z

(s)V
(s)VG(s)

i

f

i

o −==(s) I(s)Z(s) V fo −=and
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2. Model of Dynamic System
We will study the following dynamic system:

y(t)
u(t)

γ k

1m =

Parameters:
: spring constant
: damping constant
: force

Quantity of interest:
: displacement from equilibrium 

k
γ
u(t)

y(t)

Differential equation: Newton’s third law

( ) ( ) ( ) ( )tutyγ tk yFty ext +−−== ∑ &&&

( ) ( ) ( ) ( )
 

tutk ytyγty =++ &&&

( ) ( ) 00 y0y , y0y && ==

( )1m =

-Equation is linear  (i.e. no        like terms).

-Ordinary (as opposed to partial e.g.                            )

-All coefficients constant: 

( ) 0x,tf
tx

  =
∂
∂

∂
∂

=

( ) ( ) γ tκ ,γt k ==

2y&

for all t
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2. Model of Dynamic System
Stop calculating, let’s paint!!!

Picture to visualize differential equation

1.  Express highest order term (put it to one side)

( ) ( ) ( ) ( )tutyγ tk yty +−−= &&&

2.  Putt adder in front

3.  Synthesize all other terms using integrators!

( )tu ( )ty&&

( )tk y−
( )tyγ &−

+

Block diagram
+

-
-

( )tu ( )ty& ( )ty

γ

k

( )ty&&
∫ ∫
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2.1  Linear Ordinary Differential Equation (LODE)
Most important for control system/feedback design:

( ) ( )( )

In general: given any linear time invariant system described by LODE can be 
realized/simulated/easily visualized in a block diagram

( ) ( )( ) ( ) ( )t ubtu b...t ub y(t)aty a...t yaty 01
m

m01
1n

1n
(n) +++=++++ −

− &&

( )2, m2n ==

Control-canonical form

+

--

( )tu

1a

0a

2x
0b ( )ty

2b

1b

1x
+

+ +

∫∫

Very useful to visualize interaction between variables!
What are     and       ????1x 2x

More explanation later, for now: please simply accept it!
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2.2  State Space Equation
Any system which can be presented by LODE can be represented in State space 
form (matrix differential equation).

Let’s go back to our first example (Newton’s law):

One LODE of order One LODE of order nn transformed into transformed into n n LODEs of order 1LODEs of order 1

What do we have to do ???

( ) ( ) ( ) ( )tutk ytyγ ty =++ &&&

Deduce set off first  order differential equation in variables

(so-called states of system)

Position :

Velocity :         :

( )tx j

( ) ≅tx1

( ) ≅tx2

1. STEP:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )tutγ xtk x                

tutyγ tk ytytx

txtytx

21

 

2

2

  

1

+−−=
+−−==

==

&&&&

&&

( )ty

( ) ty&
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2.2 State Space Equation
2. STEP:
Put everything together in a matrix differential equation:

( ) ( ) ( )  tD utC xty +=

Measurement equation

( )
( )

( )
( ) ( )t u

1
0

tx
tx

 
-k   - γ

1       0
tx
tx

2

1

2

1
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
&

&

State equation

( ) ( ) ( )   tB utA xtx +=&

( ) [ ] ( )
( )  
tx
tx

 0  1ty
2

1
⎥
⎦

⎤
⎢
⎣

⎡
=

Definition:

The system state      of a system at any time     is the “amount of information” that, 
together with all inputs for         , uniquely determines the behaviour of the system 
for all         .

0t

0tt ≥
0tt ≥

x
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2.2 State Space Equation
The linear time-invariant (LTI) analog system is described via

Standard form of the State Space Equation

Variable Dimension Name

state vector

system matrix

input matrix

input vector                  

output vector

output matrix

matrix representing direct coupling 
between input and output

( )tX

A
B
( )tu

( )ty
C

D

Declaration of variables

( ) ( ) ( )tB utA xtx +=& State equation

( ) ( ) ( ) tD utC xty += Measurement equation

( )
( )

( )
 .

tx
  

tx
tx

n

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅⋅=Where        is the time derivative of the vector ( )tx&

System completely described by state space matrixes             ( in the most cases          ). A, B, C, D 0D =

1n×
nn×
rn×
1r×
1p×
np×

rp×

And starting conditions ( )0tx
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2.2 State Space Equation
Why all this work with state space equation? Why bother with?

( ) ( ) ( )
( ) ( ) ( )  tD utC xty

  tB utA xtx
+=
+=&

with e.g. Control-Canonical Form (case                      ):

[ ] 3210

210

b , D b bb , C
1
0
0

 , B
a  a  a

 1       0       0   
0       1       0   

A ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

or Observer-Canonical Form:

[ ] 3

2

1

0

2

1

0

b ,D1  0  0 ,C
b
b
b

 ,B
a  1  0
a  0  1
a  0  0

A ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

Notation is very compact, But: not unique!!!
Computers love state space equation! (Trust us!)
Modern control (1960-now) uses state space equation.
General (vector) block diagram for easy visualization.

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )t ubtu b...t ubt yaty a...t yaty 01
m

m01
1n

1n
n +++=++++ −

− &&

BECAUSE: Given any system of the LODE form

Can be represented as 

3 ,m3n ==
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2.2 State Space Equation

Now: Solution of State Space Equation in the time domain. Out of the hat…et voila:

( ) ( ) ( ) ( ) ( ) dττt B uτΦ0 xtΦtx
 t

0 
−+= ∫

Natural Response +  Particular Solution

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )tD u dττt B uτΦC0 xtC Φ      

tD utC xty
 t

0 
+−+=

+=

∫
With the state transition matrix

( ) tA3
3

2
2

e...t!3
At!2

AAtItΦ  =++++=

( ) ( )

( )
( ) ( ) ( )
( ) ( )tΦt.Φ4

tΦtΦtt.Φ3
I0.Φ2

tA Φ
dt

tdΦ.1

1
2121

−=

⋅=+
=

=

−

Exponential series in the matrix A (time evolution operator) properties of           (state transition matrix).( )tΦ

Example:
( ) tA2 e

1  0
   t1

AtIt, Φ
0  0
0  0

A
0  0
1  0

A  =⎥
⎦

⎤
⎢
⎣

⎡
=+=⎥

⎦

⎤
⎢
⎣

⎡
=⇒⎥

⎦

⎤
⎢
⎣

⎡
=

Matrix A is a nilpotent matrix.
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2.4 Transfer Function G (s)
Continuous-time state space model

( ) ( ) ( )
( ) ( ) ( )tD utC xty

tB utA xtx
+=
+=& State equation

Measurement equation

Transfer function describes input-output relation of system.

( ) ( ) ( ) ( )sB UsA X0xss X +=−

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )s B Us xs         

sB UAsIxAsIsX
Φ+Φ=

−+−= −−

0
0 11

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )sD Us B UsC  xsC       

sD]UBAsI[c]xAsIC[      

sD UsC XsY

+Φ+Φ=
+−+−=

+=
−−

0
0 11

( ) ( ) ( ) D BsC DBAsICsG +Φ=+−= −1

System( )sU ( )sY

Transfer function             ( pxr ) (case: x(0)=0):( )sG
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2.4 Transfer Function of a Closed Loop System

( )sR ( )sE ( )sU ( )sY( )sHc
( )sG

( )sM

-

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )s Ys MsLs RsL        

s YsMsRs HsG        
s Es HsGs UsG sY

c

c

−=
−=

==
 

We can deduce for the output of the system.

( ) sLWith         the transfer function of the open loop system (controller plus plant).

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )s RsT                
s RsLs MsLIsY          

s RsLs Ys MsLI          
1

=
+=

=+
−

( ) sT is called : Reference Transfer Function



26
CAS  Accelerator Physics, Sep 2007-S. Simrock

2.5 Sensitivity and Disturbance Rejection

r(t) - reference input
d(t) – output disturbance
n(t) – measurement noise
y(t) – controlled output

)( sCr

d

)( sG y

n

ue

Consider the following closed loop system:

dGCInrGCGCIy
nyrCu

dGuy

11 )()()(
)(

−− ++−+=

−−=substituting :

The controlled output : +=

Now define the transfer functions for:

yields :

G(s)C(s)G(s)C(s))(IT(s)
sCsGIsS

1

1))()(()(
−

−

+=

+=Sensitivity: 

Complementary
Sensitivity: 

IST =+
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2.5 Sensitivity and Disturbance Rejection (C’tnd)

• Tracking: output should follow reference 

• Disturbance rejection: controller should keep the 
controlled output at it desired value

• Noise rejection: suppressing measurement noise 

• Reasonable control effort: must achieve given 
constraints of the actuator system

)()( trty =

Controller Design objectives are:

0)( ≅td

0)( ≅tn

IsT =)(

IsT =)(

0)( =sS

0)( =sT IsS =)(

0)( =sS

It turns out that perfect tracking and disturbance rejection on the one hand, 
and noise rejection on the other hand are conflicting design objectives.

Goal: Find the best trade-off between all to find the 
optimal controller for your application!
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2.7 Poles and Zeroes

Can stability be determined if we know the TF of a system?

( ) ( ) [ ]
( ) DBsχ
AsI

CD BsC ΦsG  adj +
−

=+=

( ) ( )
( )

( )
( )sD
sN

ps
zsαsg

ij

ij

l
n

1l

k
m

1k
ij =

−∏
−∏

⋅=
=

=

Coefficients of Transfer function  G(s) are rational functions in the complex variable  s

What do we know about the zeros and the poles?

Since numerator           and  denominator            are  polynomials   with real coefficients, 
Ploes and zeroes must be real numbers or must arise as complex conjugated pairs!

( )sN ( )sD

kz lp α nm ≤zeroes.       poles,      real constant, and it is           (we assume common factors have
already been canceled!)
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2.7 Poles and Zeroes

( )B AsICadj −

Stability directly from state-space

Assuming D=0 (D could change zeros but not poles)

Assuming there are no common factors between the poly           and 
i.e. no pole-zero cancellations (usually true, system called “ minimal” ) then we can identify

( ) ( ) DBAsICscall : HRe 1 +−= −

( ) ( )
( )

( )
( )sa
sb

AsI
BAsICsH adj
=

−
−

=
det

( )AsIdet −

( ) ( )  BAsIC sb adj−=

( ) ( )AsI detsa −=

and

i.e. poles are root of ( )AsI det −

iλ thiLet        be the        eigenvalue of A

=>≤  i }{λi allfor 0Reif System stable

So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A.
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2.8 Stability Criteria

Several methods are available for stability analysis:

1. Routh Hurwitz criterion

2. Calculation of exact locations of roots
a. Root locus technique
b. Nyquist criterion
c. Bode plot

3. Simulation (only general procedures for nonlinear systems)

A system is BIBO stable if, for every bounded input, the output remains bounded with 
Increasing time.

For a LTI system, this definition requires that all poles of the closed-loop transfer-function
(all roots of the system characteristic equation) lie in the left half of the complex plane.

While the first criterion proofs whether a feedback system is stable or unstable, 
the second Method also provides information about the setting time (damping term).
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2.8 Poles and Zeroes

S-Plane

Medium oscillation 
Medium decay

X XX

X

X

No Oscillation 
Fast Decay

X

X

X

X
No oscillation
No growth

Fast oscillation 
No growth 

Medium oscillation
Medium growth

ω(s)Im =

σ(s)Re =

No oscillation
Fast growth

Pole locations tell us about impulse response i.e. also stability:
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2.8 Poles and Zeroes

Furthermore:  Keep in mind the following picture and facts!

Complex pole pair: Oscillation with growth or decay.

Real pole: exponential growth or decay.

Poles are the Eigenvalues of the matrix A.

Position of zeros goes into the size of ....c j

In general a complex root must have a corresponding conjugate root ( N(s), D(S) polynomials
with real coefficients.
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2.8 Bode Diagram

Phase Margin
mφ

00

0180−

Gain Margin

dB

mG

ω

ω
1ω

2ω

2ω 1ω
090−

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP 
Is larger than-180 degrees.
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2.8 Root Locus Analysis
Definition: A root locus of a system is a plot of the roots of the system characteristic
Equation (the poles of the closed-loop transfer function) while some parameter of the
system (usually the feedback gain) is varied.

( ) ( ) ( ) ( )321 ps ps ps
KsK H

−−−
=

XXX
1p2p3p

( ) ( )
( ) ( ) .0sK H1roots at 
sK H1

sHKsGCL =+
+

=
 

How do we move the poles by varying the constant gain K?

( )sR ( )sY 

-

+
( )sH K
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2.8 Root Locus Analysis

X
1p

1ps
1
−

X
1p

( ) ( )21 psps
1
−−  

X
2p

X
1p

( ) ( )21

1

psps
zs
−−

−
 

X
2p

O

1z
X

1p

( ) ( )21

1

psps
zs
−−

−
 

X
2p

O

1z

(a) (b)

(c)
(d)
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X
1p

( ) ( ) ( )321 pspsps
1

−−−   
X

2p
X

3p
X

1p

( ) ( ) ( )321 pspsps
1

−−−   
X

2p

X
3p

( ) ( ) ( )321 pspsps
1

−−−   
X

1p

X
2p

X
3p

( ) ( ) ( )321

1

pspsps
zs

−−−
−

  

OX
2p

X
3p 1z

X
1p

2.8 Root Locus Analysis (Cnt’d)

(e) (f)

(g)
(h)
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3. Feedback
The idea:
Suppose we have a system or “plant”

We want to improve some aspect of plant’s performance by observing the output 
and applying a appropriate “correction” signal. This is feedback

plant

“open loop”

“closed loop”
plant

?

Ufeedback

r

Question: What should this be?
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3. Feedback
Open loop gain:

Closed-loop gain:

G(s)
u y

( ) ( )
1

O.L

y
usGsG

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

G(s) H(s)1
G(s)(s)GC.L

+
=

( )

( )G H1
G

u
y          G Hy      G u               

G uG Hy               G uG u               

uuGoof: yPr

yfb

fb

+
=⇒−=

=+⇒−=

−=

“closed loop”

u
G(s)

y

)(sH

fbU
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3.1 Feedback-Example 1

Consider S.H.O with feedback proportional to x i.e.:

( ) ( )tα x t u

uuxωxγ x

fb

fb
2
n

−=

+=++ &&&

Then

Same as before, except that new “natural” frequency  αω2
n +

Where

+ s
1

s
1 y

2
nω

α

U
-

-
-

x&& x& x

γ

α xuxωxγ x 2 
 n −=++ &&&

( ) u xαωxγ x 2
n =+++==> &&&
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3.1 Feedback-Example 1

So the effect of the proportional feedback in this case is to increase the bandwidth 
of the system
(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front…) 

)log(ω2
n

1
ω

α+ω2
n

1
n ωlog αω log 2

n +

( ) iωGO.L.

( ) iωGC.L.

DC response: s=0

dB

( ) ( )αωγss
1sG 2

n
2

C.L.

+++
=Now the closed loop T.F. is:
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3.1 Feedback-Example 2

( ) ( ) dτ τxαtu
t

0
fb ∫−=

( )∫−=++
t

0

2
n  dττxαu xωxγ xi.e   &&&

Differentiating once more yields: uα xx ωxγ x 2
n &&&&&&& =+++

No longer just simple S.H.O., add another state 

In S.H.O. suppose we use integral feedback:

+ s
1

s
α

-
-

-

y

2
nω

U x&& x& x

γ

s
1
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3.1 Feedback-Example 2

( )

( )

( ) αωγsss
s           

αωγss
1

s
α1

ωγss
1

sG

2
n

2

2
n

2

2
n

2
C.L.

+++
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

⎟
⎠
⎞

⎜
⎝
⎛+

++
=

Observe that
1.
2. For large s (and hence for large     )

( )00GC.L. =
ω

( ) ( ) ( )sG
ωγss

1sG O.L.
2
n

2
C.L. ≈

++
≈dB

2
nω

1

( )iωGO.L.

( )iωGC.L.

)log(ω

So integral feedback has killed DC gain
i.e system rejects constant disturbances



43
CAS  Accelerator Physics, Sep 2007-S. Simrock

3.1 Feedback-Example 3

Suppose S.H.O now apply differential feedback i.e.

( ) ( )txα tufb &−=

( ) uxωx αγx 2
n =+++ &&&

Now have

So effect off differential feedback is to increase damping

+

αS

-
-

-

xα &

s
1

2
nω

x&& x& x

γ

s
1

x
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3.1 Feedback-Example 3

dB

2
nω

1

( )iωGO.L.

)log(ω

( )iωGC.L.

Now ( ) ( ) 2
n

2
C.L.

ω sαγs
1sG

+++
=

So the effect of differential feedback here is to “flatten the resonance” i.e. damping is increased.

Note: Differentiators can never be built exactly, only approximately.
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3.1 PID Controller
(1) The latter 3 examples of feedback can all be combined to form a 

P.I.D. controller (prop.-integral-diff).

 ldpfb uuuu ++=

(2)  In example above S.H.O. was a very simple system and it was clear what     physical    
interpretation of P. or I. or D. did. But for large complex systems not obvious

==>      Require arbitrary “ tweaking ”

That’s what we’re trying to avoid

S.H.O+

/sKsKK lDp ++

P.I.D controller

-

yx =u
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For example, if you are so smart let’s see you do this with your P.I.D. controller:

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare that’ll get you nowhere fast!

With modern control theory this problem can be solved easily.

G

ω

6th order system
3 resonant poles
3 complex pairs
6 poles

3.1 PID Controller
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